--- license: mit base_model: Clinical-AI-Apollo/Medical-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Medical-NER-finetuned-ner results: [] --- # Medical-NER-finetuned-ner This model is a fine-tuned version of [Clinical-AI-Apollo/Medical-NER](https://huggingface.co/Clinical-AI-Apollo/Medical-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2045 - Precision: 0.9394 - Recall: 0.9282 - F1: 0.9338 - Accuracy: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.37 | 100 | 0.4486 | 0.8318 | 0.8662 | 0.8486 | 0.8331 | | No log | 0.75 | 200 | 0.3747 | 0.8608 | 0.8834 | 0.8720 | 0.8646 | | No log | 1.12 | 300 | 0.3245 | 0.8801 | 0.8932 | 0.8866 | 0.8828 | | No log | 1.49 | 400 | 0.2846 | 0.9128 | 0.9038 | 0.9083 | 0.9028 | | 0.4808 | 1.87 | 500 | 0.2554 | 0.9199 | 0.9067 | 0.9133 | 0.9083 | | 0.4808 | 2.24 | 600 | 0.2480 | 0.9270 | 0.9073 | 0.9171 | 0.9102 | | 0.4808 | 2.61 | 700 | 0.2269 | 0.9271 | 0.9172 | 0.9221 | 0.9171 | | 0.4808 | 2.99 | 800 | 0.2319 | 0.9270 | 0.9089 | 0.9179 | 0.9129 | | 0.4808 | 3.36 | 900 | 0.2303 | 0.9284 | 0.9088 | 0.9185 | 0.9133 | | 0.2633 | 3.73 | 1000 | 0.2246 | 0.9311 | 0.9111 | 0.9210 | 0.9155 | | 0.2633 | 4.1 | 1100 | 0.2120 | 0.9343 | 0.9218 | 0.9280 | 0.9236 | | 0.2633 | 4.48 | 1200 | 0.2111 | 0.9361 | 0.9222 | 0.9291 | 0.9243 | | 0.2633 | 4.85 | 1300 | 0.2152 | 0.9320 | 0.9185 | 0.9252 | 0.9208 | | 0.2633 | 5.22 | 1400 | 0.2068 | 0.9333 | 0.9227 | 0.9280 | 0.9239 | | 0.2218 | 5.6 | 1500 | 0.2070 | 0.9360 | 0.9256 | 0.9308 | 0.9267 | | 0.2218 | 5.97 | 1600 | 0.2045 | 0.9394 | 0.9282 | 0.9338 | 0.9296 | | 0.2218 | 6.34 | 1700 | 0.2020 | 0.9357 | 0.9275 | 0.9316 | 0.9284 | | 0.2218 | 6.72 | 1800 | 0.2054 | 0.9354 | 0.9227 | 0.9290 | 0.9246 | | 0.2218 | 7.09 | 1900 | 0.2053 | 0.9372 | 0.9253 | 0.9312 | 0.9269 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2