{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c99afb92c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691392542751774204, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPTnD2Psg+6R30pu+YuYjUnbAa7jbhEOgAAAAAAAIA/mmVYPHERU7t5ST+7FQ6pPIuHoLylEpA9AACAPwAAgD96K1o+iWQePxJS1Twat7K+dV9kPA7BiTwAAAAAAAAAAIDSDb1SqPi5BAEjOJrfzDGwUAa7UAg9twAAgD8AAIA/jSCTPSnwEbqWr7273NLHN6bIxjoNFZs6AACAPwAAgD9NcHA9KYxRuqL5iToh7BY2QhlwO4B8n7kAAIA/AACAP81h+D09EAK7Qv7dOgTisbfS9MK7mMQEugAAgD8AAIA/AMr7PFwjNLoCuSE6rXpCNmK0Fbr0STu5AACAPwAAgD8aTRM94ZSJugBC0Do3Crw1ut/guttY8rkAAIA/AACAP9pioj2PoIA/e9xPPmNDyr6prnI9evu0vAAAAAAAAAAATSN/vVyPDDkdbaI7IqKkM/i0KrseVMK6AACAPwAAgD8NrOw9OBP1u2ZLgLwtAho8NKNQvTGwAz0AAIA/AACAPxqVST62JFc9oO5YvvWALL7MdyM8GFZQvQAAAAAAAAAATSezPUj7iLrGaEW7Xjc9OJ5ZF7pwh1M6AACAPwAAgD9mtEc8Ul69Pzo8Nz22jNC9wl8SPX7Yvj0AAAAAAAAAADPvd7zKRgA+KMXzPTprmL6cMpk9q6VIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUXhoduHeuMAWyUTegDjAF0lEdAkfzpMQEpzHV9lChoBkdAYz02Xsw+MmgHTegDaAhHQJIAHq/ub7V1fZQoaAZHQEPlkCmuTzNoB00IAWgIR0CSA8e67NB4dX2UKGgGR0BG3lA3T/hmaAdNDQFoCEdAkgYcSbpeNXV9lChoBkdAYXhzFuNxVGgHTegDaAhHQJIPXG2kSEl1fZQoaAZHQGUtXfhuO0doB03oA2gIR0CSEC1UVBUrdX2UKGgGR0Bju48bJfY0aAdN6ANoCEdAkhJQuIyj6HV9lChoBkdAY0QLLpzLfWgHTegDaAhHQJIUTDMvAXV1fZQoaAZHQGIeV4HHFP1oB03oA2gIR0CSLER3/xUedX2UKGgGR0A1+HwPRRdhaAdL22gIR0CSMIFRYRukdX2UKGgGR0BgmDhBJI1+aAdN6ANoCEdAkjSBeokzGnV9lChoBkdAXi3fqHGjsWgHTegDaAhHQJI73gTAWSF1fZQoaAZHQGUvoClrM1VoB03oA2gIR0CSO+HN5dGBdX2UKGgGR0BmnQQtjCpFaAdN6ANoCEdAkkCijDbaiHV9lChoBkdAYb3fzjFQ22gHTegDaAhHQJJA7KnvUjN1fZQoaAZHQGXO9gfEGaBoB03oA2gIR0CSQaFyJbdKdX2UKGgGR0Bmx3icXm/4aAdN6ANoCEdAkkJpJ5E+gXV9lChoBkdAYyRdtVJcxGgHTegDaAhHQJJDjmRvFWJ1fZQoaAZHQGMjm9xp+MJoB03oA2gIR0CSR3JqIrOJdX2UKGgGR0BjhwcvM8oyaAdN6ANoCEdAkkx0ZzgdfnV9lChoBkdAM/sK1G9YfWgHTQEBaAhHQJJPE4GUwBZ1fZQoaAZHQGMDzLOiWVxoB03oA2gIR0CSUGDKYAsDdX2UKGgGR0AbxBOYYzi0aAdL7WgIR0CSUfmZmZmadX2UKGgGR0BJHyaNMoMKaAdL1GgIR0CSVjdY4hlldX2UKGgGR0Bd8o6bONYKaAdN6ANoCEdAklxeVPepGXV9lChoBkdAY2bPM0P6K2gHTegDaAhHQJJdQt+TeO51fZQoaAZHQFA2Z8KG+K1oB005AWgIR0CSYQBXjlxPdX2UKGgGR0Bi2rj7yhBaaAdN6ANoCEdAkmG51aGHpXV9lChoBkdAYV7eF+NLlGgHTegDaAhHQJJnf3K0UoN1fZQoaAZHQEOTAdn003xoB0u+aAhHQJJ33L8rI5p1fZQoaAZHQGYeHxJ/XoVoB03oA2gIR0CSe5zVMEiddX2UKGgGR0Bi29tsN2C/aAdN6ANoCEdAkn/Aw482aXV9lChoBkdAYQyrCm/Fi2gHTegDaAhHQJKJWvECNjt1fZQoaAZHQGJRG16Vt41oB03oA2gIR0CSiVw3o9s8dX2UKGgGR0BYRtFSbYseaAdN6ANoCEdAko4cjAzpHXV9lChoBkdAZT/mwJPZZmgHTegDaAhHQJKO4J5VwP11fZQoaAZHQGFgQBYFJQNoB03oA2gIR0CSj6NeMQ2/dX2UKGgGR0Bhf73bmEGraAdN6ANoCEdAkpv00zj3mHV9lChoBkdAYrXbCaZx72gHTegDaAhHQJKc35gw4851fZQoaAZHQGEvGI9C/oJoB03oA2gIR0CSng6qsEJTdX2UKGgGR0Bm4qDmKZUlaAdN6ANoCEdAkqEMx46fa3V9lChoBkdAX3E8QqZtvWgHTegDaAhHQJKmuo/A0sR1fZQoaAZHQC1df5ULlV9oB0u9aAhHQJKnN2fTTfB1fZQoaAZHQGMWRrrPdEdoB03oA2gIR0CSqy+mFajfdX2UKGgGR0Bm3T9n9NvgaAdN6ANoCEdAkqvc4PwuunV9lChoBkdAYE9zmwJPZmgHTegDaAhHQJKxt5eJHiF1fZQoaAZHQGJ7U4iosI5oB03oA2gIR0CSslhl18sudX2UKGgGR0Bip0vugHu7aAdN6ANoCEdAkshRqCYkV3V9lChoBkdAYi+0JF9a2WgHTegDaAhHQJLL6TwDvE11fZQoaAZHQGDSFUQ04zdoB03oA2gIR0CS0219fCyhdX2UKGgGR0Bi9SFqSHM2aAdN6ANoCEdAktNvVy3kP3V9lChoBkdAZgFuR9w3pGgHTegDaAhHQJLYoXbdrO91fZQoaAZHQGbqMpw0fo1oB03oA2gIR0CS2XO/cnE3dX2UKGgGR0Bm6AKD0163aAdN6ANoCEdAktpdO2y9mHV9lChoBkdATnPuuzQeFWgHS/FoCEdAkuoMBEKE4HV9lChoBkdAYc/MjeKsMmgHTegDaAhHQJLrIe2d/ax1fZQoaAZHQGaTzEJjUd9oB03oA2gIR0CS7m8Sf16FdX2UKGgGR0BkiNPrOZ9eaAdN6ANoCEdAkvHqesgdO3V9lChoBkdAY0LSflIVd2gHTegDaAhHQJL4h2xIJ7d1fZQoaAZHQGPApKjBVMpoB03oA2gIR0CS+RJHRTjvdX2UKGgGR0BiFwyCWeH0aAdN6ANoCEdAkv1OdoWYW3V9lChoBkdAY+2WnCO3lWgHTegDaAhHQJL+B5Sm65J1fZQoaAZHQGUbW87IT5BoB03oA2gIR0CTA89GI9DAdX2UKGgGR0Bh3V8Z1mrbaAdN6ANoCEdAkwRD4L1EmnV9lChoBkdAYaF50r9VFWgHTegDaAhHQJMY163RXwN1fZQoaAZHQFyHarWAf+1oB03oA2gIR0CTHdNLlFMJdX2UKGgGR0BgZ5qZc9nsaAdN6ANoCEdAkyWY2CNCJHV9lChoBkdAYvKCe2/i52gHTegDaAhHQJMlmjASFoN1fZQoaAZHQEJd0SRKYiRoB00KAWgIR0CTJeTBqKxcdX2UKGgGR0Bhg3fXPJJYaAdN6ANoCEdAkyskqDsdDXV9lChoBkdAZBTt/FzdUWgHTegDaAhHQJMsAwPAfuF1fZQoaAZHwE1rJnxri2loB0vFaAhHQJMw0E8q4H51fZQoaAZHQGSpmA08/2VoB03oA2gIR0CTOP84PwuvdX2UKGgGR0BlrC/EfkmyaAdN6ANoCEdAkzm5avA443V9lChoBkdAZtl2+PBBRmgHTegDaAhHQJM8HK7qY7d1fZQoaAZHQGICJtJnQIFoB03oA2gIR0CTP7fLs8gZdX2UKGgGR0BmgULORkmQaAdN6ANoCEdAk0ZC08eS0XV9lChoBkdAYrGR4hUzbmgHTegDaAhHQJNG0YekpJB1fZQoaAZHQGXJktdzGPxoB03oA2gIR0CTTBOdXko4dX2UKGgGR0BjA+TeO4oaaAdN6ANoCEdAk00XnQpnYnV9lChoBkdAZFSoxYaHbmgHTegDaAhHQJNUPw4KhL51fZQoaAZHQGaaszuWrwRoB03oA2gIR0CTaKrnkkrxdX2UKGgGR0Bc5FoYekpJaAdN6ANoCEdAk2wjU3GXHHV9lChoBkdAYoR8NQTEi2gHTegDaAhHQJNyk0/GEPF1fZQoaAZHQGF15TAFgUloB03oA2gIR0CTctbdadMCdX2UKGgGR0BlXp1xKg7HaAdN6ANoCEdAk3fEqpcX33V9lChoBkdAY+aQsf7rLWgHTegDaAhHQJN4nFWGRFJ1fZQoaAZHQGWLiFsYVItoB03oA2gIR0CTfYe2/i5vdX2UKGgGR0BcB+E25xzaaAdN6ANoCEdAk4dyuEEkjXV9lChoBkdAYMolLvkRz2gHTegDaAhHQJOIHMB6rvN1fZQoaAZHQGK+uivgWJtoB03oA2gIR0CTijOHnEEUdX2UKGgGR0Bi5jgqEvkBaAdN6ANoCEdAk41hhx5s03V9lChoBkdAYjr8wYcebWgHTegDaAhHQJOT+20AtFt1fZQoaAZHQGTu1N5+pfhoB03oA2gIR0CTlImRNh3JdX2UKGgGR0BQTzN+so2GaAdNCAFoCEdAk5dUSVW0Z3V9lChoBkdAZGxurIYFaGgHTegDaAhHQJOY0K7ZnL91fZQoaAZHQGBtygf2bodoB03oA2gIR0CTmYRu0kWzdX2UKGgGR0BbZxWYF7laaAdN6ANoCEdAk58287IT5HV9lChoBkfAJnuzhP0qY2gHS+9oCEdAk6Ifqkdmx3V9lChoBkdAY2cEX+ERJ2gHTegDaAhHQJOjr8k2P1d1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}