james0248 commited on
Commit
67e736f
1 Parent(s): 97627fe

Initial Commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.21 +/- 21.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e2ce1d5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e2ce1d670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e2ce1d700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e2ce1d790>", "_build": "<function ActorCriticPolicy._build at 0x7f6e2ce1d820>", "forward": "<function ActorCriticPolicy.forward at 0x7f6e2ce1d8b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e2ce1d940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e2ce1d9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6e2ce1da60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e2ce1daf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e2ce1db80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e2ce1dc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6e2ce178d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673976980616525458, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3tML1cdy66AkjtOm1u8zVTnvk6NhYKugAAgD8AAIA/2gXjPdcTfbkZLRK7cxQDthYGHbp5hys6AACAPwAAgD/Nq8S9pEBhuQyRyrvrL+08zMEft7g7SbwAAIA/AACAPwBD0L32yDS6zheit95GQjEC1Cy7eNW8NgAAgD8AAIA/81WpPUi3hLqGjjG5MwLSswpsmLst4lA4AACAPwAAgD+zqrW9XA8VuHZxhrzGOC28Tj6eOwHGPT0AAAAAAAAAAG0xQz7DxEg7OoUyu7wekrjI5vA8XbZ3uQAAgD8AAIA/OnZlvhcxXj/O2Au+oamjvt5qxr7EmSK+AAAAAAAAAADAe889SEOeuq3bk7fGeRKyonxkN4o4qTYAAIA/AACAP9ou2b2FM+q5sI1Pu/x8ZDj8q1y7spHhOQAAgD8AAIA/bmsLv6NVM74OhOw5Rk62N4ydjD0xUA65AACAPwAAgD/zis09KXh9utIkjjtrhCo4d3LLunrYqLgAAIA/AACAPwYZlT600I28PqC5u2uofTn1x/2934pMOgAAgD8AAIA/QOqqPt3isr3mXiw++0ddvUfx475tBFK1AACAPwAAAACmeqQ9XENWutb9kLuH0NA2YuU7uxoKPbYAAIA/AACAP82IoTuPzhG6xZRrOozW27Wm2sq6dZPZtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZXJqZ5hSNcCUhpRSlIwBbJRLr4wBdJRHQJCYqjgydnV1fZQoaAZoCWgPQwihhJm2f/NaQJSGlFKUaBVN6ANoFkdAkKDGGyon8nV9lChoBmgJaA9DCHBE96xrqFxAlIaUUpRoFU3oA2gWR0CQpZrhzeXSdX2UKGgGaAloD0MIKbAApgwxWECUhpRSlGgVTegDaBZHQJCoAKPXCj11fZQoaAZoCWgPQwhz1TxH5ItfQJSGlFKUaBVN6ANoFkdAkKnXbItDlnV9lChoBmgJaA9DCHqnAu55FE3AlIaUUpRoFU0DAWgWR0CQqmlUIcBEdX2UKGgGaAloD0MIw5rKojCoYECUhpRSlGgVTegDaBZHQJCr/aHsTnJ1fZQoaAZoCWgPQwit30xMF89dQJSGlFKUaBVN6ANoFkdAkK4k6PsAvXV9lChoBmgJaA9DCEZ4exACflVAlIaUUpRoFU3oA2gWR0CQsj3Ux20RdX2UKGgGaAloD0MI74y2KokwYUCUhpRSlGgVTegDaBZHQJC1N3wCr951fZQoaAZoCWgPQwhsW5TZoEtjQJSGlFKUaBVN6ANoFkdAkLrARK6FunV9lChoBmgJaA9DCKZ/SSpTu1xAlIaUUpRoFU3oA2gWR0CQu5F3pwCKdX2UKGgGaAloD0MIGHrE6DnNYUCUhpRSlGgVTegDaBZHQJC8CMkyDZl1fZQoaAZoCWgPQwgtz4O7syZLQJSGlFKUaBVN6ANoFkdAkL5cgU1yenV9lChoBmgJaA9DCOasTzkmrmNAlIaUUpRoFU3oA2gWR0CQv3zLfUF0dX2UKGgGaAloD0MIUmFsIcgLR8CUhpRSlGgVS+JoFkdAkMPi3PRiPXV9lChoBmgJaA9DCK99Ab1wRwfAlIaUUpRoFUvsaBZHQJDKCdupCKJ1fZQoaAZoCWgPQwinzM03ojlYQJSGlFKUaBVN6ANoFkdAkNAQlWwNb3V9lChoBmgJaA9DCIQQkC+hf1xAlIaUUpRoFU3oA2gWR0CQ5VQla8pTdX2UKGgGaAloD0MIWFhwP2COYECUhpRSlGgVTegDaBZHQJEY/DVH4Gl1fZQoaAZoCWgPQwgV4LvNG45lQJSGlFKUaBVN6ANoFkdAkR4QKOT7mHV9lChoBmgJaA9DCGXCL/XzZk9AlIaUUpRoFU3oA2gWR0CRIJxFRYRvdX2UKGgGaAloD0MIvRx23zHyYkCUhpRSlGgVTegDaBZHQJEikuWa+ex1fZQoaAZoCWgPQwhxyXGndA5gQJSGlFKUaBVN6ANoFkdAkSMq0QbuMXV9lChoBmgJaA9DCOwxkdJsY1tAlIaUUpRoFU3oA2gWR0CRJMYoAn2JdX2UKGgGaAloD0MI9Q63Q8MOXECUhpRSlGgVTegDaBZHQJEoBd+ocaR1fZQoaAZoCWgPQwhXBWoxeFxhQJSGlFKUaBVN6ANoFkdAkS4dzfaYeHV9lChoBmgJaA9DCD+O5sjKfypAlIaUUpRoFUvyaBZHQJE7HMs6JZZ1fZQoaAZoCWgPQwhya9JtiVtdQJSGlFKUaBVN6ANoFkdAkTvh2wFC9nV9lChoBmgJaA9DCLPO+L64r15AlIaUUpRoFU3oA2gWR0CRPFjynUDudX2UKGgGaAloD0MIaXQHsTMRUECUhpRSlGgVTRIBaBZHQJE8+6H0se51fZQoaAZoCWgPQwj2Cgvuh8pgQJSGlFKUaBVN6ANoFkdAkT7kadc0L3V9lChoBmgJaA9DCA7cgTrlJ1pAlIaUUpRoFU3oA2gWR0CRQE4Pf8/EdX2UKGgGaAloD0MIEvbtJCKLX0CUhpRSlGgVTegDaBZHQJFFYWl/H5t1fZQoaAZoCWgPQwjPTZtxGi9fQJSGlFKUaBVN6ANoFkdAkUuFr6+FlHV9lChoBmgJaA9DCO6TowBRdD7AlIaUUpRoFU0PAWgWR0CRTx3RXwLFdX2UKGgGaAloD0MIpz/7kSIVXkCUhpRSlGgVTegDaBZHQJFRIdsBQvZ1fZQoaAZoCWgPQwiM17yqs6o0QJSGlFKUaBVNCQFoFkdAkVKwwGnn+3V9lChoBmgJaA9DCGztfaoKF1tAlIaUUpRoFU3oA2gWR0CRY6hUR3/xdX2UKGgGaAloD0MITweyntpUZECUhpRSlGgVTegDaBZHQJFroN4JNTN1fZQoaAZoCWgPQwj/y7VoATRgQJSGlFKUaBVN6ANoFkdAkXCbOqvNeXV9lChoBmgJaA9DCAbxgR3/RF5AlIaUUpRoFU3oA2gWR0CRcwFPSDywdX2UKGgGaAloD0MI98snK4baYECUhpRSlGgVTegDaBZHQJF3TJPqLTB1fZQoaAZoCWgPQwhOYaWCCiRgQJSGlFKUaBVN6ANoFkdAkXnA1vVEu3V9lChoBmgJaA9DCE5/9iNFQmFAlIaUUpRoFU3oA2gWR0CRfnFmFrVOdX2UKGgGaAloD0MIGsOcoE2uGUCUhpRSlGgVTQYBaBZHQJGFIfs/pt91fZQoaAZoCWgPQwjlZOJWQVBiQJSGlFKUaBVN6ANoFkdAkYh30wrUb3V9lChoBmgJaA9DCOfgmdCkWWJAlIaUUpRoFU3oA2gWR0CRiUUeMhoudX2UKGgGaAloD0MIF2L1RxgfWkCUhpRSlGgVTegDaBZHQJGKUQ6IWP91fZQoaAZoCWgPQwgk06HT805OwJSGlFKUaBVL+2gWR0CRisvX9R77dX2UKGgGaAloD0MI4BEVqptFWUCUhpRSlGgVTegDaBZHQJGMSzD4xlB1fZQoaAZoCWgPQwiALESHwD5gQJSGlFKUaBVN6ANoFkdAkZKOgHu7YnV9lChoBmgJaA9DCGywcJLm5F9AlIaUUpRoFU3oA2gWR0CRmSKohpxndX2UKGgGaAloD0MIv0nToGg2KECUhpRSlGgVS99oFkdAkZv7zTWoWHV9lChoBmgJaA9DCE5fz9essGBAlIaUUpRoFU3oA2gWR0CRnODB/I8ydX2UKGgGaAloD0MIS6yMRj6VYkCUhpRSlGgVTegDaBZHQJGewCRwIdF1fZQoaAZoCWgPQwi8zRsnhYEuwJSGlFKUaBVN6ANoFkdAkaA4MOPNmnV9lChoBmgJaA9DCAYsuYrF6UHAlIaUUpRoFUvMaBZHQJGvAFr2xpt1fZQoaAZoCWgPQwjBAMKHEgFkQJSGlFKUaBVN6ANoFkdAkbA9FF2FFnV9lChoBmgJaA9DCEbRAx+DLSBAlIaUUpRoFU0bAWgWR0CRs2EgW8AadX2UKGgGaAloD0MIkUPEzamSV0CUhpRSlGgVTegDaBZHQJG22By0a611fZQoaAZoCWgPQwhslzYcFg9hQJSGlFKUaBVN6ANoFkdAkedq3/givHV9lChoBmgJaA9DCHwrEhPUhkFAlIaUUpRoFUvtaBZHQJHrXZ00WM11fZQoaAZoCWgPQwg0D2CRXyZWQJSGlFKUaBVN6ANoFkdAke4YToMa0nV9lChoBmgJaA9DCNuHvOXqnzpAlIaUUpRoFUu8aBZHQJHvl4rz5Gl1fZQoaAZoCWgPQwjPZtXnan1fQJSGlFKUaBVN6ANoFkdAkfKhkVeruXV9lChoBmgJaA9DCEa28/3U3GJAlIaUUpRoFU3oA2gWR0CR+TjDKoycdX2UKGgGaAloD0MISIyeW2hgYUCUhpRSlGgVTegDaBZHQJH8IupS75F1fZQoaAZoCWgPQwhEhermYnFiQJSGlFKUaBVN6ANoFkdAkfzbeuV5bHV9lChoBmgJaA9DCB9lxAWg+VVAlIaUUpRoFU3oA2gWR0CR/dnYxtYTdX2UKGgGaAloD0MIFviKbr1RXUCUhpRSlGgVTegDaBZHQJH+RXXAdn11fZQoaAZoCWgPQwgSa/EpACxlQJSGlFKUaBVN6ANoFkdAkgVQYcebNXV9lChoBmgJaA9DCKBsyhXeeT9AlIaUUpRoFU0bAWgWR0CSBhCCjDbbdX2UKGgGaAloD0MIg+Dx7V3QYECUhpRSlGgVTegDaBZHQJIK1ar3j+91fZQoaAZoCWgPQwgHmWTkrFphQJSGlFKUaBVN6ANoFkdAkg1O3trsSnV9lChoBmgJaA9DCHZPHhZqwUbAlIaUUpRoFUv8aBZHQJIN01JlJ6J1fZQoaAZoCWgPQwgShZZ1/yZeQJSGlFKUaBVN6ANoFkdAkg4LX+VC5XV9lChoBmgJaA9DCC8wKxTpfg7AlIaUUpRoFUvfaBZHQJIcHGp++dt1fZQoaAZoCWgPQwh1HaopyUFfQJSGlFKUaBVN6ANoFkdAkh9ePvKEFnV9lChoBmgJaA9DCPoMqDcjJWRAlIaUUpRoFU3oA2gWR0CSIoQMQVbidX2UKGgGaAloD0MIqFFIMqtIWUCUhpRSlGgVTegDaBZHQJIsQpXp4bF1fZQoaAZoCWgPQwiT4Xg+A8oQQJSGlFKUaBVL22gWR0CSLGrwe/5+dX2UKGgGaAloD0MIoE55dCNcOECUhpRSlGgVS6loFkdAki84plSS/3V9lChoBmgJaA9DCDBJZYq5emNAlIaUUpRoFU3oA2gWR0CSL/knCwbEdX2UKGgGaAloD0MIhxQDJBoLZUCUhpRSlGgVTegDaBZHQJIygnc+JP91fZQoaAZoCWgPQwi3RgTjYKRhQJSGlFKUaBVN6ANoFkdAkjPo1DSgG3V9lChoBmgJaA9DCOPe/IaJWkdAlIaUUpRoFU0bAWgWR0CSNCkAxSHedX2UKGgGaAloD0MI+KbpswOXYkCUhpRSlGgVTegDaBZHQJI8IBnzxw11fZQoaAZoCWgPQwghWcAEbh1fQJSGlFKUaBVN6ANoFkdAkj6i4e9zwXV9lChoBmgJaA9DCFLt0/GYoWRAlIaUUpRoFU3oA2gWR0CSP0u5BkZrdX2UKGgGaAloD0MIYCAIkKHrPsCUhpRSlGgVS71oFkdAkj/vNVzZH3V9lChoBmgJaA9DCKjlB67yb2RAlIaUUpRoFU3oA2gWR0CSQB29cry2dX2UKGgGaAloD0MIRnh7EIJYYkCUhpRSlGgVTegDaBZHQJJHfsjVx0d1fZQoaAZoCWgPQwgw2A3bFlFjQJSGlFKUaBVN6ANoFkdAkkhJrpJPInV9lChoBmgJaA9DCChJ10y+5lxAlIaUUpRoFU3oA2gWR0CSTTZGax5cdX2UKGgGaAloD0MIHLXC9L1XV0CUhpRSlGgVTegDaBZHQJJPlBfKISF1fZQoaAZoCWgPQwgTSfQyikBnQJSGlFKUaBVN6ANoFkdAklAmf9P1tnV9lChoBmgJaA9DCESKARJNikxAlIaUUpRoFU0UAWgWR0CSUF0/GEPEdX2UKGgGaAloD0MIr9FyoIcaBsCUhpRSlGgVS+VoFkdAklZQCwKSgXV9lChoBmgJaA9DCJ3ZrtAHgyNAlIaUUpRoFU0AAWgWR0CSah3PzFuOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_lander_v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6357dfd66013377ac993cde625d63a4461803f32a62f80f2c2c4b19c56cedf5
3
+ size 147403
lunar_lander_v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_lander_v1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e2ce1d5e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e2ce1d670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e2ce1d700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e2ce1d790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6e2ce1d820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6e2ce1d8b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6e2ce1d940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e2ce1d9d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6e2ce1da60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e2ce1daf0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e2ce1db80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e2ce1dc10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6e2ce178d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673976980616525458,
52
+ "learning_rate": 0.0001,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3tML1cdy66AkjtOm1u8zVTnvk6NhYKugAAgD8AAIA/2gXjPdcTfbkZLRK7cxQDthYGHbp5hys6AACAPwAAgD/Nq8S9pEBhuQyRyrvrL+08zMEft7g7SbwAAIA/AACAPwBD0L32yDS6zheit95GQjEC1Cy7eNW8NgAAgD8AAIA/81WpPUi3hLqGjjG5MwLSswpsmLst4lA4AACAPwAAgD+zqrW9XA8VuHZxhrzGOC28Tj6eOwHGPT0AAAAAAAAAAG0xQz7DxEg7OoUyu7wekrjI5vA8XbZ3uQAAgD8AAIA/OnZlvhcxXj/O2Au+oamjvt5qxr7EmSK+AAAAAAAAAADAe889SEOeuq3bk7fGeRKyonxkN4o4qTYAAIA/AACAP9ou2b2FM+q5sI1Pu/x8ZDj8q1y7spHhOQAAgD8AAIA/bmsLv6NVM74OhOw5Rk62N4ydjD0xUA65AACAPwAAgD/zis09KXh9utIkjjtrhCo4d3LLunrYqLgAAIA/AACAPwYZlT600I28PqC5u2uofTn1x/2934pMOgAAgD8AAIA/QOqqPt3isr3mXiw++0ddvUfx475tBFK1AACAPwAAAACmeqQ9XENWutb9kLuH0NA2YuU7uxoKPbYAAIA/AACAP82IoTuPzhG6xZRrOozW27Wm2sq6dZPZtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZXJqZ5hSNcCUhpRSlIwBbJRLr4wBdJRHQJCYqjgydnV1fZQoaAZoCWgPQwihhJm2f/NaQJSGlFKUaBVN6ANoFkdAkKDGGyon8nV9lChoBmgJaA9DCHBE96xrqFxAlIaUUpRoFU3oA2gWR0CQpZrhzeXSdX2UKGgGaAloD0MIKbAApgwxWECUhpRSlGgVTegDaBZHQJCoAKPXCj11fZQoaAZoCWgPQwhz1TxH5ItfQJSGlFKUaBVN6ANoFkdAkKnXbItDlnV9lChoBmgJaA9DCHqnAu55FE3AlIaUUpRoFU0DAWgWR0CQqmlUIcBEdX2UKGgGaAloD0MIw5rKojCoYECUhpRSlGgVTegDaBZHQJCr/aHsTnJ1fZQoaAZoCWgPQwit30xMF89dQJSGlFKUaBVN6ANoFkdAkK4k6PsAvXV9lChoBmgJaA9DCEZ4exACflVAlIaUUpRoFU3oA2gWR0CQsj3Ux20RdX2UKGgGaAloD0MI74y2KokwYUCUhpRSlGgVTegDaBZHQJC1N3wCr951fZQoaAZoCWgPQwhsW5TZoEtjQJSGlFKUaBVN6ANoFkdAkLrARK6FunV9lChoBmgJaA9DCKZ/SSpTu1xAlIaUUpRoFU3oA2gWR0CQu5F3pwCKdX2UKGgGaAloD0MIGHrE6DnNYUCUhpRSlGgVTegDaBZHQJC8CMkyDZl1fZQoaAZoCWgPQwgtz4O7syZLQJSGlFKUaBVN6ANoFkdAkL5cgU1yenV9lChoBmgJaA9DCOasTzkmrmNAlIaUUpRoFU3oA2gWR0CQv3zLfUF0dX2UKGgGaAloD0MIUmFsIcgLR8CUhpRSlGgVS+JoFkdAkMPi3PRiPXV9lChoBmgJaA9DCK99Ab1wRwfAlIaUUpRoFUvsaBZHQJDKCdupCKJ1fZQoaAZoCWgPQwinzM03ojlYQJSGlFKUaBVN6ANoFkdAkNAQlWwNb3V9lChoBmgJaA9DCIQQkC+hf1xAlIaUUpRoFU3oA2gWR0CQ5VQla8pTdX2UKGgGaAloD0MIWFhwP2COYECUhpRSlGgVTegDaBZHQJEY/DVH4Gl1fZQoaAZoCWgPQwgV4LvNG45lQJSGlFKUaBVN6ANoFkdAkR4QKOT7mHV9lChoBmgJaA9DCGXCL/XzZk9AlIaUUpRoFU3oA2gWR0CRIJxFRYRvdX2UKGgGaAloD0MIvRx23zHyYkCUhpRSlGgVTegDaBZHQJEikuWa+ex1fZQoaAZoCWgPQwhxyXGndA5gQJSGlFKUaBVN6ANoFkdAkSMq0QbuMXV9lChoBmgJaA9DCOwxkdJsY1tAlIaUUpRoFU3oA2gWR0CRJMYoAn2JdX2UKGgGaAloD0MI9Q63Q8MOXECUhpRSlGgVTegDaBZHQJEoBd+ocaR1fZQoaAZoCWgPQwhXBWoxeFxhQJSGlFKUaBVN6ANoFkdAkS4dzfaYeHV9lChoBmgJaA9DCD+O5sjKfypAlIaUUpRoFUvyaBZHQJE7HMs6JZZ1fZQoaAZoCWgPQwhya9JtiVtdQJSGlFKUaBVN6ANoFkdAkTvh2wFC9nV9lChoBmgJaA9DCLPO+L64r15AlIaUUpRoFU3oA2gWR0CRPFjynUDudX2UKGgGaAloD0MIaXQHsTMRUECUhpRSlGgVTRIBaBZHQJE8+6H0se51fZQoaAZoCWgPQwj2Cgvuh8pgQJSGlFKUaBVN6ANoFkdAkT7kadc0L3V9lChoBmgJaA9DCA7cgTrlJ1pAlIaUUpRoFU3oA2gWR0CRQE4Pf8/EdX2UKGgGaAloD0MIEvbtJCKLX0CUhpRSlGgVTegDaBZHQJFFYWl/H5t1fZQoaAZoCWgPQwjPTZtxGi9fQJSGlFKUaBVN6ANoFkdAkUuFr6+FlHV9lChoBmgJaA9DCO6TowBRdD7AlIaUUpRoFU0PAWgWR0CRTx3RXwLFdX2UKGgGaAloD0MIpz/7kSIVXkCUhpRSlGgVTegDaBZHQJFRIdsBQvZ1fZQoaAZoCWgPQwiM17yqs6o0QJSGlFKUaBVNCQFoFkdAkVKwwGnn+3V9lChoBmgJaA9DCGztfaoKF1tAlIaUUpRoFU3oA2gWR0CRY6hUR3/xdX2UKGgGaAloD0MITweyntpUZECUhpRSlGgVTegDaBZHQJFroN4JNTN1fZQoaAZoCWgPQwj/y7VoATRgQJSGlFKUaBVN6ANoFkdAkXCbOqvNeXV9lChoBmgJaA9DCAbxgR3/RF5AlIaUUpRoFU3oA2gWR0CRcwFPSDywdX2UKGgGaAloD0MI98snK4baYECUhpRSlGgVTegDaBZHQJF3TJPqLTB1fZQoaAZoCWgPQwhOYaWCCiRgQJSGlFKUaBVN6ANoFkdAkXnA1vVEu3V9lChoBmgJaA9DCE5/9iNFQmFAlIaUUpRoFU3oA2gWR0CRfnFmFrVOdX2UKGgGaAloD0MIGsOcoE2uGUCUhpRSlGgVTQYBaBZHQJGFIfs/pt91fZQoaAZoCWgPQwjlZOJWQVBiQJSGlFKUaBVN6ANoFkdAkYh30wrUb3V9lChoBmgJaA9DCOfgmdCkWWJAlIaUUpRoFU3oA2gWR0CRiUUeMhoudX2UKGgGaAloD0MIF2L1RxgfWkCUhpRSlGgVTegDaBZHQJGKUQ6IWP91fZQoaAZoCWgPQwgk06HT805OwJSGlFKUaBVL+2gWR0CRisvX9R77dX2UKGgGaAloD0MI4BEVqptFWUCUhpRSlGgVTegDaBZHQJGMSzD4xlB1fZQoaAZoCWgPQwiALESHwD5gQJSGlFKUaBVN6ANoFkdAkZKOgHu7YnV9lChoBmgJaA9DCGywcJLm5F9AlIaUUpRoFU3oA2gWR0CRmSKohpxndX2UKGgGaAloD0MIv0nToGg2KECUhpRSlGgVS99oFkdAkZv7zTWoWHV9lChoBmgJaA9DCE5fz9essGBAlIaUUpRoFU3oA2gWR0CRnODB/I8ydX2UKGgGaAloD0MIS6yMRj6VYkCUhpRSlGgVTegDaBZHQJGewCRwIdF1fZQoaAZoCWgPQwi8zRsnhYEuwJSGlFKUaBVN6ANoFkdAkaA4MOPNmnV9lChoBmgJaA9DCAYsuYrF6UHAlIaUUpRoFUvMaBZHQJGvAFr2xpt1fZQoaAZoCWgPQwjBAMKHEgFkQJSGlFKUaBVN6ANoFkdAkbA9FF2FFnV9lChoBmgJaA9DCEbRAx+DLSBAlIaUUpRoFU0bAWgWR0CRs2EgW8AadX2UKGgGaAloD0MIkUPEzamSV0CUhpRSlGgVTegDaBZHQJG22By0a611fZQoaAZoCWgPQwhslzYcFg9hQJSGlFKUaBVN6ANoFkdAkedq3/givHV9lChoBmgJaA9DCHwrEhPUhkFAlIaUUpRoFUvtaBZHQJHrXZ00WM11fZQoaAZoCWgPQwg0D2CRXyZWQJSGlFKUaBVN6ANoFkdAke4YToMa0nV9lChoBmgJaA9DCNuHvOXqnzpAlIaUUpRoFUu8aBZHQJHvl4rz5Gl1fZQoaAZoCWgPQwjPZtXnan1fQJSGlFKUaBVN6ANoFkdAkfKhkVeruXV9lChoBmgJaA9DCEa28/3U3GJAlIaUUpRoFU3oA2gWR0CR+TjDKoycdX2UKGgGaAloD0MISIyeW2hgYUCUhpRSlGgVTegDaBZHQJH8IupS75F1fZQoaAZoCWgPQwhEhermYnFiQJSGlFKUaBVN6ANoFkdAkfzbeuV5bHV9lChoBmgJaA9DCB9lxAWg+VVAlIaUUpRoFU3oA2gWR0CR/dnYxtYTdX2UKGgGaAloD0MIFviKbr1RXUCUhpRSlGgVTegDaBZHQJH+RXXAdn11fZQoaAZoCWgPQwgSa/EpACxlQJSGlFKUaBVN6ANoFkdAkgVQYcebNXV9lChoBmgJaA9DCKBsyhXeeT9AlIaUUpRoFU0bAWgWR0CSBhCCjDbbdX2UKGgGaAloD0MIg+Dx7V3QYECUhpRSlGgVTegDaBZHQJIK1ar3j+91fZQoaAZoCWgPQwgHmWTkrFphQJSGlFKUaBVN6ANoFkdAkg1O3trsSnV9lChoBmgJaA9DCHZPHhZqwUbAlIaUUpRoFUv8aBZHQJIN01JlJ6J1fZQoaAZoCWgPQwgShZZ1/yZeQJSGlFKUaBVN6ANoFkdAkg4LX+VC5XV9lChoBmgJaA9DCC8wKxTpfg7AlIaUUpRoFUvfaBZHQJIcHGp++dt1fZQoaAZoCWgPQwh1HaopyUFfQJSGlFKUaBVN6ANoFkdAkh9ePvKEFnV9lChoBmgJaA9DCPoMqDcjJWRAlIaUUpRoFU3oA2gWR0CSIoQMQVbidX2UKGgGaAloD0MIqFFIMqtIWUCUhpRSlGgVTegDaBZHQJIsQpXp4bF1fZQoaAZoCWgPQwiT4Xg+A8oQQJSGlFKUaBVL22gWR0CSLGrwe/5+dX2UKGgGaAloD0MIoE55dCNcOECUhpRSlGgVS6loFkdAki84plSS/3V9lChoBmgJaA9DCDBJZYq5emNAlIaUUpRoFU3oA2gWR0CSL/knCwbEdX2UKGgGaAloD0MIhxQDJBoLZUCUhpRSlGgVTegDaBZHQJIygnc+JP91fZQoaAZoCWgPQwi3RgTjYKRhQJSGlFKUaBVN6ANoFkdAkjPo1DSgG3V9lChoBmgJaA9DCOPe/IaJWkdAlIaUUpRoFU0bAWgWR0CSNCkAxSHedX2UKGgGaAloD0MI+KbpswOXYkCUhpRSlGgVTegDaBZHQJI8IBnzxw11fZQoaAZoCWgPQwghWcAEbh1fQJSGlFKUaBVN6ANoFkdAkj6i4e9zwXV9lChoBmgJaA9DCFLt0/GYoWRAlIaUUpRoFU3oA2gWR0CSP0u5BkZrdX2UKGgGaAloD0MIYCAIkKHrPsCUhpRSlGgVS71oFkdAkj/vNVzZH3V9lChoBmgJaA9DCKjlB67yb2RAlIaUUpRoFU3oA2gWR0CSQB29cry2dX2UKGgGaAloD0MIRnh7EIJYYkCUhpRSlGgVTegDaBZHQJJHfsjVx0d1fZQoaAZoCWgPQwgw2A3bFlFjQJSGlFKUaBVN6ANoFkdAkkhJrpJPInV9lChoBmgJaA9DCChJ10y+5lxAlIaUUpRoFU3oA2gWR0CSTTZGax5cdX2UKGgGaAloD0MIHLXC9L1XV0CUhpRSlGgVTegDaBZHQJJPlBfKISF1fZQoaAZoCWgPQwgTSfQyikBnQJSGlFKUaBVN6ANoFkdAklAmf9P1tnV9lChoBmgJaA9DCESKARJNikxAlIaUUpRoFU0UAWgWR0CSUF0/GEPEdX2UKGgGaAloD0MIr9FyoIcaBsCUhpRSlGgVS+VoFkdAklZQCwKSgXV9lChoBmgJaA9DCJ3ZrtAHgyNAlIaUUpRoFU0AAWgWR0CSah3PzFuOdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 124,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.99,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_lander_v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d647c386adc9858b65115a9742060635cffeae3c874879254c1a8292b1e780f6
3
+ size 87929
lunar_lander_v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c754194b658bc49be20aa7e53346be30c3969e01a3cb81de78d5013ba701c4c
3
+ size 43393
lunar_lander_v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (240 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.2068771690621816, "std_reward": 21.27612658450083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T17:59:21.961784"}