File size: 4,268 Bytes
0f7b94e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
language:
- jpn
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
datasets:
- diarizers-community/callhome
model-index:
- name: speaker-segmentation-fine-tuned-callhome-jpn
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speaker-segmentation-fine-tuned-callhome-jpn
This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1719
- Der: 0.2668
- False Alarm: 0.0225
- Missed Detection: 0.0148
- Confusion: 0.2295
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.4449 | 1.0 | 44 | 0.9090 | 0.2891 | 0.0225 | 0.0193 | 0.2473 |
| 0.411 | 2.0 | 88 | 0.9007 | 0.2767 | 0.0225 | 0.0088 | 0.2454 |
| 0.3691 | 3.0 | 132 | 0.8465 | 0.2570 | 0.0225 | 0.0115 | 0.2229 |
| 0.3762 | 4.0 | 176 | 0.8855 | 0.2585 | 0.0225 | 0.0088 | 0.2272 |
| 0.337 | 5.0 | 220 | 0.9608 | 0.2721 | 0.0225 | 0.0142 | 0.2354 |
| 0.3203 | 6.0 | 264 | 1.0052 | 0.2636 | 0.0225 | 0.0152 | 0.2259 |
| 0.314 | 7.0 | 308 | 1.0084 | 0.2650 | 0.0225 | 0.0145 | 0.2279 |
| 0.3066 | 8.0 | 352 | 0.9484 | 0.2614 | 0.0225 | 0.0127 | 0.2262 |
| 0.2968 | 9.0 | 396 | 1.0768 | 0.2720 | 0.0225 | 0.0163 | 0.2332 |
| 0.2847 | 10.0 | 440 | 0.9485 | 0.2528 | 0.0225 | 0.0098 | 0.2205 |
| 0.2784 | 11.0 | 484 | 1.0811 | 0.2677 | 0.0225 | 0.0146 | 0.2306 |
| 0.2674 | 12.0 | 528 | 1.0390 | 0.2670 | 0.0225 | 0.0145 | 0.2300 |
| 0.2646 | 13.0 | 572 | 1.1117 | 0.2666 | 0.0225 | 0.0148 | 0.2293 |
| 0.2425 | 14.0 | 616 | 1.1455 | 0.2682 | 0.0225 | 0.0146 | 0.2310 |
| 0.2569 | 15.0 | 660 | 1.1830 | 0.2682 | 0.0225 | 0.0148 | 0.2309 |
| 0.2497 | 16.0 | 704 | 1.1674 | 0.2673 | 0.0225 | 0.0148 | 0.2300 |
| 0.2494 | 17.0 | 748 | 1.1050 | 0.2630 | 0.0225 | 0.0148 | 0.2257 |
| 0.2334 | 18.0 | 792 | 1.1736 | 0.2674 | 0.0225 | 0.0148 | 0.2301 |
| 0.24 | 19.0 | 836 | 1.1566 | 0.2679 | 0.0225 | 0.0148 | 0.2306 |
| 0.2371 | 20.0 | 880 | 1.1571 | 0.2650 | 0.0225 | 0.0148 | 0.2277 |
| 0.2403 | 21.0 | 924 | 1.1472 | 0.2640 | 0.0225 | 0.0148 | 0.2267 |
| 0.2317 | 22.0 | 968 | 1.1751 | 0.2676 | 0.0225 | 0.0148 | 0.2303 |
| 0.2318 | 23.0 | 1012 | 1.1817 | 0.2677 | 0.0225 | 0.0148 | 0.2304 |
| 0.2322 | 24.0 | 1056 | 1.1723 | 0.2669 | 0.0225 | 0.0148 | 0.2296 |
| 0.2418 | 25.0 | 1100 | 1.1719 | 0.2668 | 0.0225 | 0.0148 | 0.2295 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|