File size: 1,945 Bytes
0d3bc50
 
 
fd7033c
0d3bc50
 
304bd50
 
0d3bc50
 
 
 
 
 
 
 
 
 
48f9278
0d3bc50
304bd50
 
 
0d3bc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304bd50
 
48f9278
0d3bc50
304bd50
 
0d3bc50
48f9278
 
 
0d3bc50
 
304bd50
 
 
 
 
 
 
 
 
 
 
 
0d3bc50
 
 
 
 
48f9278
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-sc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-sc

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2992
- Wer Ortho: 10.7269
- Wer: 10.2317

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.2799        | 0.7704 | 250  | 0.2614          | 12.1130   | 11.6261 |
| 0.1454        | 1.5408 | 500  | 0.2367          | 11.0523   | 10.6016 |
| 0.072         | 2.3112 | 750  | 0.2428          | 10.6736   | 10.2154 |
| 0.0488        | 3.0817 | 1000 | 0.2638          | 10.8335   | 10.3623 |
| 0.0294        | 3.8521 | 1250 | 0.2689          | 11.2821   | 10.7793 |
| 0.012         | 4.6225 | 1500 | 0.2992          | 10.7269   | 10.2317 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1