File size: 8,065 Bytes
292be1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import json
from pathlib import Path
from typing import Dict, List, Literal, Optional, Union, Iterable
from typing_extensions import TypedDict, NotRequired
from spacy.language import Language
from spacy.pipeline import Pipe
from spacy.pipeline.lemmatizer import lemmatizer_score
from spacy.util import ensure_path
from spacy.tokens import Doc, Token
MATCH_ORDER = [
"upos",
"Tense",
"VerbForm",
"Voice",
"Case",
"Gender",
"Number",
"Degree",
"Mood",
"Person",
"Aspect",
"Definite",
"PronType",
"Polarity",
"Poss",
"Reflex",
]
class TableEntry(TypedDict):
form: str
lemma: str
upos: str
frequency: int
Tense: NotRequired[str]
VerbForm: NotRequired[str]
Voice: NotRequired[str]
Case: NotRequired[str]
Gender: NotRequired[str]
Number: NotRequired[str]
Degree: NotRequired[str]
Mood: NotRequired[str]
Person: NotRequired[str]
Aspect: NotRequired[str]
Definite: NotRequired[str]
PronType: NotRequired[str]
Polarity: NotRequired[str]
Poss: NotRequired[str]
Reflex: NotRequired[str]
FrequencyTable = Dict[str, List[TableEntry]]
LookupTable = Dict[str, str]
@Language.factory(
"frequency_lemmatizer",
assigns=["token.lemma"],
default_config={
"overwrite": True,
"fallback_priority": "lookup",
},
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
name: str,
overwrite: bool,
fallback_priority: Literal["lemma", "lookup"],
):
return FrequencyLemmatizer(
nlp=nlp,
name=name,
overwrite=overwrite,
fallback_priority=fallback_priority,
) # type: ignore
def max_freq_lemma(entries: List[TableEntry]) -> str:
"""Returns lemma with highest frequency from the given entries."""
max_index = 0
n_entries = len(entries)
for index in range(1, n_entries):
if entries[index]["frequency"] > entries[max_index]["frequency"]:
max_index = index
return entries[max_index]["lemma"]
def match_lemma(
token_entry: TableEntry, table: FrequencyTable
) -> Optional[str]:
"""Returns a lemma for a token if it
can be found in the frequency table.
"""
# Tries to find the entries associated with the token in the table
match = table.get(token_entry["form"], [])
if not match:
return None
# We go through all the properties to be matched
for match_property in MATCH_ORDER:
match_new = [
entry
for entry in match
if entry.get(match_property, "")
== token_entry.get(match_property, "")
]
if not match_new:
return max_freq_lemma(entries=match)
match = match_new
return max_freq_lemma(entries=match)
def read_json(path: str) -> Dict:
with open(path) as file:
res = json.load(file)
return res
def write_json(object: Dict, path: str) -> None:
with open(path, "w") as file:
json.dump(object, file)
class FrequencyLemmatizer(Pipe):
"""
Part-of-speech and morphology, and frequency
sensitive rule-based lemmatizer.
Parameters
----------
overwrite: bool, default True
Specifies whether the frequency lemmatizer should overwrite
already assigned lemmas.
fallback_priority: 'lemma' or 'lookup', default 'lookup'
Specifies which fallback should have higher priority
if the lemma is not found in
the primary table.
"""
def __init__(
self,
nlp: Language,
name: str = "freq_lemmatizer",
*,
overwrite: bool = True,
fallback_priority: Literal["lemma", "lookup"] = "lookup",
):
self.name = name
self.overwrite = overwrite
self.scorer = lemmatizer_score
self.fallback_priority = fallback_priority
def initialize(
self,
get_examples=None,
*,
nlp=None,
table: Optional[FrequencyTable] = None,
lookup: Optional[LookupTable] = None,
) -> None:
"""Initializes the frequency lemmatizer from given lemma table and lookup.
Parameters
----------
table: iterable of entries or None, default None
Iterable of all entries in the lemma table
with pos tags morph features and frequencies.
lookup: dict of str to str or None, default None
Backoff lookup table for simple token-lemma lookup.
"""
if table is None:
self.table = None
else:
self.table = table
self.lookup = lookup
def backoff(self, token: Token) -> str:
"""Gets backoff token based on priority."""
orth = token.orth_.lower()
lookup = self.lookup
in_lookup = (lookup is not None) and (orth in lookup)
priority = self.fallback_priority
has_lemma = (token.lemma != 0) and (token.lemma_ != token.orth_)
if in_lookup:
if priority == "lookup":
return lookup[orth] # type: ignore
else:
if has_lemma:
return token.lemma_
else:
return token.orth_
else:
if has_lemma:
return token.lemma_
else:
return token.orth_
def lemmatize(self, token: Token) -> str:
"""Lemmatizes token."""
backoff = self.backoff(token)
orth = token.orth_.lower()
# If the table is empty we early return
if self.table is None:
return backoff
# I only add frequency for type compatibility
token_entry: TableEntry = TableEntry(
form=orth, upos=token.pos_, frequency=-1, **token.morph.to_dict()
)
lemma = match_lemma(token_entry=token_entry, table=self.table)
if lemma is None:
return backoff
else:
return lemma
def __call__(self, doc: Doc) -> Doc:
"""Apply the lemmatization to a document."""
error_handler = self.get_error_handler()
try:
for token in doc:
if self.overwrite or token.lemma == 0:
token.lemma_ = self.lemmatize(token)
return doc
except Exception as e:
error_handler(self.name, self, [doc], e)
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
):
"""Save frequency lemmatizer data to a directory."""
path = ensure_path(path)
Path(path).mkdir(parents=True, exist_ok=True)
config = dict(
overwrite=self.overwrite, fallback_priority=self.fallback_priority
)
with open(os.path.join(path, "config.json"), "w") as config_file:
json.dump(config, config_file)
if self.table is not None:
table_path = os.path.join(path, "table.json")
write_json(self.table, path=table_path)
if self.lookup is not None:
lookup_path = os.path.join(path, "lookup.json")
write_json(self.lookup, path=lookup_path)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
) -> "FrequencyLemmatizer":
"""Load component from disk."""
path = ensure_path(path)
config = read_json(os.path.join(path, "config.json"))
self.overwrite = config.get("overwrite", self.overwrite)
self.fallback_priority = config.get(
"fallback_priority", self.fallback_priority
)
try:
table: Optional[FrequencyTable] = read_json(
os.path.join(path, "table.json")
)
except FileNotFoundError:
table = None
try:
lookup: Optional[LookupTable] = read_json(
os.path.join(path, "lookup.json")
)
except FileNotFoundError:
lookup = None
self.initialize(table=table, lookup=lookup)
return self
|