#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation. """ # You can also adapt this script for your own distillation tasks. Pointers for this are left as comments. import logging import os import re import shutil import sys import time from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torch.nn as nn import transformers from accelerate import Accelerator from accelerate.logging import get_logger from datasets import ( DatasetDict, IterableDataset, load_dataset, ) from huggingface_hub import Repository, create_repo from torch.utils.data import DataLoader from tqdm import tqdm from transformers import ( AddedToken, HfArgumentParser, Seq2SeqTrainingArguments, WhisperConfig, WhisperFeatureExtractor, WhisperForConditionalGeneration, WhisperProcessor, WhisperTokenizerFast, get_scheduler, set_seed, ) from transformers.modeling_outputs import BaseModelOutput from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.34.0.dev0") require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") logger = get_logger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to distill from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} ) teacher_model_name_or_path: str = field( metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}, ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, ) feature_extractor_name: Optional[str] = field( default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) subfolder: str = field( default="", metadata={ "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" "specify the folder name here." }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_dataset_name: str = field( default=None, metadata={ "help": "The name of the training dataset to use (via the datasets library). Load and combine " "multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech " "and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`." }, ) train_dataset_config_name: Optional[str] = field( default=None, metadata={ "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " "multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should " "match the order of the datasets." }, ) dataset_cache_dir: Optional[str] = field( default=None, metadata={"help": "Path to cache directory for saving and loading datasets"}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}, ) max_label_length: int = field( default=128, metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, ) train_split_name: str = field( default="train", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) timestamp_probability: float = field( default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."} ) return_timestamps: bool = field( default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} ) language: str = field( default=None, metadata={ "help": ( "Language for multilingual distillation. This argument should be set for multilingual distillation " "only. For English speech recognition, it should be left as `None`." ) }, ) task: str = field( default="transcribe", metadata={ "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." }, ) wandb_project: str = field( default="distil-whisper", metadata={"help": "The name of the wandb project."}, ) @dataclass class DistillationTrainingArguments(Seq2SeqTrainingArguments): freeze_encoder: Optional[bool] = field( default=False, metadata={ "help": ( "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been " "copied from the teacher model." ) }, ) temperature: Optional[float] = field( default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."} ) kl_weight: Optional[float] = field( default=1.0, metadata={ "help": ( "Weighting assigned to the MSE loss in the KD formulation. MSE loss is " "computed between the teacher-student hidden states and attentions." ) }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "The data type (dtype) in which to run training. One of `float32` (full-precision), " "`float16` or `bfloat16` (both half-precision)." ) }, ) @dataclass class DataCollatorSpeechSeq2SeqWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor ([`Wav2Vec2Processor`]) The processor used for proccessing the data. decoder_start_token_id (:obj: `int`) The start-of-sequence token id of the decoder. decoder_prev_token_id (:obj: `int`) The start-of-prompt token id of the decoder input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). See above for details. max_target_length (:obj:`int`, `optional`): Maximum length of the ``labels`` of the returned list and optionally padding length (see above). """ processor: Any decoder_start_token_id: int decoder_prev_token_id: int input_padding: Union[bool, str] = "max_length" target_padding: Union[bool, str] = "max_length" max_target_length: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: # split inputs and labels since they have to be of different lengths and need # different padding methods model_input_name = self.processor.model_input_names[0] # dataloader returns a list of features which we convert to a dict input_features = {model_input_name: [feature[model_input_name] for feature in features]} label_features = {"input_ids": [feature["labels"] for feature in features]} # reformat list to dict and set to pytorch format batch = self.processor.feature_extractor.pad( input_features, padding=self.input_padding, return_tensors="pt", ) labels_batch = self.processor.tokenizer.pad( label_features, max_length=self.max_target_length, padding=self.target_padding, return_tensors="pt", ) # shift labels to the right to get decoder input ids labels = labels_batch["input_ids"] decoder_input_ids = labels[:, :-1] labels = labels[:, 1:] labels_mask = labels_batch.attention_mask[:, 1:] # replace padding with -100 to ignore correctly when computing the loss labels = labels.masked_fill(labels_mask.ne(1), -100) # replace initial prompt tokens with -100 to ignore correctly when computing the loss bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1) bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index) prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None] labels = torch.where(prompt_mask, -100, labels) batch["labels"] = labels batch["decoder_input_ids"] = decoder_input_ids return batch def log_metric( accelerator, metrics: Dict, train_time: float, step: int, epoch: int, learning_rate: float = None, prefix: str = "train", ): """Helper function to log all training/evaluation metrics with the correct prefixes and styling.""" log_metrics = {} for k, v in metrics.items(): log_metrics[f"{prefix}/{k}"] = v log_metrics[f"{prefix}/time"] = train_time log_metrics[f"{prefix}/epoch"] = epoch if learning_rate is not None: log_metrics[f"{prefix}/learning_rate"] = learning_rate accelerator.log(log_metrics, step=step) def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> Dict: """Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer 3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer 2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely the output of this function for the arguments (student_layers=3, teacher_layers=12).""" layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int) layer_intervals[-1] = teacher_layers - 1 layer_map = {} for student_layer, teacher_layer in enumerate(layer_intervals): layer_map[student_layer] = teacher_layer return layer_map def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]: """Helper function to sort saved checkpoints from oldest to newest.""" ordering_and_checkpoint_path = [] glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] for path in glob_checkpoints: regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) if regex_match is not None and regex_match.groups() is not None: ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] return checkpoints_sorted def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None: """Helper function to delete old checkpoints.""" if save_total_limit is None or save_total_limit <= 0: return # Check if we should delete older checkpoint(s) checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix) if len(checkpoints_sorted) <= save_total_limit: return number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] for checkpoint in checkpoints_to_be_deleted: logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") shutil.rmtree(checkpoint, ignore_errors=True) _RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$") def get_last_checkpoint(folder): content = os.listdir(folder) checkpoints = [ path for path in content if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path)) ] if len(checkpoints) == 0: return return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0]))) def get_parameter_names(model, forbidden_layer_types, forbidden_module=None): """ Returns the names of the model parameters that are not inside a forbidden layer or forbidden module. Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser (e.g. if the module is frozen). """ result = [] for name, child in model.named_children(): result += [ f"{name}.{n}" for n in get_parameter_names(child, forbidden_layer_types, forbidden_module) if not ( isinstance(child, tuple(forbidden_layer_types)) or (child in tuple(forbidden_module) if forbidden_module is not None else False) ) ] # Add model specific parameters (defined with nn.Parameter) since they are not in any child. result += list(model._parameters.keys()) return result def main(): # 1. Parse input arguments # We keep distinct sets of args, for cleaner separation of model/data/training related args parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # 2. Initialize the accelerator # We will let the accelerator handle device placement for us in this example # We simply have to specify the training precision and any trackers being used # We'll use the same dtype arguments as our JAX/Flax training script and convert # it to accelerate format # The teacher model can safely be cast to the dtype of training since we don't # update the params if training_args.dtype == "float16": mixed_precision = "fp16" teacher_dtype = torch.float16 elif training_args.dtype == "bfloat16": mixed_precision = "bf16" teacher_dtype = torch.bfloat16 else: mixed_precision = "no" teacher_dtype = torch.float32 accelerator = Accelerator( gradient_accumulation_steps=training_args.gradient_accumulation_steps, mixed_precision=mixed_precision, log_with=training_args.report_to, project_dir=training_args.output_dir, ) accelerator.init_trackers(project_name=data_args.wandb_project) # 3. Set-up basic logging # Create one log on every process with the configuration for debugging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Log a small summary on each proces logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() logger.info("Training/evaluation parameters %s", training_args) # 4. Detecting last checkpoint and eventually continue from last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # 5. Handle the repository creation if accelerator.is_main_process: if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore: if "wandb" not in gitignore: gitignore.write("wandb\n") elif training_args.output_dir is not None: os.makedirs(training_args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # 7. Load pretrained model, tokenizer, and feature extractor feature_extractor = WhisperFeatureExtractor.from_pretrained( (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, ) config = WhisperConfig.from_pretrained( (model_args.config_name if model_args.config_name else model_args.model_name_or_path), cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, ) tokenizer = WhisperTokenizerFast.from_pretrained( (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, ) # override timestamp tokens until tokenizer issues are fixed in transformers timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)] tokenizer.add_tokens(timestamps) teacher_model = WhisperForConditionalGeneration.from_pretrained( model_args.teacher_model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, low_cpu_mem_usage=True, torch_dtype=teacher_dtype, ) student_model = WhisperForConditionalGeneration.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, subfolder=model_args.subfolder, token=model_args.token, low_cpu_mem_usage=True, ) if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None: raise ValueError( f"Make sure that `config.decoder_start_token_id` is correctly defined for both the " f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the " f"student and {teacher_model.config.decoder_start_token_id} for the teacher." ) share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model # enable gradient checkpointing if necessary if training_args.gradient_checkpointing: student_model.gradient_checkpointing_enable() # freeze student encoder if necessary if training_args.freeze_encoder: student_model.freeze_encoder() student_model.model.encoder.gradient_checkpointing = False if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: # We need to set the language and task ids for previously multilingual checkpoints tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False) student_model.generation_config.update( **{ "language": data_args.language, "task": data_args.task, } ) elif data_args.language is not None: raise ValueError( "Setting language token for an English-only checkpoint is not permitted. The language argument should " "only be set for multilingual checkpoints." ) # 8. Create a single speech processor - make sure all processes wait until data is saved if accelerator.is_main_process: feature_extractor.save_pretrained(training_args.output_dir) tokenizer.save_pretrained(training_args.output_dir) # save the config and generation config as well config.save_pretrained(training_args.output_dir) student_model.generation_config.save_pretrained(training_args.output_dir) accelerator.wait_for_everyone() processor = WhisperProcessor.from_pretrained(training_args.output_dir) # 10. Preprocessing the datasets: we need to read the audio files as arrays and tokenize the targets. set_seed(training_args.seed) vectorized_datasets = DatasetDict() vectorized_datasets["train"] = load_dataset( data_args.train_dataset_name, data_args.train_dataset_config_name, split=data_args.train_split_name, trust_remote_code=True, cache_dir=data_args.dataset_cache_dir, token=model_args.token ) return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False decoder_start_token_id = student_model.config.decoder_start_token_id # <|startoftranscript|> decoder_prev_token_id = tokenizer.all_special_ids[-3] # <|startofprev|> dataloader_num_workers = training_args.dataloader_num_workers # 12. Define Training Schedule # Store some constants per_device_train_batch_size = int(training_args.per_device_train_batch_size) train_batch_size = per_device_train_batch_size * accelerator.num_processes gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) if training_args.max_steps < 0: num_epochs = int(training_args.num_train_epochs) steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps) total_train_steps = steps_per_epoch * num_epochs elif training_args.max_steps > 0: logger.info("max_steps is given, it will override any value given in num_train_epochs") total_train_steps = int(training_args.max_steps) # Setting a very large number of epochs so we go as many times as necessary over the iterator. num_epochs = sys.maxsize steps_per_epoch = total_train_steps else: raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset") # 13. Define optimizer, LR scheduler, collator decay_parameters = get_parameter_names( student_model, [nn.LayerNorm], forbidden_module=[student_model.model.encoder] if training_args.freeze_encoder else None, ) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [param for name, param in student_model.named_parameters() if name in decay_parameters], "weight_decay": training_args.weight_decay, }, { "params": [param for name, param in student_model.named_parameters() if name not in decay_parameters], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW( params=optimizer_grouped_parameters, lr=training_args.learning_rate, betas=(training_args.adam_beta1, training_args.adam_beta2), eps=training_args.adam_epsilon, ) # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps lr_scheduler = get_scheduler( name=training_args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=training_args.warmup_steps * accelerator.num_processes, num_training_steps=total_train_steps * accelerator.num_processes, ) max_label_length = ( data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length ) data_collator = DataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=decoder_start_token_id, decoder_prev_token_id=decoder_prev_token_id, input_padding="longest", target_padding="max_length", max_target_length=max_label_length, ) # 14. Define generation arguments - we need to do this before we wrap the models in DDP # so that we can still access the configs num_beams = ( training_args.generation_num_beams if training_args.generation_num_beams is not None else getattr(student_model.generation_config, "num_beams", 1) ) gen_kwargs = { "max_length": max_label_length, "num_beams": num_beams, "return_timestamps": return_timestamps, } if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: # forcing the language and task tokens helps multilingual models in their generations gen_kwargs.update({"language": data_args.language, "task": data_args.task}) # 15. Prepare everything with accelerate student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare( student_model, teacher_model, optimizer, lr_scheduler ) def kl_divergence(target_distribution, log_predicted_distribution, labels): kl_loss = nn.KLDivLoss(reduction="none") divergence = kl_loss(log_predicted_distribution, target_distribution) # ignore padded tokens from divergence, i.e. where labels are not set to -100 padding_mask = labels >= 0 padding_mask = padding_mask.unsqueeze(-1) divergence = divergence * padding_mask # take the average over the mini-batch divergence = divergence.sum() / padding_mask.sum() return divergence # Define gradient update step fn def train_step(batch, temperature=2.0,): student_model.train() teacher_model.eval() student_outputs = student_model(**batch) with torch.no_grad(): if share_hidden_states: # if the student and teacher share the same frozen encoder then we don't have to recompute the # encoder hidden-states for the teacher model, we can just re-use from the student encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state) teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"]) else: # do the full forward pass for the teacher model (encoder + decoder) teacher_outputs = teacher_model(**batch) # CE (data) loss ce_loss = student_outputs.loss # rescale distribution by temperature to ensure gradients scale correctly teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1) # log softmax of student predictions for numerical stability student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1) # KL-divergence loss (scaled by temperature) kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2 # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight, 1 as default) loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} return loss, metrics logger.info("***** Running training *****") logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}") logger.info( f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}" ) logger.info(f" Total optimization steps = {total_train_steps}") # ======================== Training ================================ train_time = 0 train_start = time.time() steps_trained_progress_bar = tqdm( range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process ) continue_training = True epochs_trained = 0 cur_step = 0 checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint if checkpoint is not None: accelerator.load_state(checkpoint) # Find num steps and epoch from saved state string pattern pattern = r"checkpoint-(\d+)-epoch-(\d+)" match = re.search(pattern, checkpoint) cur_step = int(match.group(1)) epochs_trained = int(match.group(2)) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(f" Continuing training from epoch {epochs_trained}") logger.info(f" Continuing training from global step {cur_step}") steps_trained_progress_bar.update(cur_step) for epoch in range(0, epochs_trained): vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) if training_args.max_steps < 0: # we know exactly the number of steps per epoch, so can skip through the required number of batches resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps else: # Currently we don't know how many steps we've taken in the current epoch # So we just shuffle the dataset one extra time and start from a fresh epoch # This is "good enough" for our purposes but not fully correct resume_step = None vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) else: resume_step = None for epoch in range(epochs_trained, num_epochs): vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) train_dataloader = DataLoader( vectorized_datasets["train"], collate_fn=data_collator, batch_size=per_device_train_batch_size, num_workers=dataloader_num_workers, pin_memory=training_args.dataloader_pin_memory, ) train_dataloader = accelerator.prepare(train_dataloader) if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset): train_dataloader.dataset.set_epoch(epoch) if resume_step is not None: # Skip the first N batches in the dataloader when resuming from a checkpoint train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) resume_step = None for batch in train_dataloader: with accelerator.accumulate(student_model): loss, train_metric = train_step(batch, temperature=training_args.temperature) accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Check if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: steps_trained_progress_bar.update(1) cur_step += 1 if cur_step % training_args.logging_steps == 0: steps_trained_progress_bar.write( f"Step... ({cur_step} / {total_train_steps} | Loss:" f" {train_metric['loss']}, Learning Rate:" f" {lr_scheduler.get_last_lr()[0]})" ) log_metric( accelerator, metrics=train_metric, learning_rate=lr_scheduler.get_last_lr()[0], train_time=train_time + time.time() - train_start, step=cur_step, epoch=epoch, prefix="train", ) # save checkpoint and weights after each save_steps and at the end of training if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps: intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}") accelerator.save_state(output_dir=intermediate_dir) accelerator.wait_for_everyone() if accelerator.is_main_process: rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir) if cur_step == total_train_steps: # un-wrap student model for save student_model = accelerator.unwrap_model(student_model) student_model.save_pretrained(training_args.output_dir) # re-wrap student model for final eval student_model = accelerator.prepare(student_model) if training_args.push_to_hub: repo.push_to_hub( commit_message=f"Saving train state of step {cur_step}", blocking=False, ) # break condition if cur_step == total_train_steps: continue_training = False break if not continue_training: break accelerator.end_training() if __name__ == "__main__": main()