File size: 2,262 Bytes
c7be9b2 f19be83 c7be9b2 f19be83 c7be9b2 f7eb896 ec94579 f7eb896 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 e26c7c3 f19be83 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 ec94579 f19be83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model:
- black-forest-labs/FLUX.1-dev
library_name: diffusers
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
pipeline_tag: image-to-image
tags:
- ControlNet
- super-resolution
- upscaler
---
# ⚡ Flux.1-dev: Upscaler ControlNet ⚡
This is [Flux.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) ControlNet for low resolution images developped by Jasper research team.
<p align="center">
<img style="width:700px;" src="examples/showcase.jpg">
</p>
# How to use
This model can be used directly with the `diffusers` library
```python
import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=torch.bfloat16
)
pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
# Load a control image
control_image = load_image(
"https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler/resolve/main/examples/depth.jpg"
)
w, h = control_image.size
# Upscale x4
# This can be set to any arbitrary target resolution
control_image = control_image.resize((w * 4, h * 4))
image = pipe(
"",
control_image=control_image,
controlnet_conditioning_scale=0.6,
num_inference_steps=28,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0]
).images[0]
image
```
<p align="center">
<img style="width:500px;" src="examples/output.jpg">
</p>
# Training
This model was trained with a synthetic complex data degradation scheme taking as input a *real-life* image and artificially degrading it by combining several degradations such as amongst other image noising (Gaussian, Poisson), image blurring and JPEG compression. In a similar spirit as [1]
[1] Wang, Xintao, et al. "Real-esrgan: Training real-world blind super-resolution with pure synthetic data." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
# Licence
The licence under the Flux.1-dev model applies to this model. |