javenda commited on
Commit
09f663b
1 Parent(s): 559b838

update model

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 284.16 +/- 18.01
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 265.31 +/- 16.58
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3be37f4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3be37f4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3be37f4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3be37f4e50>", "_build": "<function ActorCriticPolicy._build at 0x7f3be37f4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3be37f4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3be37f9040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3be37f90d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3be37f9160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3be37f91f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3be37f9280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3be37f0480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671335533816704354, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB9wTyrs/89Rc+CvkIYy74XsiW+sOGovAAAAAAAAAAAmi7BPCnwArr6Urc0YGaWL/L3HzoFZnizAACAPwAAgD/m6Es9oeCBP+ezrTzHRBO/MuwLPqL4gD0AAAAAAAAAAM08IzzchmW8khETvqBTIz3LwsQ9thcBvgAAgD8AAIA/M4AhvTTCvrzW3ZI971qLPCbRJb7ztFg9AACAPwAAgD+zYoQ9noKCP2eRATpBlRq/Y/YTPr4SDL0AAAAAAAAAAADDi71cQAQ7uNFbPjWu4r3MB5k8c4o1vwAAAAAAAIA/ZgaePJwSED0SId692SarvkACab3GrqW8AAAAAAAAAADtHUO+/GbtPgR2rz09NbW+e467vaRnuz0AAAAAAAAAACM/gj6iPA4/Zqt4vmE7Gb/saG0+flqhvgAAAAAAAAAAZtRfvEnA+j68RBY9FISyvsCKij1e8i68AAAAAAAAAADm5sS9NIOYPnfVCj6u/Zm+RuqtPPgBNb0AAAAAAAAAABqKo77g9sY+bEwsP6oqqL42I1G+i2ukPgAAAAAAAAAAM7sevJx8E7x6bwg8ZHW1PExVlr1zs5Q9AACAPwAAgD8zU6u7SG2SutsfHTbgCgIxzpY2u9o2QrUAAIA/AACAPyZJ2T1LWcQ+ZbmovmZn775hqMS8MuJfvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwwyNJwJ2cUCUhpRSlIwBbJRL2IwBdJRHQKhcxhDw6Qx1fZQoaAZoCWgPQwgldQKaiNNuQJSGlFKUaBVLzmgWR0CoXMfXoTwldX2UKGgGaAloD0MIi269podscUCUhpRSlGgVS9doFkdAqFzWnqFAV3V9lChoBmgJaA9DCHZQietYZXNAlIaUUpRoFU0cAWgWR0CoXNjRMN+cdX2UKGgGaAloD0MIhlW8kfmpcECUhpRSlGgVS8doFkdAqFz0dq+JxnV9lChoBmgJaA9DCNXOMLVlCHNAlIaUUpRoFU0VAWgWR0CoXVgZ88cNdX2UKGgGaAloD0MIe00PCoojcUCUhpRSlGgVS9loFkdAqF5P6uW8iHV9lChoBmgJaA9DCIm0jT/RyXBAlIaUUpRoFUu4aBZHQKheTqmj0th1fZQoaAZoCWgPQwjkFB3JpfpzQJSGlFKUaBVL7GgWR0CoXme6Zpi7dX2UKGgGaAloD0MIUHCxooYDckCUhpRSlGgVTQEBaBZHQKhecOJcgQp1fZQoaAZoCWgPQwjaIJOMnHtFQJSGlFKUaBVLnmgWR0CoXnYdyT6jdX2UKGgGaAloD0MIl6q0xbVZcECUhpRSlGgVS99oFkdAqF6LtG/etXV9lChoBmgJaA9DCH80nDK3SHJAlIaUUpRoFUvkaBZHQKhepUc4o7V1fZQoaAZoCWgPQwjRH5p5cvFRQJSGlFKUaBVLoGgWR0CoXqY+Sr5qdX2UKGgGaAloD0MI9x3DY79ib0CUhpRSlGgVS95oFkdAqF6+kLx7RnV9lChoBmgJaA9DCN9qnbjcVXBAlIaUUpRoFUvhaBZHQKhe6LEUCaJ1fZQoaAZoCWgPQwi3lzRG629uQJSGlFKUaBVLv2gWR0CoXyTnq3VkdX2UKGgGaAloD0MIzLipgeYCcECUhpRSlGgVS+toFkdAqF8wvSMLnnV9lChoBmgJaA9DCEM3+wNlqXJAlIaUUpRoFUvcaBZHQKhfRCIDYAd1fZQoaAZoCWgPQwit3uF2aFd0QJSGlFKUaBVL7mgWR0CoX4kpqh11dX2UKGgGaAloD0MIWMaGbnZgcUCUhpRSlGgVTRkBaBZHQKhgDmV7hNx1fZQoaAZoCWgPQwjTLxFvHYtvQJSGlFKUaBVL6GgWR0CoYBLHuJDWdX2UKGgGaAloD0MIg92wbdEfbkCUhpRSlGgVS8VoFkdAqGCT7CSA6XV9lChoBmgJaA9DCJiKjXmdn3NAlIaUUpRoFUvIaBZHQKhrW3I+4b11fZQoaAZoCWgPQwi3C811GstxQJSGlFKUaBVL12gWR0Coa24ODrZ8dX2UKGgGaAloD0MI8S2sG692cUCUhpRSlGgVS9BoFkdAqGuTyFwkxHV9lChoBmgJaA9DCM0eaAWG4W1AlIaUUpRoFUvgaBZHQKhrsSHuZ1F1fZQoaAZoCWgPQwiYTus2qFdyQJSGlFKUaBVLzmgWR0Coa8e9Jz1cdX2UKGgGaAloD0MIz6J3KmCQcECUhpRSlGgVS95oFkdAqGvd2V3Ux3V9lChoBmgJaA9DCLyt9Nrsn29AlIaUUpRoFUveaBZHQKhr3/LDAJt1fZQoaAZoCWgPQwh8mShCKo1yQJSGlFKUaBVLzWgWR0Coa/w8fV7QdX2UKGgGaAloD0MI04TtJ+NZcUCUhpRSlGgVS8JoFkdAqGwfiDM/yHV9lChoBmgJaA9DCKn7AKT2N3JAlIaUUpRoFUu5aBZHQKhsJUlzEJl1fZQoaAZoCWgPQwg25QrvspNxQJSGlFKUaBVLymgWR0CobD99tuUEdX2UKGgGaAloD0MIpFUt6WhSckCUhpRSlGgVTRQBaBZHQKhsRCRfWtl1fZQoaAZoCWgPQwgujspNFCBxQJSGlFKUaBVL0GgWR0CobJpO32EkdX2UKGgGaAloD0MIQIf58gLIP0CUhpRSlGgVS7RoFkdAqGzAGnn+ynV9lChoBmgJaA9DCDEnaJPDSHFAlIaUUpRoFUvfaBZHQKhtOg7o0Q91fZQoaAZoCWgPQwhxBKkU+89yQJSGlFKUaBVLsWgWR0CobYR51Ng0dX2UKGgGaAloD0MIIsFUMyuUc0CUhpRSlGgVS8ZoFkdAqG2iAH3UQXV9lChoBmgJaA9DCPJ8BtSbdG1AlIaUUpRoFUvOaBZHQKhtq0/nnuB1fZQoaAZoCWgPQwhm9+RhIQZyQJSGlFKUaBVLqmgWR0CobbV/+bVjdX2UKGgGaAloD0MImWN5Vz10cUCUhpRSlGgVS/poFkdAqG4KnaWX1XV9lChoBmgJaA9DCK/qrBaYDHNAlIaUUpRoFUvIaBZHQKhuD3wCr951fZQoaAZoCWgPQwjIBz2bFRtzQJSGlFKUaBVL1WgWR0Cobg5aV2RrdX2UKGgGaAloD0MIv4BeuDPdcUCUhpRSlGgVS8JoFkdAqG4+X5WRzXV9lChoBmgJaA9DCOoHdZGCAHFAlIaUUpRoFUviaBZHQKhuReBxxT91fZQoaAZoCWgPQwjqWKX0DHVwQJSGlFKUaBVL1GgWR0CobkqJuVHGdX2UKGgGaAloD0MIvsEXJtNIcUCUhpRSlGgVS9FoFkdAqG6D8aXKKnV9lChoBmgJaA9DCCCaeXJNMnNAlIaUUpRoFUvjaBZHQKhurv99+gF1fZQoaAZoCWgPQwiqgeZz7nJxQJSGlFKUaBVL0mgWR0Cobuc0DU3GdX2UKGgGaAloD0MIjln2JDAwb0CUhpRSlGgVS8doFkdAqG7wc5sCT3V9lChoBmgJaA9DCGbc1ECzRnJAlIaUUpRoFU0IAWgWR0CobvL6UJOWdX2UKGgGaAloD0MIOGvwvipdTECUhpRSlGgVS5doFkdAqG9Dq0MPSXV9lChoBmgJaA9DCCE6BI5ES3FAlIaUUpRoFUvmaBZHQKhvt2pQ1rJ1fZQoaAZoCWgPQwjbMAqCx41uQJSGlFKUaBVL1GgWR0Cob8+bVjI8dX2UKGgGaAloD0MIxeOiWgSFcUCUhpRSlGgVS89oFkdAqG/cguAZsXV9lChoBmgJaA9DCN+mP/sRXHBAlIaUUpRoFUveaBZHQKhwHyqdYnx1fZQoaAZoCWgPQwjusfShC7NvQJSGlFKUaBVL0WgWR0CocE+qR2bHdX2UKGgGaAloD0MIPnWsUvpmcECUhpRSlGgVS9ZoFkdAqHBf3evZAnV9lChoBmgJaA9DCM8u3/qw63BAlIaUUpRoFUvIaBZHQKhwbn5i3G51fZQoaAZoCWgPQwiIKvwZHsdzQJSGlFKUaBVLzmgWR0CocHfkeZG8dX2UKGgGaAloD0MINSpwsg1DcUCUhpRSlGgVS+1oFkdAqHCaFAVwgnV9lChoBmgJaA9DCI8ZqIx/j3NAlIaUUpRoFUvfaBZHQKhw7i4rjHZ1fZQoaAZoCWgPQwgHCydp/qhvQJSGlFKUaBVLvGgWR0CocPRSpBHDdX2UKGgGaAloD0MIz9kCQmscckCUhpRSlGgVS/poFkdAqHD7f1pTM3V9lChoBmgJaA9DCD22ZcBZ4m5AlIaUUpRoFUvCaBZHQKhxDub7TDx1fZQoaAZoCWgPQwjG3/YEiXRzQJSGlFKUaBVLxmgWR0CocRbTc6/7dX2UKGgGaAloD0MIelBQilavckCUhpRSlGgVTQABaBZHQKhxbCgK4QV1fZQoaAZoCWgPQwiqKck6XFtxQJSGlFKUaBVLxGgWR0CocgfpD/lydX2UKGgGaAloD0MI8UdRZ67pcECUhpRSlGgVS/toFkdAqHIQzFdcB3V9lChoBmgJaA9DCD2YFB/fLHJAlIaUUpRoFUvYaBZHQKhyJDtw71Z1fZQoaAZoCWgPQwisqSwKe2lwQJSGlFKUaBVLz2gWR0Cocmi6QNkOdX2UKGgGaAloD0MIuW3fo34lcUCUhpRSlGgVS+9oFkdAqHJ69ugpSnV9lChoBmgJaA9DCHfYRGbu7HFAlIaUUpRoFUvGaBZHQKhyffhMrVh1fZQoaAZoCWgPQwh9JCU9TC9xQJSGlFKUaBVLwGgWR0CocpOPV/c4dX2UKGgGaAloD0MIbtxifi6ackCUhpRSlGgVS9toFkdAqHLC8SPEKnV9lChoBmgJaA9DCBeCHJSwP3JAlIaUUpRoFUvsaBZHQKhy/V8Ti851fZQoaAZoCWgPQwi3DaMgOKZzQJSGlFKUaBVL6GgWR0Cocx9adMCcdX2UKGgGaAloD0MIl631RULGbkCUhpRSlGgVS8RoFkdAqHM0gW8AaXV9lChoBmgJaA9DCMy209aIcHJAlIaUUpRoFUvRaBZHQKhzPJMg2ZR1fZQoaAZoCWgPQwjN6EfD6aRyQJSGlFKUaBVL3GgWR0Coc1XyRSxadX2UKGgGaAloD0MI3q6XpohxbkCUhpRSlGgVS9BoFkdAqHO/CXQdCHV9lChoBmgJaA9DCOIftvTojnFAlIaUUpRoFU0FAWgWR0Coc9bx3FDOdX2UKGgGaAloD0MIqWdBKO/+cUCUhpRSlGgVTSQBaBZHQKh0WdI5HVh1fZQoaAZoCWgPQwgA4xk09IVQQJSGlFKUaBVL1WgWR0CodGymIj4YdX2UKGgGaAloD0MIAaJgxtRAckCUhpRSlGgVS+BoFkdAqHSTh1klNXV9lChoBmgJaA9DCFwExvpGK3BAlIaUUpRoFUvmaBZHQKh0t7gKnel1fZQoaAZoCWgPQwhoJEIj2ERxQJSGlFKUaBVL1WgWR0CodPyJTER8dX2UKGgGaAloD0MI+DO8WQNFcECUhpRSlGgVS+JoFkdAqHULd+G47XV9lChoBmgJaA9DCKxVuyZkqHBAlIaUUpRoFUvkaBZHQKh1Dw+dK/V1fZQoaAZoCWgPQwhxIY/ghoJxQJSGlFKUaBVL2mgWR0CodT1JDmbLdX2UKGgGaAloD0MICjAsfz6nckCUhpRSlGgVTQsBaBZHQKh1ZujynUF1fZQoaAZoCWgPQwhQVaGB2F1yQJSGlFKUaBVLzmgWR0CodXskyDZldX2UKGgGaAloD0MIG53zU5zzb0CUhpRSlGgVS91oFkdAqHWDYwqRU3V9lChoBmgJaA9DCHJuE+5VM3NAlIaUUpRoFUvFaBZHQKh1lYraufV1fZQoaAZoCWgPQwji578HL6pwQJSGlFKUaBVL12gWR0CodaSWAwwkdX2UKGgGaAloD0MIc2VQbXAzckCUhpRSlGgVS95oFkdAqHW/Sro4dnV9lChoBmgJaA9DCMISDygbS21AlIaUUpRoFUu/aBZHQKh144ZMtbt1fZQoaAZoCWgPQwh+HThnxMxxQJSGlFKUaBVLymgWR0CodhRMN+b3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 744, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcae10bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcae10bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcae10bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcae10be50>", "_build": "<function ActorCriticPolicy._build at 0x7fbcae10bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbcae10bf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcae110040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbcae1100d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcae110160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcae1101f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcae110280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbcae108480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671907402203636813, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2/I72Y6Lo+6A7oPfCKwb41bH09FT7BvQAAAAAAAAAAmu6vvQW1rT4zBZs+DIbrvrpdAj7W1QU9AAAAAAAAAADNUNu8cU49u3l5q7wUS+87ZaxIPKJw2bwAAIA/AACAP7NZJD4yfYE/YwzPPcKGBb+DpG8+I98WvQAAAAAAAAAAM7qJvCfmAT/FtOM8rkrYvg4HtruhWJw9AAAAAAAAAAAAsOu7w9k6urpoLbjeoSoxRocium6rSTcAAIA/AACAP7AHgD6C3Fc/UtRzPrdnKr9MWeY+0xfqPAAAAAAAAAAAsxQIvXzGHj2euuK92T+XvohmM73opNo9AAAAAAAAAABN55m97tmivNNvqjz+kGg9i+m7PJncwLoAAIA/AACAPwABVj1esr49SjBWvoYmcr6XupW9lp7+PQAAAAAAAAAA8xnTPaA1pT+Om8M++84Iv9pbDT5CEVU+AAAAAAAAAADNNCi8wQULPh1MYr0raqS+bmwrOs2QOb0AAAAAAAAAAFqPVb5f+KY/euq7vefJ7b0wLzC/p86RvgAAAAAAAAAAM0PVPOwRvbnpLIy2BNYasta4pDsam6k1AACAPwAAgD9aryY+Jo6TP7JU8j6TaiC/xxmhPoXdmD4AAAAAAAAAAPNfPT73D/I+OQHHvlROqL73JBW9NPmLvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItFpgj4mRcECUhpRSlIwBbJRL0IwBdJRHQKQCkxgRbr11fZQoaAZoCWgPQwg+QPfljEByQJSGlFKUaBVL+GgWR0CkAsAuh9LIdX2UKGgGaAloD0MIWafK94yXbUCUhpRSlGgVS99oFkdApALO5BkZrHV9lChoBmgJaA9DCHJNgcwORnFAlIaUUpRoFU0pAWgWR0CkAvIUSIxhdX2UKGgGaAloD0MI0/VE14V5b0CUhpRSlGgVS9toFkdApAL5TyauwHV9lChoBmgJaA9DCNDv+zcv9HJAlIaUUpRoFU0YAWgWR0CkAzSsr/bTdX2UKGgGaAloD0MI4NqJktAscUCUhpRSlGgVS/xoFkdApANmKQ7tA3V9lChoBmgJaA9DCHBfB87Zf3BAlIaUUpRoFUv4aBZHQKQDmM+eOGV1fZQoaAZoCWgPQwiamZmZmX1wQJSGlFKUaBVL72gWR0CkA8R2KVIJdX2UKGgGaAloD0MIaYzWUVUxbkCUhpRSlGgVS/JoFkdApAQHOfNA1XV9lChoBmgJaA9DCKBTkJ8NJnFAlIaUUpRoFUvcaBZHQKQEEUNayKN1fZQoaAZoCWgPQwjFOeroeHpzQJSGlFKUaBVNBAFoFkdApAQkE7nxKHV9lChoBmgJaA9DCFyPwvVoc3JAlIaUUpRoFUvhaBZHQKQENAEdNnJ1fZQoaAZoCWgPQwheZW1T/HVwQJSGlFKUaBVL7mgWR0CkBCA+yJKrdX2UKGgGaAloD0MIfLlPjkKHcECUhpRSlGgVS+ZoFkdApAQs5U96knV9lChoBmgJaA9DCJhp+1fWS3BAlIaUUpRoFUv6aBZHQKQEbA1vVEx1fZQoaAZoCWgPQwiXcOgt3opyQJSGlFKUaBVLzWgWR0CkBPHf/FR6dX2UKGgGaAloD0MIWKoLeJlSckCUhpRSlGgVS/VoFkdApAU/7Hhjv3V9lChoBmgJaA9DCDj5LTqZdnBAlIaUUpRoFUv+aBZHQKQFl2g39751fZQoaAZoCWgPQwj+KytNit9wQJSGlFKUaBVL1WgWR0CkBYxZuAI6dX2UKGgGaAloD0MIysLX1/rocECUhpRSlGgVS/FoFkdApAWe6oVEeHV9lChoBmgJaA9DCMwNhjqszXJAlIaUUpRoFUv4aBZHQKQFraTOgQJ1fZQoaAZoCWgPQwinrRHBuA5vQJSGlFKUaBVL4mgWR0CkBe8cENe/dX2UKGgGaAloD0MIJLcm3RbCckCUhpRSlGgVS/9oFkdApAZ8/nnuA3V9lChoBmgJaA9DCIL+Qo+Y23FAlIaUUpRoFUvOaBZHQKQGgTEBKcx1fZQoaAZoCWgPQwhjRKLQMplxQJSGlFKUaBVL7GgWR0CkBrMAeaKDdX2UKGgGaAloD0MIcy7FVeXmckCUhpRSlGgVS+ZoFkdApAar6ab4J3V9lChoBmgJaA9DCD3yBwMPRnFAlIaUUpRoFUvyaBZHQKQG39roGIN1fZQoaAZoCWgPQwha1Ce5Q7VxQJSGlFKUaBVNEQFoFkdApAbfeN1hcHV9lChoBmgJaA9DCLq7zoZ85nFAlIaUUpRoFUvzaBZHQKQG3yZrpJR1fZQoaAZoCWgPQwiKBFPN7CtxQJSGlFKUaBVNBwFoFkdApAcmv2Xb/XV9lChoBmgJaA9DCOXVOQbkb29AlIaUUpRoFUvwaBZHQKQHK0jTrmh1fZQoaAZoCWgPQwi366UpAqtyQJSGlFKUaBVL82gWR0CkGrvIn0CjdX2UKGgGaAloD0MIoiWPp2Wbb0CUhpRSlGgVS+toFkdApBrwplSS/3V9lChoBmgJaA9DCFbXoZqSYXBAlIaUUpRoFUvdaBZHQKQbDrE9+w11fZQoaAZoCWgPQwhDjUKSGUBxQJSGlFKUaBVL22gWR0CkGxsYdhiLdX2UKGgGaAloD0MIi/uPTMefcECUhpRSlGgVS+9oFkdApBtOdbxEv3V9lChoBmgJaA9DCJF8JZDSTnFAlIaUUpRoFU0CAWgWR0CkG5m65Gz9dX2UKGgGaAloD0MIFVJ+Um09c0CUhpRSlGgVS/hoFkdApBu2AiFCcHV9lChoBmgJaA9DCP91btpMtXJAlIaUUpRoFUvdaBZHQKQb9hJAdGR1fZQoaAZoCWgPQwhu/InKBoJyQJSGlFKUaBVL6GgWR0CkHFJhvze5dX2UKGgGaAloD0MIHa1qSUd8b0CUhpRSlGgVS+hoFkdApBxLDKoybnV9lChoBmgJaA9DCAK4WbxYN3FAlIaUUpRoFUvfaBZHQKQcaZ3LV4J1fZQoaAZoCWgPQwjpt68D53BxQJSGlFKUaBVLzmgWR0CkHI7PhQ3xdX2UKGgGaAloD0MId2ouN9jxcECUhpRSlGgVS/JoFkdApByj7Q9idHV9lChoBmgJaA9DCN9uSQ6YtHJAlIaUUpRoFUvjaBZHQKQcyANG3F11fZQoaAZoCWgPQwhYdVYLLLNwQJSGlFKUaBVL+GgWR0CkHLanaWX1dX2UKGgGaAloD0MIo1nZPqR5ckCUhpRSlGgVS8hoFkdApB1Lz3AVPHV9lChoBmgJaA9DCOqxLQNOxXFAlIaUUpRoFUveaBZHQKQdWFLWZqp1fZQoaAZoCWgPQwjpCyHnfXtzQJSGlFKUaBVL1GgWR0CkHYsWoFV1dX2UKGgGaAloD0MImiUBampSc0CUhpRSlGgVS8loFkdApB35nL7oCHV9lChoBmgJaA9DCAVNS6xM4nJAlIaUUpRoFU0CAWgWR0CkHiXbmEGrdX2UKGgGaAloD0MILVvri4QXc0CUhpRSlGgVS/5oFkdApB5R/ustCnV9lChoBmgJaA9DCCefHtty+3NAlIaUUpRoFUvSaBZHQKQedundfsx1fZQoaAZoCWgPQwiFtpxLsQVwQJSGlFKUaBVL8mgWR0CkHponSfDldX2UKGgGaAloD0MIOdBDbZtNb0CUhpRSlGgVS+BoFkdApB70gntv43V9lChoBmgJaA9DCGzPLAmQl3JAlIaUUpRoFUvFaBZHQKQfFrzoUzt1fZQoaAZoCWgPQwgEc/T4PYxvQJSGlFKUaBVL2GgWR0CkHxi+cpb2dX2UKGgGaAloD0MIUWaDTLK9ckCUhpRSlGgVS/doFkdApB80aVD8cnV9lChoBmgJaA9DCA1slWAxY3NAlIaUUpRoFU0GAWgWR0CkH4Cw8nuzdX2UKGgGaAloD0MIRzmYTQC4b0CUhpRSlGgVS/NoFkdApB+AXyiEhHV9lChoBmgJaA9DCN3QlJ0+o3BAlIaUUpRoFUv0aBZHQKQflZq20At1fZQoaAZoCWgPQwi1wYnoV8ZwQJSGlFKUaBVL7mgWR0CkICpaA4GVdX2UKGgGaAloD0MI3WCow8qhcUCUhpRSlGgVS/loFkdApCA/7rLQonV9lChoBmgJaA9DCNoCQuth129AlIaUUpRoFUvmaBZHQKQgTOObRWt1fZQoaAZoCWgPQwiRmKCG7xNwQJSGlFKUaBVL1WgWR0CkIIW/SH/MdX2UKGgGaAloD0MIR40JMRfocUCUhpRSlGgVS9RoFkdApCDTewcHW3V9lChoBmgJaA9DCF5LyAc9QnFAlIaUUpRoFUvvaBZHQKQg/RzBAOd1fZQoaAZoCWgPQwjpZKn1/pFyQJSGlFKUaBVL7GgWR0CkIT/K6nR+dX2UKGgGaAloD0MIHjNQGX8Dc0CUhpRSlGgVS8loFkdApCF4OtnwonV9lChoBmgJaA9DCHREvkspa3JAlIaUUpRoFUvaaBZHQKQhibMotth1fZQoaAZoCWgPQwhZhjjWxdtwQJSGlFKUaBVL/GgWR0CkIZisOoYOdX2UKGgGaAloD0MIJ94BnnTpckCUhpRSlGgVS9FoFkdApCGqvV3EAHV9lChoBmgJaA9DCDunWaAde3FAlIaUUpRoFUvOaBZHQKQh6cPOIIp1fZQoaAZoCWgPQwhoeLMGr1xwQJSGlFKUaBVL+mgWR0CkIgaNuLrHdX2UKGgGaAloD0MIpMUZwxz5cECUhpRSlGgVS+RoFkdApCIndXT3I3V9lChoBmgJaA9DCLHbZ5UZAnFAlIaUUpRoFUv9aBZHQKQihum78Nx1fZQoaAZoCWgPQwiA7suZ7VpxQJSGlFKUaBVL3mgWR0CkIsX/YJ3QdX2UKGgGaAloD0MISuza3u55cUCUhpRSlGgVS9doFkdApCMK55JK8XV9lChoBmgJaA9DCJsb0xNW93JAlIaUUpRoFUvyaBZHQKQjGIrvsqt1fZQoaAZoCWgPQwgkfsUabh1zQJSGlFKUaBVL62gWR0CkIwzLwF1TdX2UKGgGaAloD0MI2CyXjc64cECUhpRSlGgVS9poFkdApCNfc580DXV9lChoBmgJaA9DCMSzBBmBgXBAlIaUUpRoFUvuaBZHQKQjxmfXf651fZQoaAZoCWgPQwgw2A3bFlBvQJSGlFKUaBVL1mgWR0CkI/njhky2dX2UKGgGaAloD0MI3gN0X875bUCUhpRSlGgVS91oFkdApCQxZMcp9nV9lChoBmgJaA9DCJQw0/YvBG1AlIaUUpRoFUvbaBZHQKQkQTTvy9V1fZQoaAZoCWgPQwjHYptUNDNxQJSGlFKUaBVNBwFoFkdApCRiSHM2WXV9lChoBmgJaA9DCExPWOJBoXFAlIaUUpRoFU0CAWgWR0CkJJoCdSVGdX2UKGgGaAloD0MIQfFjzF0AckCUhpRSlGgVS9JoFkdApCSxLIxQBXV9lChoBmgJaA9DCPM+jubIyFJAlIaUUpRoFUuVaBZHQKQk3F5OafB1fZQoaAZoCWgPQwi2vkhoS+9yQJSGlFKUaBVL+WgWR0CkJOaS1Vo6dX2UKGgGaAloD0MIPiMRGsGkZkCUhpRSlGgVTegDaBZHQKQlNA1Nxlx1fZQoaAZoCWgPQwh7hnDMskFyQJSGlFKUaBVNCwFoFkdApCU28mKIi3V9lChoBmgJaA9DCMJLcOoDknFAlIaUUpRoFUvoaBZHQKQlSkJrtVt1fZQoaAZoCWgPQwhEp+fd2GpxQJSGlFKUaBVL4GgWR0CkJW3BHkLhdX2UKGgGaAloD0MIVpv/V500b0CUhpRSlGgVS+VoFkdApCYF87ZFonV9lChoBmgJaA9DCIRhwJJrHnJAlIaUUpRoFU0EAWgWR0CkJhfWlMyrdX2UKGgGaAloD0MIQl96+3PrcECUhpRSlGgVS8xoFkdApCYd+d9Uj3V9lChoBmgJaA9DCIS4cvYOfnFAlIaUUpRoFU0WAWgWR0CkJkDFhodudX2UKGgGaAloD0MIcqQzMDJbckCUhpRSlGgVS9BoFkdApCZWFpPAPHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 984, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.96, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1db3f88415eff4b636697d71e2487245e971df8ee7fe120b7dd577bb3935a68
3
- size 147098
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97aa855d7a450e972503ab94fe2ca03b26a0f8be775ba75873c8384c10339f72
3
+ size 147106
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3be37f4ca0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3be37f4d30>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3be37f4dc0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3be37f4e50>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f3be37f4ee0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f3be37f4f70>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3be37f9040>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f3be37f90d0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3be37f9160>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3be37f91f0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3be37f9280>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f3be37f0480>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1671335533816704354,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB9wTyrs/89Rc+CvkIYy74XsiW+sOGovAAAAAAAAAAAmi7BPCnwArr6Urc0YGaWL/L3HzoFZnizAACAPwAAgD/m6Es9oeCBP+ezrTzHRBO/MuwLPqL4gD0AAAAAAAAAAM08IzzchmW8khETvqBTIz3LwsQ9thcBvgAAgD8AAIA/M4AhvTTCvrzW3ZI971qLPCbRJb7ztFg9AACAPwAAgD+zYoQ9noKCP2eRATpBlRq/Y/YTPr4SDL0AAAAAAAAAAADDi71cQAQ7uNFbPjWu4r3MB5k8c4o1vwAAAAAAAIA/ZgaePJwSED0SId692SarvkACab3GrqW8AAAAAAAAAADtHUO+/GbtPgR2rz09NbW+e467vaRnuz0AAAAAAAAAACM/gj6iPA4/Zqt4vmE7Gb/saG0+flqhvgAAAAAAAAAAZtRfvEnA+j68RBY9FISyvsCKij1e8i68AAAAAAAAAADm5sS9NIOYPnfVCj6u/Zm+RuqtPPgBNb0AAAAAAAAAABqKo77g9sY+bEwsP6oqqL42I1G+i2ukPgAAAAAAAAAAM7sevJx8E7x6bwg8ZHW1PExVlr1zs5Q9AACAPwAAgD8zU6u7SG2SutsfHTbgCgIxzpY2u9o2QrUAAIA/AACAPyZJ2T1LWcQ+ZbmovmZn775hqMS8MuJfvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,24 +66,24 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwwyNJwJ2cUCUhpRSlIwBbJRL2IwBdJRHQKhcxhDw6Qx1fZQoaAZoCWgPQwgldQKaiNNuQJSGlFKUaBVLzmgWR0CoXMfXoTwldX2UKGgGaAloD0MIi269podscUCUhpRSlGgVS9doFkdAqFzWnqFAV3V9lChoBmgJaA9DCHZQietYZXNAlIaUUpRoFU0cAWgWR0CoXNjRMN+cdX2UKGgGaAloD0MIhlW8kfmpcECUhpRSlGgVS8doFkdAqFz0dq+JxnV9lChoBmgJaA9DCNXOMLVlCHNAlIaUUpRoFU0VAWgWR0CoXVgZ88cNdX2UKGgGaAloD0MIe00PCoojcUCUhpRSlGgVS9loFkdAqF5P6uW8iHV9lChoBmgJaA9DCIm0jT/RyXBAlIaUUpRoFUu4aBZHQKheTqmj0th1fZQoaAZoCWgPQwjkFB3JpfpzQJSGlFKUaBVL7GgWR0CoXme6Zpi7dX2UKGgGaAloD0MIUHCxooYDckCUhpRSlGgVTQEBaBZHQKhecOJcgQp1fZQoaAZoCWgPQwjaIJOMnHtFQJSGlFKUaBVLnmgWR0CoXnYdyT6jdX2UKGgGaAloD0MIl6q0xbVZcECUhpRSlGgVS99oFkdAqF6LtG/etXV9lChoBmgJaA9DCH80nDK3SHJAlIaUUpRoFUvkaBZHQKhepUc4o7V1fZQoaAZoCWgPQwjRH5p5cvFRQJSGlFKUaBVLoGgWR0CoXqY+Sr5qdX2UKGgGaAloD0MI9x3DY79ib0CUhpRSlGgVS95oFkdAqF6+kLx7RnV9lChoBmgJaA9DCN9qnbjcVXBAlIaUUpRoFUvhaBZHQKhe6LEUCaJ1fZQoaAZoCWgPQwi3lzRG629uQJSGlFKUaBVLv2gWR0CoXyTnq3VkdX2UKGgGaAloD0MIzLipgeYCcECUhpRSlGgVS+toFkdAqF8wvSMLnnV9lChoBmgJaA9DCEM3+wNlqXJAlIaUUpRoFUvcaBZHQKhfRCIDYAd1fZQoaAZoCWgPQwit3uF2aFd0QJSGlFKUaBVL7mgWR0CoX4kpqh11dX2UKGgGaAloD0MIWMaGbnZgcUCUhpRSlGgVTRkBaBZHQKhgDmV7hNx1fZQoaAZoCWgPQwjTLxFvHYtvQJSGlFKUaBVL6GgWR0CoYBLHuJDWdX2UKGgGaAloD0MIg92wbdEfbkCUhpRSlGgVS8VoFkdAqGCT7CSA6XV9lChoBmgJaA9DCJiKjXmdn3NAlIaUUpRoFUvIaBZHQKhrW3I+4b11fZQoaAZoCWgPQwi3C811GstxQJSGlFKUaBVL12gWR0Coa24ODrZ8dX2UKGgGaAloD0MI8S2sG692cUCUhpRSlGgVS9BoFkdAqGuTyFwkxHV9lChoBmgJaA9DCM0eaAWG4W1AlIaUUpRoFUvgaBZHQKhrsSHuZ1F1fZQoaAZoCWgPQwiYTus2qFdyQJSGlFKUaBVLzmgWR0Coa8e9Jz1cdX2UKGgGaAloD0MIz6J3KmCQcECUhpRSlGgVS95oFkdAqGvd2V3Ux3V9lChoBmgJaA9DCLyt9Nrsn29AlIaUUpRoFUveaBZHQKhr3/LDAJt1fZQoaAZoCWgPQwh8mShCKo1yQJSGlFKUaBVLzWgWR0Coa/w8fV7QdX2UKGgGaAloD0MI04TtJ+NZcUCUhpRSlGgVS8JoFkdAqGwfiDM/yHV9lChoBmgJaA9DCKn7AKT2N3JAlIaUUpRoFUu5aBZHQKhsJUlzEJl1fZQoaAZoCWgPQwg25QrvspNxQJSGlFKUaBVLymgWR0CobD99tuUEdX2UKGgGaAloD0MIpFUt6WhSckCUhpRSlGgVTRQBaBZHQKhsRCRfWtl1fZQoaAZoCWgPQwgujspNFCBxQJSGlFKUaBVL0GgWR0CobJpO32EkdX2UKGgGaAloD0MIQIf58gLIP0CUhpRSlGgVS7RoFkdAqGzAGnn+ynV9lChoBmgJaA9DCDEnaJPDSHFAlIaUUpRoFUvfaBZHQKhtOg7o0Q91fZQoaAZoCWgPQwhxBKkU+89yQJSGlFKUaBVLsWgWR0CobYR51Ng0dX2UKGgGaAloD0MIIsFUMyuUc0CUhpRSlGgVS8ZoFkdAqG2iAH3UQXV9lChoBmgJaA9DCPJ8BtSbdG1AlIaUUpRoFUvOaBZHQKhtq0/nnuB1fZQoaAZoCWgPQwhm9+RhIQZyQJSGlFKUaBVLqmgWR0CobbV/+bVjdX2UKGgGaAloD0MImWN5Vz10cUCUhpRSlGgVS/poFkdAqG4KnaWX1XV9lChoBmgJaA9DCK/qrBaYDHNAlIaUUpRoFUvIaBZHQKhuD3wCr951fZQoaAZoCWgPQwjIBz2bFRtzQJSGlFKUaBVL1WgWR0Cobg5aV2RrdX2UKGgGaAloD0MIv4BeuDPdcUCUhpRSlGgVS8JoFkdAqG4+X5WRzXV9lChoBmgJaA9DCOoHdZGCAHFAlIaUUpRoFUviaBZHQKhuReBxxT91fZQoaAZoCWgPQwjqWKX0DHVwQJSGlFKUaBVL1GgWR0CobkqJuVHGdX2UKGgGaAloD0MIvsEXJtNIcUCUhpRSlGgVS9FoFkdAqG6D8aXKKnV9lChoBmgJaA9DCCCaeXJNMnNAlIaUUpRoFUvjaBZHQKhurv99+gF1fZQoaAZoCWgPQwiqgeZz7nJxQJSGlFKUaBVL0mgWR0Cobuc0DU3GdX2UKGgGaAloD0MIjln2JDAwb0CUhpRSlGgVS8doFkdAqG7wc5sCT3V9lChoBmgJaA9DCGbc1ECzRnJAlIaUUpRoFU0IAWgWR0CobvL6UJOWdX2UKGgGaAloD0MIOGvwvipdTECUhpRSlGgVS5doFkdAqG9Dq0MPSXV9lChoBmgJaA9DCCE6BI5ES3FAlIaUUpRoFUvmaBZHQKhvt2pQ1rJ1fZQoaAZoCWgPQwjbMAqCx41uQJSGlFKUaBVL1GgWR0Cob8+bVjI8dX2UKGgGaAloD0MIxeOiWgSFcUCUhpRSlGgVS89oFkdAqG/cguAZsXV9lChoBmgJaA9DCN+mP/sRXHBAlIaUUpRoFUveaBZHQKhwHyqdYnx1fZQoaAZoCWgPQwjusfShC7NvQJSGlFKUaBVL0WgWR0CocE+qR2bHdX2UKGgGaAloD0MIPnWsUvpmcECUhpRSlGgVS9ZoFkdAqHBf3evZAnV9lChoBmgJaA9DCM8u3/qw63BAlIaUUpRoFUvIaBZHQKhwbn5i3G51fZQoaAZoCWgPQwiIKvwZHsdzQJSGlFKUaBVLzmgWR0CocHfkeZG8dX2UKGgGaAloD0MINSpwsg1DcUCUhpRSlGgVS+1oFkdAqHCaFAVwgnV9lChoBmgJaA9DCI8ZqIx/j3NAlIaUUpRoFUvfaBZHQKhw7i4rjHZ1fZQoaAZoCWgPQwgHCydp/qhvQJSGlFKUaBVLvGgWR0CocPRSpBHDdX2UKGgGaAloD0MIz9kCQmscckCUhpRSlGgVS/poFkdAqHD7f1pTM3V9lChoBmgJaA9DCD22ZcBZ4m5AlIaUUpRoFUvCaBZHQKhxDub7TDx1fZQoaAZoCWgPQwjG3/YEiXRzQJSGlFKUaBVLxmgWR0CocRbTc6/7dX2UKGgGaAloD0MIelBQilavckCUhpRSlGgVTQABaBZHQKhxbCgK4QV1fZQoaAZoCWgPQwiqKck6XFtxQJSGlFKUaBVLxGgWR0CocgfpD/lydX2UKGgGaAloD0MI8UdRZ67pcECUhpRSlGgVS/toFkdAqHIQzFdcB3V9lChoBmgJaA9DCD2YFB/fLHJAlIaUUpRoFUvYaBZHQKhyJDtw71Z1fZQoaAZoCWgPQwisqSwKe2lwQJSGlFKUaBVLz2gWR0Cocmi6QNkOdX2UKGgGaAloD0MIuW3fo34lcUCUhpRSlGgVS+9oFkdAqHJ69ugpSnV9lChoBmgJaA9DCHfYRGbu7HFAlIaUUpRoFUvGaBZHQKhyffhMrVh1fZQoaAZoCWgPQwh9JCU9TC9xQJSGlFKUaBVLwGgWR0CocpOPV/c4dX2UKGgGaAloD0MIbtxifi6ackCUhpRSlGgVS9toFkdAqHLC8SPEKnV9lChoBmgJaA9DCBeCHJSwP3JAlIaUUpRoFUvsaBZHQKhy/V8Ti851fZQoaAZoCWgPQwi3DaMgOKZzQJSGlFKUaBVL6GgWR0Cocx9adMCcdX2UKGgGaAloD0MIl631RULGbkCUhpRSlGgVS8RoFkdAqHM0gW8AaXV9lChoBmgJaA9DCMy209aIcHJAlIaUUpRoFUvRaBZHQKhzPJMg2ZR1fZQoaAZoCWgPQwjN6EfD6aRyQJSGlFKUaBVL3GgWR0Coc1XyRSxadX2UKGgGaAloD0MI3q6XpohxbkCUhpRSlGgVS9BoFkdAqHO/CXQdCHV9lChoBmgJaA9DCOIftvTojnFAlIaUUpRoFU0FAWgWR0Coc9bx3FDOdX2UKGgGaAloD0MIqWdBKO/+cUCUhpRSlGgVTSQBaBZHQKh0WdI5HVh1fZQoaAZoCWgPQwgA4xk09IVQQJSGlFKUaBVL1WgWR0CodGymIj4YdX2UKGgGaAloD0MIAaJgxtRAckCUhpRSlGgVS+BoFkdAqHSTh1klNXV9lChoBmgJaA9DCFwExvpGK3BAlIaUUpRoFUvmaBZHQKh0t7gKnel1fZQoaAZoCWgPQwhoJEIj2ERxQJSGlFKUaBVL1WgWR0CodPyJTER8dX2UKGgGaAloD0MI+DO8WQNFcECUhpRSlGgVS+JoFkdAqHULd+G47XV9lChoBmgJaA9DCKxVuyZkqHBAlIaUUpRoFUvkaBZHQKh1Dw+dK/V1fZQoaAZoCWgPQwhxIY/ghoJxQJSGlFKUaBVL2mgWR0CodT1JDmbLdX2UKGgGaAloD0MICjAsfz6nckCUhpRSlGgVTQsBaBZHQKh1ZujynUF1fZQoaAZoCWgPQwhQVaGB2F1yQJSGlFKUaBVLzmgWR0CodXskyDZldX2UKGgGaAloD0MIG53zU5zzb0CUhpRSlGgVS91oFkdAqHWDYwqRU3V9lChoBmgJaA9DCHJuE+5VM3NAlIaUUpRoFUvFaBZHQKh1lYraufV1fZQoaAZoCWgPQwji578HL6pwQJSGlFKUaBVL12gWR0CodaSWAwwkdX2UKGgGaAloD0MIc2VQbXAzckCUhpRSlGgVS95oFkdAqHW/Sro4dnV9lChoBmgJaA9DCMISDygbS21AlIaUUpRoFUu/aBZHQKh144ZMtbt1fZQoaAZoCWgPQwh+HThnxMxxQJSGlFKUaBVLymgWR0CodhRMN+b3dWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 744,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcae10bca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcae10bd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcae10bdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcae10be50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbcae10bee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbcae10bf70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcae110040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbcae1100d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcae110160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcae1101f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcae110280>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbcae108480>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1671907402203636813,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2/I72Y6Lo+6A7oPfCKwb41bH09FT7BvQAAAAAAAAAAmu6vvQW1rT4zBZs+DIbrvrpdAj7W1QU9AAAAAAAAAADNUNu8cU49u3l5q7wUS+87ZaxIPKJw2bwAAIA/AACAP7NZJD4yfYE/YwzPPcKGBb+DpG8+I98WvQAAAAAAAAAAM7qJvCfmAT/FtOM8rkrYvg4HtruhWJw9AAAAAAAAAAAAsOu7w9k6urpoLbjeoSoxRocium6rSTcAAIA/AACAP7AHgD6C3Fc/UtRzPrdnKr9MWeY+0xfqPAAAAAAAAAAAsxQIvXzGHj2euuK92T+XvohmM73opNo9AAAAAAAAAABN55m97tmivNNvqjz+kGg9i+m7PJncwLoAAIA/AACAPwABVj1esr49SjBWvoYmcr6XupW9lp7+PQAAAAAAAAAA8xnTPaA1pT+Om8M++84Iv9pbDT5CEVU+AAAAAAAAAADNNCi8wQULPh1MYr0raqS+bmwrOs2QOb0AAAAAAAAAAFqPVb5f+KY/euq7vefJ7b0wLzC/p86RvgAAAAAAAAAAM0PVPOwRvbnpLIy2BNYasta4pDsam6k1AACAPwAAgD9aryY+Jo6TP7JU8j6TaiC/xxmhPoXdmD4AAAAAAAAAAPNfPT73D/I+OQHHvlROqL73JBW9NPmLvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItFpgj4mRcECUhpRSlIwBbJRL0IwBdJRHQKQCkxgRbr11fZQoaAZoCWgPQwg+QPfljEByQJSGlFKUaBVL+GgWR0CkAsAuh9LIdX2UKGgGaAloD0MIWafK94yXbUCUhpRSlGgVS99oFkdApALO5BkZrHV9lChoBmgJaA9DCHJNgcwORnFAlIaUUpRoFU0pAWgWR0CkAvIUSIxhdX2UKGgGaAloD0MI0/VE14V5b0CUhpRSlGgVS9toFkdApAL5TyauwHV9lChoBmgJaA9DCNDv+zcv9HJAlIaUUpRoFU0YAWgWR0CkAzSsr/bTdX2UKGgGaAloD0MI4NqJktAscUCUhpRSlGgVS/xoFkdApANmKQ7tA3V9lChoBmgJaA9DCHBfB87Zf3BAlIaUUpRoFUv4aBZHQKQDmM+eOGV1fZQoaAZoCWgPQwiamZmZmX1wQJSGlFKUaBVL72gWR0CkA8R2KVIJdX2UKGgGaAloD0MIaYzWUVUxbkCUhpRSlGgVS/JoFkdApAQHOfNA1XV9lChoBmgJaA9DCKBTkJ8NJnFAlIaUUpRoFUvcaBZHQKQEEUNayKN1fZQoaAZoCWgPQwjFOeroeHpzQJSGlFKUaBVNBAFoFkdApAQkE7nxKHV9lChoBmgJaA9DCFyPwvVoc3JAlIaUUpRoFUvhaBZHQKQENAEdNnJ1fZQoaAZoCWgPQwheZW1T/HVwQJSGlFKUaBVL7mgWR0CkBCA+yJKrdX2UKGgGaAloD0MIfLlPjkKHcECUhpRSlGgVS+ZoFkdApAQs5U96knV9lChoBmgJaA9DCJhp+1fWS3BAlIaUUpRoFUv6aBZHQKQEbA1vVEx1fZQoaAZoCWgPQwiXcOgt3opyQJSGlFKUaBVLzWgWR0CkBPHf/FR6dX2UKGgGaAloD0MIWKoLeJlSckCUhpRSlGgVS/VoFkdApAU/7Hhjv3V9lChoBmgJaA9DCDj5LTqZdnBAlIaUUpRoFUv+aBZHQKQFl2g39751fZQoaAZoCWgPQwj+KytNit9wQJSGlFKUaBVL1WgWR0CkBYxZuAI6dX2UKGgGaAloD0MIysLX1/rocECUhpRSlGgVS/FoFkdApAWe6oVEeHV9lChoBmgJaA9DCMwNhjqszXJAlIaUUpRoFUv4aBZHQKQFraTOgQJ1fZQoaAZoCWgPQwinrRHBuA5vQJSGlFKUaBVL4mgWR0CkBe8cENe/dX2UKGgGaAloD0MIJLcm3RbCckCUhpRSlGgVS/9oFkdApAZ8/nnuA3V9lChoBmgJaA9DCIL+Qo+Y23FAlIaUUpRoFUvOaBZHQKQGgTEBKcx1fZQoaAZoCWgPQwhjRKLQMplxQJSGlFKUaBVL7GgWR0CkBrMAeaKDdX2UKGgGaAloD0MIcy7FVeXmckCUhpRSlGgVS+ZoFkdApAar6ab4J3V9lChoBmgJaA9DCD3yBwMPRnFAlIaUUpRoFUvyaBZHQKQG39roGIN1fZQoaAZoCWgPQwha1Ce5Q7VxQJSGlFKUaBVNEQFoFkdApAbfeN1hcHV9lChoBmgJaA9DCLq7zoZ85nFAlIaUUpRoFUvzaBZHQKQG3yZrpJR1fZQoaAZoCWgPQwiKBFPN7CtxQJSGlFKUaBVNBwFoFkdApAcmv2Xb/XV9lChoBmgJaA9DCOXVOQbkb29AlIaUUpRoFUvwaBZHQKQHK0jTrmh1fZQoaAZoCWgPQwi366UpAqtyQJSGlFKUaBVL82gWR0CkGrvIn0CjdX2UKGgGaAloD0MIoiWPp2Wbb0CUhpRSlGgVS+toFkdApBrwplSS/3V9lChoBmgJaA9DCFbXoZqSYXBAlIaUUpRoFUvdaBZHQKQbDrE9+w11fZQoaAZoCWgPQwhDjUKSGUBxQJSGlFKUaBVL22gWR0CkGxsYdhiLdX2UKGgGaAloD0MIi/uPTMefcECUhpRSlGgVS+9oFkdApBtOdbxEv3V9lChoBmgJaA9DCJF8JZDSTnFAlIaUUpRoFU0CAWgWR0CkG5m65Gz9dX2UKGgGaAloD0MIFVJ+Um09c0CUhpRSlGgVS/hoFkdApBu2AiFCcHV9lChoBmgJaA9DCP91btpMtXJAlIaUUpRoFUvdaBZHQKQb9hJAdGR1fZQoaAZoCWgPQwhu/InKBoJyQJSGlFKUaBVL6GgWR0CkHFJhvze5dX2UKGgGaAloD0MIHa1qSUd8b0CUhpRSlGgVS+hoFkdApBxLDKoybnV9lChoBmgJaA9DCAK4WbxYN3FAlIaUUpRoFUvfaBZHQKQcaZ3LV4J1fZQoaAZoCWgPQwjpt68D53BxQJSGlFKUaBVLzmgWR0CkHI7PhQ3xdX2UKGgGaAloD0MId2ouN9jxcECUhpRSlGgVS/JoFkdApByj7Q9idHV9lChoBmgJaA9DCN9uSQ6YtHJAlIaUUpRoFUvjaBZHQKQcyANG3F11fZQoaAZoCWgPQwhYdVYLLLNwQJSGlFKUaBVL+GgWR0CkHLanaWX1dX2UKGgGaAloD0MIo1nZPqR5ckCUhpRSlGgVS8hoFkdApB1Lz3AVPHV9lChoBmgJaA9DCOqxLQNOxXFAlIaUUpRoFUveaBZHQKQdWFLWZqp1fZQoaAZoCWgPQwjpCyHnfXtzQJSGlFKUaBVL1GgWR0CkHYsWoFV1dX2UKGgGaAloD0MImiUBampSc0CUhpRSlGgVS8loFkdApB35nL7oCHV9lChoBmgJaA9DCAVNS6xM4nJAlIaUUpRoFU0CAWgWR0CkHiXbmEGrdX2UKGgGaAloD0MILVvri4QXc0CUhpRSlGgVS/5oFkdApB5R/ustCnV9lChoBmgJaA9DCCefHtty+3NAlIaUUpRoFUvSaBZHQKQedundfsx1fZQoaAZoCWgPQwiFtpxLsQVwQJSGlFKUaBVL8mgWR0CkHponSfDldX2UKGgGaAloD0MIOdBDbZtNb0CUhpRSlGgVS+BoFkdApB70gntv43V9lChoBmgJaA9DCGzPLAmQl3JAlIaUUpRoFUvFaBZHQKQfFrzoUzt1fZQoaAZoCWgPQwgEc/T4PYxvQJSGlFKUaBVL2GgWR0CkHxi+cpb2dX2UKGgGaAloD0MIUWaDTLK9ckCUhpRSlGgVS/doFkdApB80aVD8cnV9lChoBmgJaA9DCA1slWAxY3NAlIaUUpRoFU0GAWgWR0CkH4Cw8nuzdX2UKGgGaAloD0MIRzmYTQC4b0CUhpRSlGgVS/NoFkdApB+AXyiEhHV9lChoBmgJaA9DCN3QlJ0+o3BAlIaUUpRoFUv0aBZHQKQflZq20At1fZQoaAZoCWgPQwi1wYnoV8ZwQJSGlFKUaBVL7mgWR0CkICpaA4GVdX2UKGgGaAloD0MI3WCow8qhcUCUhpRSlGgVS/loFkdApCA/7rLQonV9lChoBmgJaA9DCNoCQuth129AlIaUUpRoFUvmaBZHQKQgTOObRWt1fZQoaAZoCWgPQwiRmKCG7xNwQJSGlFKUaBVL1WgWR0CkIIW/SH/MdX2UKGgGaAloD0MIR40JMRfocUCUhpRSlGgVS9RoFkdApCDTewcHW3V9lChoBmgJaA9DCF5LyAc9QnFAlIaUUpRoFUvvaBZHQKQg/RzBAOd1fZQoaAZoCWgPQwjpZKn1/pFyQJSGlFKUaBVL7GgWR0CkIT/K6nR+dX2UKGgGaAloD0MIHjNQGX8Dc0CUhpRSlGgVS8loFkdApCF4OtnwonV9lChoBmgJaA9DCHREvkspa3JAlIaUUpRoFUvaaBZHQKQhibMotth1fZQoaAZoCWgPQwhZhjjWxdtwQJSGlFKUaBVL/GgWR0CkIZisOoYOdX2UKGgGaAloD0MIJ94BnnTpckCUhpRSlGgVS9FoFkdApCGqvV3EAHV9lChoBmgJaA9DCDunWaAde3FAlIaUUpRoFUvOaBZHQKQh6cPOIIp1fZQoaAZoCWgPQwhoeLMGr1xwQJSGlFKUaBVL+mgWR0CkIgaNuLrHdX2UKGgGaAloD0MIpMUZwxz5cECUhpRSlGgVS+RoFkdApCIndXT3I3V9lChoBmgJaA9DCLHbZ5UZAnFAlIaUUpRoFUv9aBZHQKQihum78Nx1fZQoaAZoCWgPQwiA7suZ7VpxQJSGlFKUaBVL3mgWR0CkIsX/YJ3QdX2UKGgGaAloD0MISuza3u55cUCUhpRSlGgVS9doFkdApCMK55JK8XV9lChoBmgJaA9DCJsb0xNW93JAlIaUUpRoFUvyaBZHQKQjGIrvsqt1fZQoaAZoCWgPQwgkfsUabh1zQJSGlFKUaBVL62gWR0CkIwzLwF1TdX2UKGgGaAloD0MI2CyXjc64cECUhpRSlGgVS9poFkdApCNfc580DXV9lChoBmgJaA9DCMSzBBmBgXBAlIaUUpRoFUvuaBZHQKQjxmfXf651fZQoaAZoCWgPQwgw2A3bFlBvQJSGlFKUaBVL1mgWR0CkI/njhky2dX2UKGgGaAloD0MI3gN0X875bUCUhpRSlGgVS91oFkdApCQxZMcp9nV9lChoBmgJaA9DCJQw0/YvBG1AlIaUUpRoFUvbaBZHQKQkQTTvy9V1fZQoaAZoCWgPQwjHYptUNDNxQJSGlFKUaBVNBwFoFkdApCRiSHM2WXV9lChoBmgJaA9DCExPWOJBoXFAlIaUUpRoFU0CAWgWR0CkJJoCdSVGdX2UKGgGaAloD0MIQfFjzF0AckCUhpRSlGgVS9JoFkdApCSxLIxQBXV9lChoBmgJaA9DCPM+jubIyFJAlIaUUpRoFUuVaBZHQKQk3F5OafB1fZQoaAZoCWgPQwi2vkhoS+9yQJSGlFKUaBVL+WgWR0CkJOaS1Vo6dX2UKGgGaAloD0MIPiMRGsGkZkCUhpRSlGgVTegDaBZHQKQlNA1Nxlx1fZQoaAZoCWgPQwh7hnDMskFyQJSGlFKUaBVNCwFoFkdApCU28mKIi3V9lChoBmgJaA9DCMJLcOoDknFAlIaUUpRoFUvoaBZHQKQlSkJrtVt1fZQoaAZoCWgPQwhEp+fd2GpxQJSGlFKUaBVL4GgWR0CkJW3BHkLhdX2UKGgGaAloD0MIVpv/V500b0CUhpRSlGgVS+VoFkdApCYF87ZFonV9lChoBmgJaA9DCIRhwJJrHnJAlIaUUpRoFU0EAWgWR0CkJhfWlMyrdX2UKGgGaAloD0MIQl96+3PrcECUhpRSlGgVS8xoFkdApCYd+d9Uj3V9lChoBmgJaA9DCIS4cvYOfnFAlIaUUpRoFU0WAWgWR0CkJkDFhodudX2UKGgGaAloD0MIcqQzMDJbckCUhpRSlGgVS9BoFkdApCZWFpPAPHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 984,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
+ "gae_lambda": 0.96,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
+ "n_epochs": 8,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88e2a01cb61a342e3a7d9c7ecf6de04f7e92c014fc32f5a339b5b20fc6450d4c
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad611ca5e89ebdd7188bf14ea358300ea9221aaf5a1d0da085035a404e42893e
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8793a2ef7f393f3dfe9993a06b048279bf0b79ff8971f3e6e502a94cabb69430
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ec4d37dc49314d0cdd7b6d648fe15c74a9a137ee0e0b8e9967ef6617382a2a7
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 284.15998588263244, "std_reward": 18.012490486062276, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T04:20:10.174317"}
 
1
+ {"mean_reward": 265.3117546138334, "std_reward": 16.57625264608628, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-24T19:30:25.355652"}