--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: smalldata-microsoft-deberta-base-mnli-eng-only-sentiment-single-finetuned-memes results: [] --- # smalldata-microsoft-deberta-base-mnli-eng-only-sentiment-single-finetuned-memes This model is a fine-tuned version of [jayantapaul888/twitter-data-microsoft-deberta-base-mnli-sentiment-finetuned-memes](https://huggingface.co/jayantapaul888/twitter-data-microsoft-deberta-base-mnli-sentiment-finetuned-memes) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7400 - Accuracy: 0.8816 - Precision: 0.8946 - Recall: 0.8937 - F1: 0.8937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 378 | 0.2962 | 0.8764 | 0.8917 | 0.8881 | 0.8884 | | 0.3387 | 2.0 | 756 | 0.2803 | 0.8831 | 0.8950 | 0.8942 | 0.8946 | | 0.1693 | 3.0 | 1134 | 0.4289 | 0.8764 | 0.8912 | 0.8892 | 0.8886 | | 0.0772 | 4.0 | 1512 | 0.5436 | 0.8690 | 0.8822 | 0.8823 | 0.8822 | | 0.0772 | 5.0 | 1890 | 0.6566 | 0.8831 | 0.8960 | 0.8947 | 0.8949 | | 0.024 | 6.0 | 2268 | 0.7400 | 0.8816 | 0.8946 | 0.8937 | 0.8937 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1