jaymanvirk
commited on
Commit
•
444e5c9
1
Parent(s):
1f751bb
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1715925830.29e5e4c8c05f +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000977_4001792_reward_26.560.pth +3 -0
- checkpoint_p0/checkpoint_000000879_3600384.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +870 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1715925830.29e5e4c8c05f
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d5a4bbab650e7493be8d38ab50ccc51e1e44a898f72b5e9ede70545bc2abe8c
|
3 |
+
size 472903
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 8.36 +/- 4.79
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r jaymanvirk/ppo_sample_factory_doom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=ppo_sample_factory_doom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=ppo_sample_factory_doom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000977_4001792_reward_26.560.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2be8ffe2e525b8801e1d3e8d044457f290d222477ba326964512782b5347938
|
3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000879_3600384.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c6d2b959f33dafe92331e50842f52b7b370df3b0e0ccdddb5d760ebfe3d1c43
|
3 |
+
size 34929477
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab8d153277fc0035347bc05b18fa6f49391f445404ed649821d601f9bf260a51
|
3 |
+
size 34929477
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/kaggle/working/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aefb90d9d9fc0a9d21e8d66140b485b21cd5696a30c9d972a2b2c01f8c381788
|
3 |
+
size 16378745
|
sf_log.txt
ADDED
@@ -0,0 +1,870 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2024-05-17 06:03:56,183][00035] Saving configuration to /kaggle/working/train_dir/default_experiment/config.json...
|
2 |
+
[2024-05-17 06:03:56,186][00035] Rollout worker 0 uses device cpu
|
3 |
+
[2024-05-17 06:03:56,186][00035] Rollout worker 1 uses device cpu
|
4 |
+
[2024-05-17 06:03:56,187][00035] Rollout worker 2 uses device cpu
|
5 |
+
[2024-05-17 06:03:56,188][00035] Rollout worker 3 uses device cpu
|
6 |
+
[2024-05-17 06:03:56,189][00035] Rollout worker 4 uses device cpu
|
7 |
+
[2024-05-17 06:03:56,190][00035] Rollout worker 5 uses device cpu
|
8 |
+
[2024-05-17 06:03:56,191][00035] Rollout worker 6 uses device cpu
|
9 |
+
[2024-05-17 06:03:56,192][00035] Rollout worker 7 uses device cpu
|
10 |
+
[2024-05-17 06:03:56,298][00035] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2024-05-17 06:03:56,300][00035] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2024-05-17 06:03:56,336][00035] Starting all processes...
|
13 |
+
[2024-05-17 06:03:56,337][00035] Starting process learner_proc0
|
14 |
+
[2024-05-17 06:03:56,443][00035] Starting all processes...
|
15 |
+
[2024-05-17 06:03:56,451][00035] Starting process inference_proc0-0
|
16 |
+
[2024-05-17 06:03:56,451][00035] Starting process rollout_proc0
|
17 |
+
[2024-05-17 06:03:56,452][00035] Starting process rollout_proc1
|
18 |
+
[2024-05-17 06:03:56,453][00035] Starting process rollout_proc2
|
19 |
+
[2024-05-17 06:03:56,453][00035] Starting process rollout_proc3
|
20 |
+
[2024-05-17 06:03:56,453][00035] Starting process rollout_proc4
|
21 |
+
[2024-05-17 06:03:56,453][00035] Starting process rollout_proc5
|
22 |
+
[2024-05-17 06:03:56,455][00035] Starting process rollout_proc6
|
23 |
+
[2024-05-17 06:03:56,455][00035] Starting process rollout_proc7
|
24 |
+
[2024-05-17 06:04:04,774][00159] Worker 5 uses CPU cores [1]
|
25 |
+
[2024-05-17 06:04:04,952][00156] Worker 2 uses CPU cores [2]
|
26 |
+
[2024-05-17 06:04:05,033][00154] Worker 1 uses CPU cores [1]
|
27 |
+
[2024-05-17 06:04:05,183][00153] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
28 |
+
[2024-05-17 06:04:05,183][00153] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
29 |
+
[2024-05-17 06:04:05,208][00140] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
30 |
+
[2024-05-17 06:04:05,208][00140] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
31 |
+
[2024-05-17 06:04:05,236][00153] Num visible devices: 1
|
32 |
+
[2024-05-17 06:04:05,254][00140] Num visible devices: 1
|
33 |
+
[2024-05-17 06:04:05,285][00140] Starting seed is not provided
|
34 |
+
[2024-05-17 06:04:05,286][00140] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
35 |
+
[2024-05-17 06:04:05,286][00140] Initializing actor-critic model on device cuda:0
|
36 |
+
[2024-05-17 06:04:05,286][00140] RunningMeanStd input shape: (3, 72, 128)
|
37 |
+
[2024-05-17 06:04:05,290][00140] RunningMeanStd input shape: (1,)
|
38 |
+
[2024-05-17 06:04:05,313][00158] Worker 4 uses CPU cores [0]
|
39 |
+
[2024-05-17 06:04:05,329][00140] ConvEncoder: input_channels=3
|
40 |
+
[2024-05-17 06:04:05,485][00161] Worker 7 uses CPU cores [3]
|
41 |
+
[2024-05-17 06:04:05,549][00160] Worker 6 uses CPU cores [2]
|
42 |
+
[2024-05-17 06:04:05,588][00157] Worker 3 uses CPU cores [3]
|
43 |
+
[2024-05-17 06:04:05,588][00155] Worker 0 uses CPU cores [0]
|
44 |
+
[2024-05-17 06:04:05,650][00140] Conv encoder output size: 512
|
45 |
+
[2024-05-17 06:04:05,651][00140] Policy head output size: 512
|
46 |
+
[2024-05-17 06:04:05,704][00140] Created Actor Critic model with architecture:
|
47 |
+
[2024-05-17 06:04:05,704][00140] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): GRU(512, 512)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2024-05-17 06:04:05,984][00140] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2024-05-17 06:04:08,182][00140] No checkpoints found
|
90 |
+
[2024-05-17 06:04:08,182][00140] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2024-05-17 06:04:08,182][00140] Initialized policy 0 weights for model version 0
|
92 |
+
[2024-05-17 06:04:08,185][00140] LearnerWorker_p0 finished initialization!
|
93 |
+
[2024-05-17 06:04:08,185][00140] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2024-05-17 06:04:08,281][00153] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2024-05-17 06:04:08,282][00153] RunningMeanStd input shape: (1,)
|
96 |
+
[2024-05-17 06:04:08,298][00153] ConvEncoder: input_channels=3
|
97 |
+
[2024-05-17 06:04:08,420][00153] Conv encoder output size: 512
|
98 |
+
[2024-05-17 06:04:08,420][00153] Policy head output size: 512
|
99 |
+
[2024-05-17 06:04:08,478][00035] Inference worker 0-0 is ready!
|
100 |
+
[2024-05-17 06:04:08,479][00035] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2024-05-17 06:04:08,587][00154] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2024-05-17 06:04:08,590][00160] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2024-05-17 06:04:08,589][00159] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2024-05-17 06:04:08,590][00156] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2024-05-17 06:04:08,592][00157] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2024-05-17 06:04:08,594][00158] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2024-05-17 06:04:08,592][00161] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2024-05-17 06:04:08,595][00155] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2024-05-17 06:04:09,079][00160] Decorrelating experience for 0 frames...
|
110 |
+
[2024-05-17 06:04:09,553][00160] Decorrelating experience for 32 frames...
|
111 |
+
[2024-05-17 06:04:09,615][00155] Decorrelating experience for 0 frames...
|
112 |
+
[2024-05-17 06:04:09,668][00159] Decorrelating experience for 0 frames...
|
113 |
+
[2024-05-17 06:04:09,671][00154] Decorrelating experience for 0 frames...
|
114 |
+
[2024-05-17 06:04:09,675][00157] Decorrelating experience for 0 frames...
|
115 |
+
[2024-05-17 06:04:09,678][00161] Decorrelating experience for 0 frames...
|
116 |
+
[2024-05-17 06:04:10,152][00161] Decorrelating experience for 32 frames...
|
117 |
+
[2024-05-17 06:04:10,177][00155] Decorrelating experience for 32 frames...
|
118 |
+
[2024-05-17 06:04:10,211][00156] Decorrelating experience for 0 frames...
|
119 |
+
[2024-05-17 06:04:10,686][00159] Decorrelating experience for 32 frames...
|
120 |
+
[2024-05-17 06:04:10,688][00154] Decorrelating experience for 32 frames...
|
121 |
+
[2024-05-17 06:04:10,847][00157] Decorrelating experience for 32 frames...
|
122 |
+
[2024-05-17 06:04:10,851][00035] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
123 |
+
[2024-05-17 06:04:10,917][00155] Decorrelating experience for 64 frames...
|
124 |
+
[2024-05-17 06:04:11,230][00160] Decorrelating experience for 64 frames...
|
125 |
+
[2024-05-17 06:04:11,299][00156] Decorrelating experience for 32 frames...
|
126 |
+
[2024-05-17 06:04:11,437][00158] Decorrelating experience for 0 frames...
|
127 |
+
[2024-05-17 06:04:11,566][00161] Decorrelating experience for 64 frames...
|
128 |
+
[2024-05-17 06:04:12,041][00159] Decorrelating experience for 64 frames...
|
129 |
+
[2024-05-17 06:04:12,044][00154] Decorrelating experience for 64 frames...
|
130 |
+
[2024-05-17 06:04:12,089][00160] Decorrelating experience for 96 frames...
|
131 |
+
[2024-05-17 06:04:12,305][00156] Decorrelating experience for 64 frames...
|
132 |
+
[2024-05-17 06:04:12,526][00158] Decorrelating experience for 32 frames...
|
133 |
+
[2024-05-17 06:04:12,609][00157] Decorrelating experience for 64 frames...
|
134 |
+
[2024-05-17 06:04:12,652][00159] Decorrelating experience for 96 frames...
|
135 |
+
[2024-05-17 06:04:12,689][00161] Decorrelating experience for 96 frames...
|
136 |
+
[2024-05-17 06:04:12,992][00155] Decorrelating experience for 96 frames...
|
137 |
+
[2024-05-17 06:04:13,153][00157] Decorrelating experience for 96 frames...
|
138 |
+
[2024-05-17 06:04:13,431][00158] Decorrelating experience for 64 frames...
|
139 |
+
[2024-05-17 06:04:14,536][00156] Decorrelating experience for 96 frames...
|
140 |
+
[2024-05-17 06:04:14,610][00158] Decorrelating experience for 96 frames...
|
141 |
+
[2024-05-17 06:04:15,524][00140] Signal inference workers to stop experience collection...
|
142 |
+
[2024-05-17 06:04:15,542][00153] InferenceWorker_p0-w0: stopping experience collection
|
143 |
+
[2024-05-17 06:04:15,738][00154] Decorrelating experience for 96 frames...
|
144 |
+
[2024-05-17 06:04:15,851][00035] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 265.2. Samples: 1326. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
145 |
+
[2024-05-17 06:04:15,852][00035] Avg episode reward: [(0, '2.625')]
|
146 |
+
[2024-05-17 06:04:16,289][00035] Heartbeat connected on Batcher_0
|
147 |
+
[2024-05-17 06:04:16,299][00035] Heartbeat connected on InferenceWorker_p0-w0
|
148 |
+
[2024-05-17 06:04:16,306][00035] Heartbeat connected on RolloutWorker_w0
|
149 |
+
[2024-05-17 06:04:16,315][00035] Heartbeat connected on RolloutWorker_w1
|
150 |
+
[2024-05-17 06:04:16,316][00035] Heartbeat connected on RolloutWorker_w2
|
151 |
+
[2024-05-17 06:04:16,319][00035] Heartbeat connected on RolloutWorker_w3
|
152 |
+
[2024-05-17 06:04:16,324][00035] Heartbeat connected on RolloutWorker_w4
|
153 |
+
[2024-05-17 06:04:16,331][00035] Heartbeat connected on RolloutWorker_w6
|
154 |
+
[2024-05-17 06:04:16,333][00035] Heartbeat connected on RolloutWorker_w5
|
155 |
+
[2024-05-17 06:04:16,337][00035] Heartbeat connected on RolloutWorker_w7
|
156 |
+
[2024-05-17 06:04:18,078][00140] Signal inference workers to resume experience collection...
|
157 |
+
[2024-05-17 06:04:18,079][00153] InferenceWorker_p0-w0: resuming experience collection
|
158 |
+
[2024-05-17 06:04:19,086][00035] Heartbeat connected on LearnerWorker_p0
|
159 |
+
[2024-05-17 06:04:20,855][00035] Fps is (10 sec: 2047.1, 60 sec: 2047.1, 300 sec: 2047.1). Total num frames: 20480. Throughput: 0: 560.2. Samples: 5604. Policy #0 lag: (min: 0.0, avg: 0.5, max: 3.0)
|
160 |
+
[2024-05-17 06:04:20,857][00035] Avg episode reward: [(0, '3.529')]
|
161 |
+
[2024-05-17 06:04:23,434][00153] Updated weights for policy 0, policy_version 10 (0.0020)
|
162 |
+
[2024-05-17 06:04:25,850][00035] Fps is (10 sec: 5734.5, 60 sec: 3823.0, 300 sec: 3823.0). Total num frames: 57344. Throughput: 0: 739.6. Samples: 11094. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
163 |
+
[2024-05-17 06:04:25,852][00035] Avg episode reward: [(0, '4.245')]
|
164 |
+
[2024-05-17 06:04:28,564][00153] Updated weights for policy 0, policy_version 20 (0.0020)
|
165 |
+
[2024-05-17 06:04:30,851][00035] Fps is (10 sec: 7785.9, 60 sec: 4915.2, 300 sec: 4915.2). Total num frames: 98304. Throughput: 0: 1156.4. Samples: 23128. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
166 |
+
[2024-05-17 06:04:30,856][00035] Avg episode reward: [(0, '4.448')]
|
167 |
+
[2024-05-17 06:04:33,559][00153] Updated weights for policy 0, policy_version 30 (0.0023)
|
168 |
+
[2024-05-17 06:04:35,851][00035] Fps is (10 sec: 8191.8, 60 sec: 5570.6, 300 sec: 5570.6). Total num frames: 139264. Throughput: 0: 1409.4. Samples: 35234. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
169 |
+
[2024-05-17 06:04:35,855][00035] Avg episode reward: [(0, '4.527')]
|
170 |
+
[2024-05-17 06:04:35,857][00140] Saving new best policy, reward=4.527!
|
171 |
+
[2024-05-17 06:04:38,684][00153] Updated weights for policy 0, policy_version 40 (0.0029)
|
172 |
+
[2024-05-17 06:04:40,851][00035] Fps is (10 sec: 8192.0, 60 sec: 6007.5, 300 sec: 6007.5). Total num frames: 180224. Throughput: 0: 1374.9. Samples: 41246. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
173 |
+
[2024-05-17 06:04:40,855][00035] Avg episode reward: [(0, '4.464')]
|
174 |
+
[2024-05-17 06:04:43,788][00153] Updated weights for policy 0, policy_version 50 (0.0016)
|
175 |
+
[2024-05-17 06:04:45,851][00035] Fps is (10 sec: 7782.3, 60 sec: 6202.5, 300 sec: 6202.5). Total num frames: 217088. Throughput: 0: 1519.6. Samples: 53186. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
176 |
+
[2024-05-17 06:04:45,852][00035] Avg episode reward: [(0, '4.516')]
|
177 |
+
[2024-05-17 06:04:48,801][00153] Updated weights for policy 0, policy_version 60 (0.0030)
|
178 |
+
[2024-05-17 06:04:50,850][00035] Fps is (10 sec: 8192.1, 60 sec: 6553.6, 300 sec: 6553.6). Total num frames: 262144. Throughput: 0: 1638.8. Samples: 65550. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
179 |
+
[2024-05-17 06:04:50,853][00035] Avg episode reward: [(0, '4.474')]
|
180 |
+
[2024-05-17 06:04:54,386][00153] Updated weights for policy 0, policy_version 70 (0.0018)
|
181 |
+
[2024-05-17 06:04:55,850][00035] Fps is (10 sec: 8192.3, 60 sec: 6644.7, 300 sec: 6644.7). Total num frames: 299008. Throughput: 0: 1571.0. Samples: 70694. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
182 |
+
[2024-05-17 06:04:55,852][00035] Avg episode reward: [(0, '4.485')]
|
183 |
+
[2024-05-17 06:04:59,338][00153] Updated weights for policy 0, policy_version 80 (0.0020)
|
184 |
+
[2024-05-17 06:05:00,851][00035] Fps is (10 sec: 7782.3, 60 sec: 6799.4, 300 sec: 6799.4). Total num frames: 339968. Throughput: 0: 1812.0. Samples: 82868. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
185 |
+
[2024-05-17 06:05:00,854][00035] Avg episode reward: [(0, '4.475')]
|
186 |
+
[2024-05-17 06:05:04,730][00153] Updated weights for policy 0, policy_version 90 (0.0017)
|
187 |
+
[2024-05-17 06:05:05,850][00035] Fps is (10 sec: 7782.4, 60 sec: 6851.5, 300 sec: 6851.5). Total num frames: 376832. Throughput: 0: 1970.4. Samples: 94264. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
188 |
+
[2024-05-17 06:05:05,852][00035] Avg episode reward: [(0, '4.327')]
|
189 |
+
[2024-05-17 06:05:09,931][00153] Updated weights for policy 0, policy_version 100 (0.0028)
|
190 |
+
[2024-05-17 06:05:10,851][00035] Fps is (10 sec: 7372.8, 60 sec: 6894.9, 300 sec: 6894.9). Total num frames: 413696. Throughput: 0: 1981.1. Samples: 100244. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
191 |
+
[2024-05-17 06:05:10,852][00035] Avg episode reward: [(0, '4.639')]
|
192 |
+
[2024-05-17 06:05:10,857][00140] Saving new best policy, reward=4.639!
|
193 |
+
[2024-05-17 06:05:14,987][00153] Updated weights for policy 0, policy_version 110 (0.0030)
|
194 |
+
[2024-05-17 06:05:15,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7577.6, 300 sec: 6994.7). Total num frames: 454656. Throughput: 0: 1983.3. Samples: 112376. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
195 |
+
[2024-05-17 06:05:15,852][00035] Avg episode reward: [(0, '4.814')]
|
196 |
+
[2024-05-17 06:05:15,854][00140] Saving new best policy, reward=4.814!
|
197 |
+
[2024-05-17 06:05:19,984][00153] Updated weights for policy 0, policy_version 120 (0.0015)
|
198 |
+
[2024-05-17 06:05:20,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7919.5, 300 sec: 7080.2). Total num frames: 495616. Throughput: 0: 1987.3. Samples: 124662. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
199 |
+
[2024-05-17 06:05:20,852][00035] Avg episode reward: [(0, '4.671')]
|
200 |
+
[2024-05-17 06:05:25,573][00153] Updated weights for policy 0, policy_version 130 (0.0020)
|
201 |
+
[2024-05-17 06:05:25,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7918.9, 300 sec: 7099.8). Total num frames: 532480. Throughput: 0: 1987.4. Samples: 130678. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
202 |
+
[2024-05-17 06:05:25,852][00035] Avg episode reward: [(0, '4.572')]
|
203 |
+
[2024-05-17 06:05:30,548][00153] Updated weights for policy 0, policy_version 140 (0.0021)
|
204 |
+
[2024-05-17 06:05:30,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7919.0, 300 sec: 7168.0). Total num frames: 573440. Throughput: 0: 1974.5. Samples: 142036. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
205 |
+
[2024-05-17 06:05:30,852][00035] Avg episode reward: [(0, '4.491')]
|
206 |
+
[2024-05-17 06:05:35,434][00153] Updated weights for policy 0, policy_version 150 (0.0024)
|
207 |
+
[2024-05-17 06:05:35,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7919.0, 300 sec: 7228.2). Total num frames: 614400. Throughput: 0: 1970.9. Samples: 154240. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
208 |
+
[2024-05-17 06:05:35,852][00035] Avg episode reward: [(0, '4.522')]
|
209 |
+
[2024-05-17 06:05:40,641][00153] Updated weights for policy 0, policy_version 160 (0.0015)
|
210 |
+
[2024-05-17 06:05:40,851][00035] Fps is (10 sec: 8191.9, 60 sec: 7918.9, 300 sec: 7281.8). Total num frames: 655360. Throughput: 0: 1991.2. Samples: 160298. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
211 |
+
[2024-05-17 06:05:40,852][00035] Avg episode reward: [(0, '4.503')]
|
212 |
+
[2024-05-17 06:05:45,664][00153] Updated weights for policy 0, policy_version 170 (0.0026)
|
213 |
+
[2024-05-17 06:05:45,850][00035] Fps is (10 sec: 8192.1, 60 sec: 7987.2, 300 sec: 7329.7). Total num frames: 696320. Throughput: 0: 1988.8. Samples: 172362. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
214 |
+
[2024-05-17 06:05:45,852][00035] Avg episode reward: [(0, '4.364')]
|
215 |
+
[2024-05-17 06:05:50,850][00035] Fps is (10 sec: 7782.5, 60 sec: 7850.7, 300 sec: 7331.9). Total num frames: 733184. Throughput: 0: 2000.5. Samples: 184286. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
216 |
+
[2024-05-17 06:05:50,853][00035] Avg episode reward: [(0, '4.568')]
|
217 |
+
[2024-05-17 06:05:50,872][00153] Updated weights for policy 0, policy_version 180 (0.0025)
|
218 |
+
[2024-05-17 06:05:50,875][00140] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000180_737280.pth...
|
219 |
+
[2024-05-17 06:05:55,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7918.9, 300 sec: 7372.8). Total num frames: 774144. Throughput: 0: 2000.4. Samples: 190260. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
220 |
+
[2024-05-17 06:05:55,855][00035] Avg episode reward: [(0, '4.728')]
|
221 |
+
[2024-05-17 06:05:56,027][00153] Updated weights for policy 0, policy_version 190 (0.0021)
|
222 |
+
[2024-05-17 06:06:00,851][00035] Fps is (10 sec: 7782.1, 60 sec: 7850.6, 300 sec: 7372.8). Total num frames: 811008. Throughput: 0: 1980.3. Samples: 201492. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
223 |
+
[2024-05-17 06:06:00,855][00035] Avg episode reward: [(0, '4.760')]
|
224 |
+
[2024-05-17 06:06:01,400][00153] Updated weights for policy 0, policy_version 200 (0.0024)
|
225 |
+
[2024-05-17 06:06:05,851][00035] Fps is (10 sec: 7782.4, 60 sec: 7918.9, 300 sec: 7408.4). Total num frames: 851968. Throughput: 0: 1978.8. Samples: 213710. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
226 |
+
[2024-05-17 06:06:05,856][00035] Avg episode reward: [(0, '4.779')]
|
227 |
+
[2024-05-17 06:06:06,466][00153] Updated weights for policy 0, policy_version 210 (0.0026)
|
228 |
+
[2024-05-17 06:06:10,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7441.1). Total num frames: 892928. Throughput: 0: 1979.9. Samples: 219772. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
229 |
+
[2024-05-17 06:06:10,854][00035] Avg episode reward: [(0, '4.816')]
|
230 |
+
[2024-05-17 06:06:10,861][00140] Saving new best policy, reward=4.816!
|
231 |
+
[2024-05-17 06:06:11,545][00153] Updated weights for policy 0, policy_version 220 (0.0020)
|
232 |
+
[2024-05-17 06:06:15,851][00035] Fps is (10 sec: 8191.9, 60 sec: 7987.2, 300 sec: 7471.1). Total num frames: 933888. Throughput: 0: 1999.3. Samples: 232006. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
233 |
+
[2024-05-17 06:06:15,854][00035] Avg episode reward: [(0, '4.674')]
|
234 |
+
[2024-05-17 06:06:16,542][00153] Updated weights for policy 0, policy_version 230 (0.0015)
|
235 |
+
[2024-05-17 06:06:20,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7498.8). Total num frames: 974848. Throughput: 0: 2001.4. Samples: 244304. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
236 |
+
[2024-05-17 06:06:20,852][00035] Avg episode reward: [(0, '4.882')]
|
237 |
+
[2024-05-17 06:06:20,859][00140] Saving new best policy, reward=4.882!
|
238 |
+
[2024-05-17 06:06:21,581][00153] Updated weights for policy 0, policy_version 240 (0.0019)
|
239 |
+
[2024-05-17 06:06:25,850][00035] Fps is (10 sec: 8192.2, 60 sec: 8055.5, 300 sec: 7524.5). Total num frames: 1015808. Throughput: 0: 2001.9. Samples: 250384. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
240 |
+
[2024-05-17 06:06:25,852][00035] Avg episode reward: [(0, '4.818')]
|
241 |
+
[2024-05-17 06:06:26,536][00153] Updated weights for policy 0, policy_version 250 (0.0016)
|
242 |
+
[2024-05-17 06:06:30,851][00035] Fps is (10 sec: 7782.6, 60 sec: 7987.2, 300 sec: 7519.1). Total num frames: 1052672. Throughput: 0: 1984.1. Samples: 261648. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
243 |
+
[2024-05-17 06:06:30,854][00035] Avg episode reward: [(0, '5.022')]
|
244 |
+
[2024-05-17 06:06:30,860][00140] Saving new best policy, reward=5.022!
|
245 |
+
[2024-05-17 06:06:32,110][00153] Updated weights for policy 0, policy_version 260 (0.0023)
|
246 |
+
[2024-05-17 06:06:35,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7987.2, 300 sec: 7542.3). Total num frames: 1093632. Throughput: 0: 1990.3. Samples: 273848. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
247 |
+
[2024-05-17 06:06:35,852][00035] Avg episode reward: [(0, '4.902')]
|
248 |
+
[2024-05-17 06:06:37,124][00153] Updated weights for policy 0, policy_version 270 (0.0022)
|
249 |
+
[2024-05-17 06:06:40,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7564.0). Total num frames: 1134592. Throughput: 0: 1991.7. Samples: 279888. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
250 |
+
[2024-05-17 06:06:40,855][00035] Avg episode reward: [(0, '5.238')]
|
251 |
+
[2024-05-17 06:06:40,863][00140] Saving new best policy, reward=5.238!
|
252 |
+
[2024-05-17 06:06:42,305][00153] Updated weights for policy 0, policy_version 280 (0.0029)
|
253 |
+
[2024-05-17 06:06:45,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7918.9, 300 sec: 7557.8). Total num frames: 1171456. Throughput: 0: 2005.7. Samples: 291746. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
254 |
+
[2024-05-17 06:06:45,855][00035] Avg episode reward: [(0, '5.224')]
|
255 |
+
[2024-05-17 06:06:47,400][00153] Updated weights for policy 0, policy_version 290 (0.0025)
|
256 |
+
[2024-05-17 06:06:50,851][00035] Fps is (10 sec: 7782.4, 60 sec: 7987.2, 300 sec: 7577.6). Total num frames: 1212416. Throughput: 0: 2004.6. Samples: 303916. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
257 |
+
[2024-05-17 06:06:50,852][00035] Avg episode reward: [(0, '5.396')]
|
258 |
+
[2024-05-17 06:06:50,861][00140] Saving new best policy, reward=5.396!
|
259 |
+
[2024-05-17 06:06:52,517][00153] Updated weights for policy 0, policy_version 300 (0.0021)
|
260 |
+
[2024-05-17 06:06:55,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7596.2). Total num frames: 1253376. Throughput: 0: 2004.5. Samples: 309972. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
261 |
+
[2024-05-17 06:06:55,852][00035] Avg episode reward: [(0, '5.484')]
|
262 |
+
[2024-05-17 06:06:55,854][00140] Saving new best policy, reward=5.484!
|
263 |
+
[2024-05-17 06:06:57,490][00153] Updated weights for policy 0, policy_version 310 (0.0021)
|
264 |
+
[2024-05-17 06:07:00,851][00035] Fps is (10 sec: 8192.0, 60 sec: 8055.5, 300 sec: 7613.7). Total num frames: 1294336. Throughput: 0: 2003.6. Samples: 322168. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
265 |
+
[2024-05-17 06:07:00,855][00035] Avg episode reward: [(0, '6.088')]
|
266 |
+
[2024-05-17 06:07:00,864][00140] Saving new best policy, reward=6.088!
|
267 |
+
[2024-05-17 06:07:02,998][00153] Updated weights for policy 0, policy_version 320 (0.0021)
|
268 |
+
[2024-05-17 06:07:05,851][00035] Fps is (10 sec: 7782.2, 60 sec: 7987.2, 300 sec: 7606.9). Total num frames: 1331200. Throughput: 0: 1979.1. Samples: 333364. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
269 |
+
[2024-05-17 06:07:05,853][00035] Avg episode reward: [(0, '6.205')]
|
270 |
+
[2024-05-17 06:07:05,854][00140] Saving new best policy, reward=6.205!
|
271 |
+
[2024-05-17 06:07:08,088][00153] Updated weights for policy 0, policy_version 330 (0.0025)
|
272 |
+
[2024-05-17 06:07:10,850][00035] Fps is (10 sec: 7782.5, 60 sec: 7987.2, 300 sec: 7623.1). Total num frames: 1372160. Throughput: 0: 1980.3. Samples: 339496. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
273 |
+
[2024-05-17 06:07:10,852][00035] Avg episode reward: [(0, '5.807')]
|
274 |
+
[2024-05-17 06:07:13,157][00153] Updated weights for policy 0, policy_version 340 (0.0018)
|
275 |
+
[2024-05-17 06:07:15,850][00035] Fps is (10 sec: 8192.3, 60 sec: 7987.2, 300 sec: 7638.5). Total num frames: 1413120. Throughput: 0: 1999.5. Samples: 351624. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
276 |
+
[2024-05-17 06:07:15,852][00035] Avg episode reward: [(0, '5.878')]
|
277 |
+
[2024-05-17 06:07:18,178][00153] Updated weights for policy 0, policy_version 350 (0.0018)
|
278 |
+
[2024-05-17 06:07:20,850][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7653.1). Total num frames: 1454080. Throughput: 0: 2002.7. Samples: 363968. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
279 |
+
[2024-05-17 06:07:20,852][00035] Avg episode reward: [(0, '5.326')]
|
280 |
+
[2024-05-17 06:07:23,183][00153] Updated weights for policy 0, policy_version 360 (0.0023)
|
281 |
+
[2024-05-17 06:07:25,851][00035] Fps is (10 sec: 8191.9, 60 sec: 7987.2, 300 sec: 7666.9). Total num frames: 1495040. Throughput: 0: 2004.6. Samples: 370094. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
282 |
+
[2024-05-17 06:07:25,855][00035] Avg episode reward: [(0, '6.135')]
|
283 |
+
[2024-05-17 06:07:28,150][00153] Updated weights for policy 0, policy_version 370 (0.0019)
|
284 |
+
[2024-05-17 06:07:30,851][00035] Fps is (10 sec: 8192.0, 60 sec: 8055.5, 300 sec: 7680.0). Total num frames: 1536000. Throughput: 0: 2013.4. Samples: 382348. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
285 |
+
[2024-05-17 06:07:30,852][00035] Avg episode reward: [(0, '5.980')]
|
286 |
+
[2024-05-17 06:07:33,478][00153] Updated weights for policy 0, policy_version 380 (0.0016)
|
287 |
+
[2024-05-17 06:07:35,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7987.2, 300 sec: 7672.5). Total num frames: 1572864. Throughput: 0: 1995.8. Samples: 393726. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
288 |
+
[2024-05-17 06:07:35,852][00035] Avg episode reward: [(0, '6.054')]
|
289 |
+
[2024-05-17 06:07:38,603][00153] Updated weights for policy 0, policy_version 390 (0.0024)
|
290 |
+
[2024-05-17 06:07:40,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7987.2, 300 sec: 7684.9). Total num frames: 1613824. Throughput: 0: 1999.4. Samples: 399946. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
291 |
+
[2024-05-17 06:07:40,852][00035] Avg episode reward: [(0, '6.208')]
|
292 |
+
[2024-05-17 06:07:40,859][00140] Saving new best policy, reward=6.208!
|
293 |
+
[2024-05-17 06:07:43,637][00153] Updated weights for policy 0, policy_version 400 (0.0017)
|
294 |
+
[2024-05-17 06:07:45,850][00035] Fps is (10 sec: 8192.0, 60 sec: 8055.5, 300 sec: 7696.7). Total num frames: 1654784. Throughput: 0: 1994.8. Samples: 411934. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
295 |
+
[2024-05-17 06:07:45,852][00035] Avg episode reward: [(0, '6.015')]
|
296 |
+
[2024-05-17 06:07:48,673][00153] Updated weights for policy 0, policy_version 410 (0.0015)
|
297 |
+
[2024-05-17 06:07:50,851][00035] Fps is (10 sec: 8192.0, 60 sec: 8055.5, 300 sec: 7707.9). Total num frames: 1695744. Throughput: 0: 2014.3. Samples: 424008. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
298 |
+
[2024-05-17 06:07:50,853][00035] Avg episode reward: [(0, '6.166')]
|
299 |
+
[2024-05-17 06:07:50,861][00140] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000414_1695744.pth...
|
300 |
+
[2024-05-17 06:07:53,781][00153] Updated weights for policy 0, policy_version 420 (0.0031)
|
301 |
+
[2024-05-17 06:07:55,851][00035] Fps is (10 sec: 8192.0, 60 sec: 8055.5, 300 sec: 7718.7). Total num frames: 1736704. Throughput: 0: 2010.5. Samples: 429970. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
302 |
+
[2024-05-17 06:07:55,853][00035] Avg episode reward: [(0, '6.566')]
|
303 |
+
[2024-05-17 06:07:55,855][00140] Saving new best policy, reward=6.566!
|
304 |
+
[2024-05-17 06:07:58,790][00153] Updated weights for policy 0, policy_version 430 (0.0020)
|
305 |
+
[2024-05-17 06:08:00,850][00035] Fps is (10 sec: 8192.1, 60 sec: 8055.5, 300 sec: 7729.0). Total num frames: 1777664. Throughput: 0: 2012.6. Samples: 442190. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
306 |
+
[2024-05-17 06:08:00,855][00035] Avg episode reward: [(0, '5.995')]
|
307 |
+
[2024-05-17 06:08:04,232][00153] Updated weights for policy 0, policy_version 440 (0.0016)
|
308 |
+
[2024-05-17 06:08:05,851][00035] Fps is (10 sec: 7372.8, 60 sec: 7987.2, 300 sec: 7704.0). Total num frames: 1810432. Throughput: 0: 1984.3. Samples: 453262. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
309 |
+
[2024-05-17 06:08:05,852][00035] Avg episode reward: [(0, '6.847')]
|
310 |
+
[2024-05-17 06:08:05,855][00140] Saving new best policy, reward=6.847!
|
311 |
+
[2024-05-17 06:08:09,487][00153] Updated weights for policy 0, policy_version 450 (0.0024)
|
312 |
+
[2024-05-17 06:08:10,851][00035] Fps is (10 sec: 7372.8, 60 sec: 7987.2, 300 sec: 7714.1). Total num frames: 1851392. Throughput: 0: 1983.3. Samples: 459342. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
313 |
+
[2024-05-17 06:08:10,854][00035] Avg episode reward: [(0, '8.208')]
|
314 |
+
[2024-05-17 06:08:10,862][00140] Saving new best policy, reward=8.208!
|
315 |
+
[2024-05-17 06:08:14,614][00153] Updated weights for policy 0, policy_version 460 (0.0019)
|
316 |
+
[2024-05-17 06:08:15,851][00035] Fps is (10 sec: 8191.8, 60 sec: 7987.1, 300 sec: 7723.9). Total num frames: 1892352. Throughput: 0: 1977.6. Samples: 471342. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
317 |
+
[2024-05-17 06:08:15,853][00035] Avg episode reward: [(0, '9.213')]
|
318 |
+
[2024-05-17 06:08:15,855][00140] Saving new best policy, reward=9.213!
|
319 |
+
[2024-05-17 06:08:19,738][00153] Updated weights for policy 0, policy_version 470 (0.0016)
|
320 |
+
[2024-05-17 06:08:20,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7733.3). Total num frames: 1933312. Throughput: 0: 1994.0. Samples: 483454. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
321 |
+
[2024-05-17 06:08:20,852][00035] Avg episode reward: [(0, '7.943')]
|
322 |
+
[2024-05-17 06:08:24,826][00153] Updated weights for policy 0, policy_version 480 (0.0020)
|
323 |
+
[2024-05-17 06:08:25,851][00035] Fps is (10 sec: 7782.3, 60 sec: 7918.9, 300 sec: 7726.2). Total num frames: 1970176. Throughput: 0: 1989.4. Samples: 489470. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
324 |
+
[2024-05-17 06:08:25,856][00035] Avg episode reward: [(0, '9.662')]
|
325 |
+
[2024-05-17 06:08:25,858][00140] Saving new best policy, reward=9.662!
|
326 |
+
[2024-05-17 06:08:30,004][00153] Updated weights for policy 0, policy_version 490 (0.0023)
|
327 |
+
[2024-05-17 06:08:30,851][00035] Fps is (10 sec: 7782.5, 60 sec: 7918.9, 300 sec: 7735.1). Total num frames: 2011136. Throughput: 0: 1988.8. Samples: 501430. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
328 |
+
[2024-05-17 06:08:30,855][00035] Avg episode reward: [(0, '11.998')]
|
329 |
+
[2024-05-17 06:08:30,862][00140] Saving new best policy, reward=11.998!
|
330 |
+
[2024-05-17 06:08:35,065][00153] Updated weights for policy 0, policy_version 500 (0.0024)
|
331 |
+
[2024-05-17 06:08:35,851][00035] Fps is (10 sec: 8192.3, 60 sec: 7987.2, 300 sec: 7743.8). Total num frames: 2052096. Throughput: 0: 1987.5. Samples: 513444. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
332 |
+
[2024-05-17 06:08:35,856][00035] Avg episode reward: [(0, '12.595')]
|
333 |
+
[2024-05-17 06:08:35,858][00140] Saving new best policy, reward=12.595!
|
334 |
+
[2024-05-17 06:08:40,547][00153] Updated weights for policy 0, policy_version 510 (0.0016)
|
335 |
+
[2024-05-17 06:08:40,851][00035] Fps is (10 sec: 7782.4, 60 sec: 7918.9, 300 sec: 7736.9). Total num frames: 2088960. Throughput: 0: 1971.6. Samples: 518690. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
336 |
+
[2024-05-17 06:08:40,852][00035] Avg episode reward: [(0, '12.461')]
|
337 |
+
[2024-05-17 06:08:45,794][00153] Updated weights for policy 0, policy_version 520 (0.0021)
|
338 |
+
[2024-05-17 06:08:45,850][00035] Fps is (10 sec: 7782.5, 60 sec: 7918.9, 300 sec: 7745.2). Total num frames: 2129920. Throughput: 0: 1965.2. Samples: 530622. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
339 |
+
[2024-05-17 06:08:45,852][00035] Avg episode reward: [(0, '12.327')]
|
340 |
+
[2024-05-17 06:08:50,726][00153] Updated weights for policy 0, policy_version 530 (0.0018)
|
341 |
+
[2024-05-17 06:08:50,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7918.9, 300 sec: 7753.1). Total num frames: 2170880. Throughput: 0: 1992.0. Samples: 542904. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
342 |
+
[2024-05-17 06:08:50,852][00035] Avg episode reward: [(0, '11.491')]
|
343 |
+
[2024-05-17 06:08:55,765][00153] Updated weights for policy 0, policy_version 540 (0.0020)
|
344 |
+
[2024-05-17 06:08:55,850][00035] Fps is (10 sec: 8192.0, 60 sec: 7918.9, 300 sec: 7760.8). Total num frames: 2211840. Throughput: 0: 1992.1. Samples: 548986. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
345 |
+
[2024-05-17 06:08:55,852][00035] Avg episode reward: [(0, '11.941')]
|
346 |
+
[2024-05-17 06:09:00,794][00153] Updated weights for policy 0, policy_version 550 (0.0020)
|
347 |
+
[2024-05-17 06:09:00,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7918.9, 300 sec: 7768.3). Total num frames: 2252800. Throughput: 0: 1995.0. Samples: 561116. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
348 |
+
[2024-05-17 06:09:00,855][00035] Avg episode reward: [(0, '13.207')]
|
349 |
+
[2024-05-17 06:09:00,861][00140] Saving new best policy, reward=13.207!
|
350 |
+
[2024-05-17 06:09:05,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7987.2, 300 sec: 7761.6). Total num frames: 2289664. Throughput: 0: 1994.4. Samples: 573204. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
351 |
+
[2024-05-17 06:09:05,853][00035] Avg episode reward: [(0, '14.667')]
|
352 |
+
[2024-05-17 06:09:05,854][00140] Saving new best policy, reward=14.667!
|
353 |
+
[2024-05-17 06:09:06,050][00153] Updated weights for policy 0, policy_version 560 (0.0016)
|
354 |
+
[2024-05-17 06:09:10,851][00035] Fps is (10 sec: 7372.7, 60 sec: 7918.9, 300 sec: 7886.5). Total num frames: 2326528. Throughput: 0: 1981.6. Samples: 578642. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
355 |
+
[2024-05-17 06:09:10,856][00035] Avg episode reward: [(0, '14.416')]
|
356 |
+
[2024-05-17 06:09:11,584][00153] Updated weights for policy 0, policy_version 570 (0.0025)
|
357 |
+
[2024-05-17 06:09:15,851][00035] Fps is (10 sec: 7782.4, 60 sec: 7919.0, 300 sec: 7956.1). Total num frames: 2367488. Throughput: 0: 1969.5. Samples: 590056. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
358 |
+
[2024-05-17 06:09:15,852][00035] Avg episode reward: [(0, '14.208')]
|
359 |
+
[2024-05-17 06:09:16,827][00153] Updated weights for policy 0, policy_version 580 (0.0017)
|
360 |
+
[2024-05-17 06:09:20,851][00035] Fps is (10 sec: 7782.5, 60 sec: 7850.7, 300 sec: 7956.0). Total num frames: 2404352. Throughput: 0: 1967.8. Samples: 601994. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
361 |
+
[2024-05-17 06:09:20,854][00035] Avg episode reward: [(0, '12.438')]
|
362 |
+
[2024-05-17 06:09:21,889][00153] Updated weights for policy 0, policy_version 590 (0.0021)
|
363 |
+
[2024-05-17 06:09:25,851][00035] Fps is (10 sec: 7782.3, 60 sec: 7919.0, 300 sec: 7956.0). Total num frames: 2445312. Throughput: 0: 1982.7. Samples: 607912. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
364 |
+
[2024-05-17 06:09:25,853][00035] Avg episode reward: [(0, '14.737')]
|
365 |
+
[2024-05-17 06:09:25,856][00140] Saving new best policy, reward=14.737!
|
366 |
+
[2024-05-17 06:09:27,102][00153] Updated weights for policy 0, policy_version 600 (0.0015)
|
367 |
+
[2024-05-17 06:09:30,850][00035] Fps is (10 sec: 8192.0, 60 sec: 7918.9, 300 sec: 7956.0). Total num frames: 2486272. Throughput: 0: 1981.7. Samples: 619798. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
368 |
+
[2024-05-17 06:09:30,853][00035] Avg episode reward: [(0, '16.054')]
|
369 |
+
[2024-05-17 06:09:30,860][00140] Saving new best policy, reward=16.054!
|
370 |
+
[2024-05-17 06:09:32,252][00153] Updated weights for policy 0, policy_version 610 (0.0015)
|
371 |
+
[2024-05-17 06:09:35,850][00035] Fps is (10 sec: 7782.5, 60 sec: 7850.7, 300 sec: 7942.1). Total num frames: 2523136. Throughput: 0: 1972.6. Samples: 631670. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
372 |
+
[2024-05-17 06:09:35,852][00035] Avg episode reward: [(0, '15.161')]
|
373 |
+
[2024-05-17 06:09:37,470][00153] Updated weights for policy 0, policy_version 620 (0.0023)
|
374 |
+
[2024-05-17 06:09:40,851][00035] Fps is (10 sec: 7782.0, 60 sec: 7918.9, 300 sec: 7956.0). Total num frames: 2564096. Throughput: 0: 1971.2. Samples: 637692. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
375 |
+
[2024-05-17 06:09:40,853][00035] Avg episode reward: [(0, '18.281')]
|
376 |
+
[2024-05-17 06:09:40,861][00140] Saving new best policy, reward=18.281!
|
377 |
+
[2024-05-17 06:09:43,009][00153] Updated weights for policy 0, policy_version 630 (0.0017)
|
378 |
+
[2024-05-17 06:09:45,851][00035] Fps is (10 sec: 7782.3, 60 sec: 7850.7, 300 sec: 7928.2). Total num frames: 2600960. Throughput: 0: 1945.8. Samples: 648676. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
379 |
+
[2024-05-17 06:09:45,855][00035] Avg episode reward: [(0, '19.968')]
|
380 |
+
[2024-05-17 06:09:45,857][00140] Saving new best policy, reward=19.968!
|
381 |
+
[2024-05-17 06:09:48,191][00153] Updated weights for policy 0, policy_version 640 (0.0018)
|
382 |
+
[2024-05-17 06:09:50,850][00035] Fps is (10 sec: 7782.8, 60 sec: 7850.7, 300 sec: 7942.1). Total num frames: 2641920. Throughput: 0: 1942.1. Samples: 660598. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
383 |
+
[2024-05-17 06:09:50,855][00035] Avg episode reward: [(0, '17.637')]
|
384 |
+
[2024-05-17 06:09:50,862][00140] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000645_2641920.pth...
|
385 |
+
[2024-05-17 06:09:50,956][00140] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000180_737280.pth
|
386 |
+
[2024-05-17 06:09:53,357][00153] Updated weights for policy 0, policy_version 650 (0.0015)
|
387 |
+
[2024-05-17 06:09:55,850][00035] Fps is (10 sec: 7782.5, 60 sec: 7782.4, 300 sec: 7928.2). Total num frames: 2678784. Throughput: 0: 1954.6. Samples: 666598. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
388 |
+
[2024-05-17 06:09:55,855][00035] Avg episode reward: [(0, '18.721')]
|
389 |
+
[2024-05-17 06:09:58,443][00153] Updated weights for policy 0, policy_version 660 (0.0018)
|
390 |
+
[2024-05-17 06:10:00,851][00035] Fps is (10 sec: 7782.3, 60 sec: 7782.4, 300 sec: 7942.1). Total num frames: 2719744. Throughput: 0: 1968.9. Samples: 678658. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
391 |
+
[2024-05-17 06:10:00,855][00035] Avg episode reward: [(0, '22.213')]
|
392 |
+
[2024-05-17 06:10:00,862][00140] Saving new best policy, reward=22.213!
|
393 |
+
[2024-05-17 06:10:03,499][00153] Updated weights for policy 0, policy_version 670 (0.0026)
|
394 |
+
[2024-05-17 06:10:05,851][00035] Fps is (10 sec: 8191.8, 60 sec: 7850.6, 300 sec: 7956.0). Total num frames: 2760704. Throughput: 0: 1972.7. Samples: 690768. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
395 |
+
[2024-05-17 06:10:05,853][00035] Avg episode reward: [(0, '24.976')]
|
396 |
+
[2024-05-17 06:10:05,854][00140] Saving new best policy, reward=24.976!
|
397 |
+
[2024-05-17 06:10:08,653][00153] Updated weights for policy 0, policy_version 680 (0.0016)
|
398 |
+
[2024-05-17 06:10:10,851][00035] Fps is (10 sec: 8191.9, 60 sec: 7918.9, 300 sec: 7956.0). Total num frames: 2801664. Throughput: 0: 1975.4. Samples: 696804. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
399 |
+
[2024-05-17 06:10:10,852][00035] Avg episode reward: [(0, '25.233')]
|
400 |
+
[2024-05-17 06:10:10,859][00140] Saving new best policy, reward=25.233!
|
401 |
+
[2024-05-17 06:10:14,295][00153] Updated weights for policy 0, policy_version 690 (0.0016)
|
402 |
+
[2024-05-17 06:10:15,850][00035] Fps is (10 sec: 7782.6, 60 sec: 7850.7, 300 sec: 7942.1). Total num frames: 2838528. Throughput: 0: 1953.1. Samples: 707688. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
403 |
+
[2024-05-17 06:10:15,852][00035] Avg episode reward: [(0, '24.850')]
|
404 |
+
[2024-05-17 06:10:19,274][00153] Updated weights for policy 0, policy_version 700 (0.0017)
|
405 |
+
[2024-05-17 06:10:20,851][00035] Fps is (10 sec: 7782.6, 60 sec: 7918.9, 300 sec: 7956.0). Total num frames: 2879488. Throughput: 0: 1959.9. Samples: 719866. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
406 |
+
[2024-05-17 06:10:20,853][00035] Avg episode reward: [(0, '22.118')]
|
407 |
+
[2024-05-17 06:10:24,348][00153] Updated weights for policy 0, policy_version 710 (0.0015)
|
408 |
+
[2024-05-17 06:10:25,851][00035] Fps is (10 sec: 7782.4, 60 sec: 7850.7, 300 sec: 7942.1). Total num frames: 2916352. Throughput: 0: 1961.8. Samples: 725970. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
409 |
+
[2024-05-17 06:10:25,852][00035] Avg episode reward: [(0, '21.601')]
|
410 |
+
[2024-05-17 06:10:29,485][00153] Updated weights for policy 0, policy_version 720 (0.0020)
|
411 |
+
[2024-05-17 06:10:30,851][00035] Fps is (10 sec: 7782.4, 60 sec: 7850.7, 300 sec: 7942.1). Total num frames: 2957312. Throughput: 0: 1985.6. Samples: 738028. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
412 |
+
[2024-05-17 06:10:30,852][00035] Avg episode reward: [(0, '20.622')]
|
413 |
+
[2024-05-17 06:10:34,488][00153] Updated weights for policy 0, policy_version 730 (0.0019)
|
414 |
+
[2024-05-17 06:10:35,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7918.9, 300 sec: 7942.1). Total num frames: 2998272. Throughput: 0: 1992.2. Samples: 750246. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
415 |
+
[2024-05-17 06:10:35,852][00035] Avg episode reward: [(0, '20.143')]
|
416 |
+
[2024-05-17 06:10:39,467][00153] Updated weights for policy 0, policy_version 740 (0.0031)
|
417 |
+
[2024-05-17 06:10:40,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7919.0, 300 sec: 7942.1). Total num frames: 3039232. Throughput: 0: 1996.4. Samples: 756436. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
418 |
+
[2024-05-17 06:10:40,852][00035] Avg episode reward: [(0, '19.925')]
|
419 |
+
[2024-05-17 06:10:44,958][00153] Updated weights for policy 0, policy_version 750 (0.0017)
|
420 |
+
[2024-05-17 06:10:45,851][00035] Fps is (10 sec: 7782.3, 60 sec: 7918.9, 300 sec: 7942.1). Total num frames: 3076096. Throughput: 0: 1983.9. Samples: 767934. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
421 |
+
[2024-05-17 06:10:45,852][00035] Avg episode reward: [(0, '21.490')]
|
422 |
+
[2024-05-17 06:10:50,100][00153] Updated weights for policy 0, policy_version 760 (0.0017)
|
423 |
+
[2024-05-17 06:10:50,851][00035] Fps is (10 sec: 7782.5, 60 sec: 7918.9, 300 sec: 7942.1). Total num frames: 3117056. Throughput: 0: 1978.3. Samples: 779792. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
424 |
+
[2024-05-17 06:10:50,855][00035] Avg episode reward: [(0, '23.507')]
|
425 |
+
[2024-05-17 06:10:55,134][00153] Updated weights for policy 0, policy_version 770 (0.0016)
|
426 |
+
[2024-05-17 06:10:55,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 3158016. Throughput: 0: 1981.3. Samples: 785964. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
427 |
+
[2024-05-17 06:10:55,852][00035] Avg episode reward: [(0, '22.066')]
|
428 |
+
[2024-05-17 06:11:00,044][00153] Updated weights for policy 0, policy_version 780 (0.0021)
|
429 |
+
[2024-05-17 06:11:00,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 3198976. Throughput: 0: 2013.1. Samples: 798276. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
430 |
+
[2024-05-17 06:11:00,854][00035] Avg episode reward: [(0, '19.856')]
|
431 |
+
[2024-05-17 06:11:05,132][00153] Updated weights for policy 0, policy_version 790 (0.0024)
|
432 |
+
[2024-05-17 06:11:05,850][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 3239936. Throughput: 0: 2012.8. Samples: 810440. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
433 |
+
[2024-05-17 06:11:05,852][00035] Avg episode reward: [(0, '22.541')]
|
434 |
+
[2024-05-17 06:11:10,118][00153] Updated weights for policy 0, policy_version 800 (0.0016)
|
435 |
+
[2024-05-17 06:11:10,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 3280896. Throughput: 0: 2012.9. Samples: 816550. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
436 |
+
[2024-05-17 06:11:10,853][00035] Avg episode reward: [(0, '23.306')]
|
437 |
+
[2024-05-17 06:11:15,180][00153] Updated weights for policy 0, policy_version 810 (0.0018)
|
438 |
+
[2024-05-17 06:11:15,858][00035] Fps is (10 sec: 8186.0, 60 sec: 8054.5, 300 sec: 7955.8). Total num frames: 3321856. Throughput: 0: 2015.5. Samples: 828742. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
439 |
+
[2024-05-17 06:11:15,860][00035] Avg episode reward: [(0, '24.237')]
|
440 |
+
[2024-05-17 06:11:20,557][00153] Updated weights for policy 0, policy_version 820 (0.0023)
|
441 |
+
[2024-05-17 06:11:20,851][00035] Fps is (10 sec: 7782.3, 60 sec: 7987.2, 300 sec: 7942.1). Total num frames: 3358720. Throughput: 0: 1997.5. Samples: 840132. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
442 |
+
[2024-05-17 06:11:20,855][00035] Avg episode reward: [(0, '24.361')]
|
443 |
+
[2024-05-17 06:11:25,588][00153] Updated weights for policy 0, policy_version 830 (0.0023)
|
444 |
+
[2024-05-17 06:11:25,851][00035] Fps is (10 sec: 7788.1, 60 sec: 8055.5, 300 sec: 7956.0). Total num frames: 3399680. Throughput: 0: 1995.8. Samples: 846246. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
445 |
+
[2024-05-17 06:11:25,855][00035] Avg episode reward: [(0, '24.772')]
|
446 |
+
[2024-05-17 06:11:30,557][00153] Updated weights for policy 0, policy_version 840 (0.0024)
|
447 |
+
[2024-05-17 06:11:30,851][00035] Fps is (10 sec: 8192.0, 60 sec: 8055.5, 300 sec: 7956.0). Total num frames: 3440640. Throughput: 0: 2012.1. Samples: 858478. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
448 |
+
[2024-05-17 06:11:30,852][00035] Avg episode reward: [(0, '23.976')]
|
449 |
+
[2024-05-17 06:11:35,540][00153] Updated weights for policy 0, policy_version 850 (0.0025)
|
450 |
+
[2024-05-17 06:11:35,851][00035] Fps is (10 sec: 8192.0, 60 sec: 8055.5, 300 sec: 7956.0). Total num frames: 3481600. Throughput: 0: 2022.4. Samples: 870798. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
451 |
+
[2024-05-17 06:11:35,853][00035] Avg episode reward: [(0, '23.335')]
|
452 |
+
[2024-05-17 06:11:40,612][00153] Updated weights for policy 0, policy_version 860 (0.0027)
|
453 |
+
[2024-05-17 06:11:40,850][00035] Fps is (10 sec: 8192.1, 60 sec: 8055.5, 300 sec: 7969.8). Total num frames: 3522560. Throughput: 0: 2021.9. Samples: 876950. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
454 |
+
[2024-05-17 06:11:40,852][00035] Avg episode reward: [(0, '22.927')]
|
455 |
+
[2024-05-17 06:11:45,781][00153] Updated weights for policy 0, policy_version 870 (0.0021)
|
456 |
+
[2024-05-17 06:11:45,851][00035] Fps is (10 sec: 8192.0, 60 sec: 8123.7, 300 sec: 7969.8). Total num frames: 3563520. Throughput: 0: 2015.7. Samples: 888984. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
457 |
+
[2024-05-17 06:11:45,852][00035] Avg episode reward: [(0, '22.753')]
|
458 |
+
[2024-05-17 06:11:50,851][00035] Fps is (10 sec: 7782.4, 60 sec: 8055.5, 300 sec: 7956.0). Total num frames: 3600384. Throughput: 0: 1993.2. Samples: 900132. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
459 |
+
[2024-05-17 06:11:50,853][00035] Avg episode reward: [(0, '23.432')]
|
460 |
+
[2024-05-17 06:11:50,862][00140] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000879_3600384.pth...
|
461 |
+
[2024-05-17 06:11:50,969][00140] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000414_1695744.pth
|
462 |
+
[2024-05-17 06:11:51,369][00153] Updated weights for policy 0, policy_version 880 (0.0021)
|
463 |
+
[2024-05-17 06:11:55,850][00035] Fps is (10 sec: 7372.8, 60 sec: 7987.2, 300 sec: 7942.1). Total num frames: 3637248. Throughput: 0: 1990.6. Samples: 906126. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
464 |
+
[2024-05-17 06:11:55,853][00035] Avg episode reward: [(0, '23.944')]
|
465 |
+
[2024-05-17 06:11:56,382][00153] Updated weights for policy 0, policy_version 890 (0.0033)
|
466 |
+
[2024-05-17 06:12:00,851][00035] Fps is (10 sec: 7782.4, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 3678208. Throughput: 0: 1991.5. Samples: 918346. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
467 |
+
[2024-05-17 06:12:00,852][00035] Avg episode reward: [(0, '24.289')]
|
468 |
+
[2024-05-17 06:12:01,394][00153] Updated weights for policy 0, policy_version 900 (0.0019)
|
469 |
+
[2024-05-17 06:12:05,850][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 3719168. Throughput: 0: 2009.5. Samples: 930558. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
470 |
+
[2024-05-17 06:12:05,852][00035] Avg episode reward: [(0, '23.688')]
|
471 |
+
[2024-05-17 06:12:06,374][00153] Updated weights for policy 0, policy_version 910 (0.0026)
|
472 |
+
[2024-05-17 06:12:10,851][00035] Fps is (10 sec: 8601.6, 60 sec: 8055.5, 300 sec: 7969.8). Total num frames: 3764224. Throughput: 0: 2012.7. Samples: 936818. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
473 |
+
[2024-05-17 06:12:10,852][00035] Avg episode reward: [(0, '23.088')]
|
474 |
+
[2024-05-17 06:12:11,271][00153] Updated weights for policy 0, policy_version 920 (0.0016)
|
475 |
+
[2024-05-17 06:12:15,850][00035] Fps is (10 sec: 8192.0, 60 sec: 7988.2, 300 sec: 7956.0). Total num frames: 3801088. Throughput: 0: 2012.3. Samples: 949032. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
476 |
+
[2024-05-17 06:12:15,853][00035] Avg episode reward: [(0, '23.329')]
|
477 |
+
[2024-05-17 06:12:16,465][00153] Updated weights for policy 0, policy_version 930 (0.0021)
|
478 |
+
[2024-05-17 06:12:20,850][00035] Fps is (10 sec: 7782.5, 60 sec: 8055.5, 300 sec: 7956.0). Total num frames: 3842048. Throughput: 0: 1997.0. Samples: 960664. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
479 |
+
[2024-05-17 06:12:20,854][00035] Avg episode reward: [(0, '23.216')]
|
480 |
+
[2024-05-17 06:12:21,933][00153] Updated weights for policy 0, policy_version 940 (0.0024)
|
481 |
+
[2024-05-17 06:12:25,850][00035] Fps is (10 sec: 7782.4, 60 sec: 7987.2, 300 sec: 7942.1). Total num frames: 3878912. Throughput: 0: 1985.9. Samples: 966316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
482 |
+
[2024-05-17 06:12:25,852][00035] Avg episode reward: [(0, '25.377')]
|
483 |
+
[2024-05-17 06:12:25,855][00140] Saving new best policy, reward=25.377!
|
484 |
+
[2024-05-17 06:12:27,072][00153] Updated weights for policy 0, policy_version 950 (0.0026)
|
485 |
+
[2024-05-17 06:12:30,851][00035] Fps is (10 sec: 7782.1, 60 sec: 7987.2, 300 sec: 7955.9). Total num frames: 3919872. Throughput: 0: 1986.8. Samples: 978390. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
486 |
+
[2024-05-17 06:12:30,855][00035] Avg episode reward: [(0, '26.015')]
|
487 |
+
[2024-05-17 06:12:30,864][00140] Saving new best policy, reward=26.015!
|
488 |
+
[2024-05-17 06:12:32,041][00153] Updated weights for policy 0, policy_version 960 (0.0023)
|
489 |
+
[2024-05-17 06:12:35,851][00035] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 3960832. Throughput: 0: 2010.6. Samples: 990608. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
490 |
+
[2024-05-17 06:12:35,852][00035] Avg episode reward: [(0, '25.582')]
|
491 |
+
[2024-05-17 06:12:37,150][00153] Updated weights for policy 0, policy_version 970 (0.0020)
|
492 |
+
[2024-05-17 06:12:40,851][00035] Fps is (10 sec: 8192.3, 60 sec: 7987.2, 300 sec: 7956.0). Total num frames: 4001792. Throughput: 0: 2014.0. Samples: 996754. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
493 |
+
[2024-05-17 06:12:40,852][00035] Avg episode reward: [(0, '26.560')]
|
494 |
+
[2024-05-17 06:12:40,860][00140] Saving new best policy, reward=26.560!
|
495 |
+
[2024-05-17 06:12:41,146][00140] Stopping Batcher_0...
|
496 |
+
[2024-05-17 06:12:41,146][00140] Loop batcher_evt_loop terminating...
|
497 |
+
[2024-05-17 06:12:41,149][00035] Component Batcher_0 stopped!
|
498 |
+
[2024-05-17 06:12:41,155][00140] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
499 |
+
[2024-05-17 06:12:41,165][00035] Component RolloutWorker_w4 stopped!
|
500 |
+
[2024-05-17 06:12:41,167][00157] Stopping RolloutWorker_w3...
|
501 |
+
[2024-05-17 06:12:41,167][00035] Component RolloutWorker_w3 stopped!
|
502 |
+
[2024-05-17 06:12:41,172][00155] Stopping RolloutWorker_w0...
|
503 |
+
[2024-05-17 06:12:41,173][00155] Loop rollout_proc0_evt_loop terminating...
|
504 |
+
[2024-05-17 06:12:41,172][00035] Component RolloutWorker_w0 stopped!
|
505 |
+
[2024-05-17 06:12:41,174][00160] Stopping RolloutWorker_w6...
|
506 |
+
[2024-05-17 06:12:41,164][00158] Stopping RolloutWorker_w4...
|
507 |
+
[2024-05-17 06:12:41,172][00156] Stopping RolloutWorker_w2...
|
508 |
+
[2024-05-17 06:12:41,174][00035] Component RolloutWorker_w2 stopped!
|
509 |
+
[2024-05-17 06:12:41,177][00158] Loop rollout_proc4_evt_loop terminating...
|
510 |
+
[2024-05-17 06:12:41,177][00035] Component RolloutWorker_w6 stopped!
|
511 |
+
[2024-05-17 06:12:41,178][00160] Loop rollout_proc6_evt_loop terminating...
|
512 |
+
[2024-05-17 06:12:41,177][00156] Loop rollout_proc2_evt_loop terminating...
|
513 |
+
[2024-05-17 06:12:41,168][00157] Loop rollout_proc3_evt_loop terminating...
|
514 |
+
[2024-05-17 06:12:41,183][00035] Component RolloutWorker_w7 stopped!
|
515 |
+
[2024-05-17 06:12:41,184][00035] Component RolloutWorker_w5 stopped!
|
516 |
+
[2024-05-17 06:12:41,183][00161] Stopping RolloutWorker_w7...
|
517 |
+
[2024-05-17 06:12:41,188][00161] Loop rollout_proc7_evt_loop terminating...
|
518 |
+
[2024-05-17 06:12:41,189][00154] Stopping RolloutWorker_w1...
|
519 |
+
[2024-05-17 06:12:41,190][00154] Loop rollout_proc1_evt_loop terminating...
|
520 |
+
[2024-05-17 06:12:41,183][00159] Stopping RolloutWorker_w5...
|
521 |
+
[2024-05-17 06:12:41,189][00035] Component RolloutWorker_w1 stopped!
|
522 |
+
[2024-05-17 06:12:41,191][00159] Loop rollout_proc5_evt_loop terminating...
|
523 |
+
[2024-05-17 06:12:41,207][00153] Weights refcount: 2 0
|
524 |
+
[2024-05-17 06:12:41,213][00153] Stopping InferenceWorker_p0-w0...
|
525 |
+
[2024-05-17 06:12:41,213][00153] Loop inference_proc0-0_evt_loop terminating...
|
526 |
+
[2024-05-17 06:12:41,213][00035] Component InferenceWorker_p0-w0 stopped!
|
527 |
+
[2024-05-17 06:12:41,264][00140] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000645_2641920.pth
|
528 |
+
[2024-05-17 06:12:41,276][00140] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
529 |
+
[2024-05-17 06:12:41,393][00140] Stopping LearnerWorker_p0...
|
530 |
+
[2024-05-17 06:12:41,394][00140] Loop learner_proc0_evt_loop terminating...
|
531 |
+
[2024-05-17 06:12:41,393][00035] Component LearnerWorker_p0 stopped!
|
532 |
+
[2024-05-17 06:12:41,398][00035] Waiting for process learner_proc0 to stop...
|
533 |
+
[2024-05-17 06:12:42,824][00035] Waiting for process inference_proc0-0 to join...
|
534 |
+
[2024-05-17 06:12:42,826][00035] Waiting for process rollout_proc0 to join...
|
535 |
+
[2024-05-17 06:12:43,111][00035] Waiting for process rollout_proc1 to join...
|
536 |
+
[2024-05-17 06:12:43,330][00035] Waiting for process rollout_proc2 to join...
|
537 |
+
[2024-05-17 06:12:43,332][00035] Waiting for process rollout_proc3 to join...
|
538 |
+
[2024-05-17 06:12:43,333][00035] Waiting for process rollout_proc4 to join...
|
539 |
+
[2024-05-17 06:12:43,334][00035] Waiting for process rollout_proc5 to join...
|
540 |
+
[2024-05-17 06:12:43,335][00035] Waiting for process rollout_proc6 to join...
|
541 |
+
[2024-05-17 06:12:43,336][00035] Waiting for process rollout_proc7 to join...
|
542 |
+
[2024-05-17 06:12:43,338][00035] Batcher 0 profile tree view:
|
543 |
+
batching: 20.7267, releasing_batches: 0.0320
|
544 |
+
[2024-05-17 06:12:43,339][00035] InferenceWorker_p0-w0 profile tree view:
|
545 |
+
wait_policy: 0.0038
|
546 |
+
wait_policy_total: 46.2032
|
547 |
+
update_model: 8.3692
|
548 |
+
weight_update: 0.0019
|
549 |
+
one_step: 0.0031
|
550 |
+
handle_policy_step: 419.0435
|
551 |
+
deserialize: 20.2187, stack: 3.5514, obs_to_device_normalize: 104.3731, forward: 187.9854, send_messages: 29.4632
|
552 |
+
prepare_outputs: 47.5728
|
553 |
+
to_cpu: 28.3442
|
554 |
+
[2024-05-17 06:12:43,340][00035] Learner 0 profile tree view:
|
555 |
+
misc: 0.0067, prepare_batch: 12.6203
|
556 |
+
train: 61.2800
|
557 |
+
epoch_init: 0.0063, minibatch_init: 0.0067, losses_postprocess: 0.5641, kl_divergence: 0.5514, after_optimizer: 29.1803
|
558 |
+
calculate_losses: 20.8635
|
559 |
+
losses_init: 0.0043, forward_head: 0.8469, bptt_initial: 14.2874, tail: 0.8249, advantages_returns: 0.2451, losses: 2.8107
|
560 |
+
bptt: 1.6347
|
561 |
+
bptt_forward_core: 1.5204
|
562 |
+
update: 9.6189
|
563 |
+
clip: 0.9329
|
564 |
+
[2024-05-17 06:12:43,341][00035] RolloutWorker_w0 profile tree view:
|
565 |
+
wait_for_trajectories: 0.2433, enqueue_policy_requests: 10.9768, env_step: 303.5729, overhead: 8.0292, complete_rollouts: 2.2358
|
566 |
+
save_policy_outputs: 15.4290
|
567 |
+
split_output_tensors: 5.5474
|
568 |
+
[2024-05-17 06:12:43,342][00035] RolloutWorker_w7 profile tree view:
|
569 |
+
wait_for_trajectories: 0.2392, enqueue_policy_requests: 10.8111, env_step: 305.1350, overhead: 8.1960, complete_rollouts: 2.6916
|
570 |
+
save_policy_outputs: 15.4548
|
571 |
+
split_output_tensors: 5.5618
|
572 |
+
[2024-05-17 06:12:43,343][00035] Loop Runner_EvtLoop terminating...
|
573 |
+
[2024-05-17 06:12:43,345][00035] Runner profile tree view:
|
574 |
+
main_loop: 527.0088
|
575 |
+
[2024-05-17 06:12:43,346][00035] Collected {0: 4005888}, FPS: 7601.2
|
576 |
+
[2024-05-17 06:12:43,398][00035] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
577 |
+
[2024-05-17 06:12:43,399][00035] Overriding arg 'num_workers' with value 1 passed from command line
|
578 |
+
[2024-05-17 06:12:43,400][00035] Adding new argument 'no_render'=True that is not in the saved config file!
|
579 |
+
[2024-05-17 06:12:43,402][00035] Adding new argument 'save_video'=True that is not in the saved config file!
|
580 |
+
[2024-05-17 06:12:43,402][00035] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
581 |
+
[2024-05-17 06:12:43,404][00035] Adding new argument 'video_name'=None that is not in the saved config file!
|
582 |
+
[2024-05-17 06:12:43,405][00035] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
583 |
+
[2024-05-17 06:12:43,406][00035] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
584 |
+
[2024-05-17 06:12:43,407][00035] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
585 |
+
[2024-05-17 06:12:43,407][00035] Adding new argument 'hf_repository'='jaymanvirk/ppo_sample_factory_doom_health_gathering_supreme' that is not in the saved config file!
|
586 |
+
[2024-05-17 06:12:43,408][00035] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
587 |
+
[2024-05-17 06:12:43,409][00035] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
588 |
+
[2024-05-17 06:12:43,411][00035] Adding new argument 'train_script'=None that is not in the saved config file!
|
589 |
+
[2024-05-17 06:12:43,412][00035] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
590 |
+
[2024-05-17 06:12:43,413][00035] Using frameskip 1 and render_action_repeat=4 for evaluation
|
591 |
+
[2024-05-17 06:12:43,441][00035] Doom resolution: 160x120, resize resolution: (128, 72)
|
592 |
+
[2024-05-17 06:12:43,445][00035] RunningMeanStd input shape: (3, 72, 128)
|
593 |
+
[2024-05-17 06:12:43,446][00035] RunningMeanStd input shape: (1,)
|
594 |
+
[2024-05-17 06:12:43,463][00035] ConvEncoder: input_channels=3
|
595 |
+
[2024-05-17 06:12:43,588][00035] Conv encoder output size: 512
|
596 |
+
[2024-05-17 06:12:43,590][00035] Policy head output size: 512
|
597 |
+
[2024-05-17 06:12:43,794][00035] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
598 |
+
[2024-05-17 06:12:44,655][00035] Num frames 100...
|
599 |
+
[2024-05-17 06:12:44,790][00035] Num frames 200...
|
600 |
+
[2024-05-17 06:12:44,926][00035] Num frames 300...
|
601 |
+
[2024-05-17 06:12:45,075][00035] Num frames 400...
|
602 |
+
[2024-05-17 06:12:45,228][00035] Num frames 500...
|
603 |
+
[2024-05-17 06:12:45,384][00035] Num frames 600...
|
604 |
+
[2024-05-17 06:12:45,518][00035] Num frames 700...
|
605 |
+
[2024-05-17 06:12:45,655][00035] Num frames 800...
|
606 |
+
[2024-05-17 06:12:45,794][00035] Num frames 900...
|
607 |
+
[2024-05-17 06:12:45,934][00035] Num frames 1000...
|
608 |
+
[2024-05-17 06:12:46,073][00035] Num frames 1100...
|
609 |
+
[2024-05-17 06:12:46,211][00035] Num frames 1200...
|
610 |
+
[2024-05-17 06:12:46,353][00035] Num frames 1300...
|
611 |
+
[2024-05-17 06:12:46,491][00035] Num frames 1400...
|
612 |
+
[2024-05-17 06:12:46,626][00035] Num frames 1500...
|
613 |
+
[2024-05-17 06:12:46,686][00035] Avg episode rewards: #0: 40.040, true rewards: #0: 15.040
|
614 |
+
[2024-05-17 06:12:46,687][00035] Avg episode reward: 40.040, avg true_objective: 15.040
|
615 |
+
[2024-05-17 06:12:46,819][00035] Num frames 1600...
|
616 |
+
[2024-05-17 06:12:46,955][00035] Num frames 1700...
|
617 |
+
[2024-05-17 06:12:47,093][00035] Num frames 1800...
|
618 |
+
[2024-05-17 06:12:47,248][00035] Num frames 1900...
|
619 |
+
[2024-05-17 06:12:47,384][00035] Num frames 2000...
|
620 |
+
[2024-05-17 06:12:47,517][00035] Num frames 2100...
|
621 |
+
[2024-05-17 06:12:47,589][00035] Avg episode rewards: #0: 26.560, true rewards: #0: 10.560
|
622 |
+
[2024-05-17 06:12:47,590][00035] Avg episode reward: 26.560, avg true_objective: 10.560
|
623 |
+
[2024-05-17 06:12:47,709][00035] Num frames 2200...
|
624 |
+
[2024-05-17 06:12:47,843][00035] Num frames 2300...
|
625 |
+
[2024-05-17 06:12:47,978][00035] Num frames 2400...
|
626 |
+
[2024-05-17 06:12:48,111][00035] Num frames 2500...
|
627 |
+
[2024-05-17 06:12:48,246][00035] Num frames 2600...
|
628 |
+
[2024-05-17 06:12:48,384][00035] Num frames 2700...
|
629 |
+
[2024-05-17 06:12:48,524][00035] Num frames 2800...
|
630 |
+
[2024-05-17 06:12:48,664][00035] Num frames 2900...
|
631 |
+
[2024-05-17 06:12:48,797][00035] Num frames 3000...
|
632 |
+
[2024-05-17 06:12:48,931][00035] Num frames 3100...
|
633 |
+
[2024-05-17 06:12:49,065][00035] Num frames 3200...
|
634 |
+
[2024-05-17 06:12:49,247][00035] Avg episode rewards: #0: 27.643, true rewards: #0: 10.977
|
635 |
+
[2024-05-17 06:12:49,249][00035] Avg episode reward: 27.643, avg true_objective: 10.977
|
636 |
+
[2024-05-17 06:12:49,260][00035] Num frames 3300...
|
637 |
+
[2024-05-17 06:12:49,394][00035] Num frames 3400...
|
638 |
+
[2024-05-17 06:12:49,529][00035] Num frames 3500...
|
639 |
+
[2024-05-17 06:12:49,666][00035] Num frames 3600...
|
640 |
+
[2024-05-17 06:12:49,798][00035] Num frames 3700...
|
641 |
+
[2024-05-17 06:12:49,932][00035] Num frames 3800...
|
642 |
+
[2024-05-17 06:12:50,063][00035] Num frames 3900...
|
643 |
+
[2024-05-17 06:12:50,201][00035] Num frames 4000...
|
644 |
+
[2024-05-17 06:12:50,343][00035] Num frames 4100...
|
645 |
+
[2024-05-17 06:12:50,480][00035] Num frames 4200...
|
646 |
+
[2024-05-17 06:12:50,617][00035] Num frames 4300...
|
647 |
+
[2024-05-17 06:12:50,753][00035] Num frames 4400...
|
648 |
+
[2024-05-17 06:12:50,894][00035] Num frames 4500...
|
649 |
+
[2024-05-17 06:12:51,034][00035] Num frames 4600...
|
650 |
+
[2024-05-17 06:12:51,175][00035] Num frames 4700...
|
651 |
+
[2024-05-17 06:12:51,315][00035] Num frames 4800...
|
652 |
+
[2024-05-17 06:12:51,460][00035] Num frames 4900...
|
653 |
+
[2024-05-17 06:12:51,628][00035] Num frames 5000...
|
654 |
+
[2024-05-17 06:12:51,779][00035] Num frames 5100...
|
655 |
+
[2024-05-17 06:12:51,944][00035] Num frames 5200...
|
656 |
+
[2024-05-17 06:12:52,104][00035] Avg episode rewards: #0: 33.680, true rewards: #0: 13.180
|
657 |
+
[2024-05-17 06:12:52,106][00035] Avg episode reward: 33.680, avg true_objective: 13.180
|
658 |
+
[2024-05-17 06:12:52,148][00035] Num frames 5300...
|
659 |
+
[2024-05-17 06:12:52,298][00035] Num frames 5400...
|
660 |
+
[2024-05-17 06:12:52,442][00035] Num frames 5500...
|
661 |
+
[2024-05-17 06:12:52,586][00035] Num frames 5600...
|
662 |
+
[2024-05-17 06:12:52,728][00035] Num frames 5700...
|
663 |
+
[2024-05-17 06:12:52,863][00035] Num frames 5800...
|
664 |
+
[2024-05-17 06:12:52,983][00035] Avg episode rewards: #0: 29.496, true rewards: #0: 11.696
|
665 |
+
[2024-05-17 06:12:52,985][00035] Avg episode reward: 29.496, avg true_objective: 11.696
|
666 |
+
[2024-05-17 06:12:53,059][00035] Num frames 5900...
|
667 |
+
[2024-05-17 06:12:53,195][00035] Num frames 6000...
|
668 |
+
[2024-05-17 06:12:53,330][00035] Num frames 6100...
|
669 |
+
[2024-05-17 06:12:53,463][00035] Num frames 6200...
|
670 |
+
[2024-05-17 06:12:53,604][00035] Num frames 6300...
|
671 |
+
[2024-05-17 06:12:53,747][00035] Num frames 6400...
|
672 |
+
[2024-05-17 06:12:53,897][00035] Num frames 6500...
|
673 |
+
[2024-05-17 06:12:54,043][00035] Num frames 6600...
|
674 |
+
[2024-05-17 06:12:54,192][00035] Num frames 6700...
|
675 |
+
[2024-05-17 06:12:54,328][00035] Num frames 6800...
|
676 |
+
[2024-05-17 06:12:54,462][00035] Num frames 6900...
|
677 |
+
[2024-05-17 06:12:54,594][00035] Num frames 7000...
|
678 |
+
[2024-05-17 06:12:54,731][00035] Num frames 7100...
|
679 |
+
[2024-05-17 06:12:54,868][00035] Num frames 7200...
|
680 |
+
[2024-05-17 06:12:55,002][00035] Num frames 7300...
|
681 |
+
[2024-05-17 06:12:55,141][00035] Num frames 7400...
|
682 |
+
[2024-05-17 06:12:55,278][00035] Num frames 7500...
|
683 |
+
[2024-05-17 06:12:55,414][00035] Num frames 7600...
|
684 |
+
[2024-05-17 06:12:55,551][00035] Num frames 7700...
|
685 |
+
[2024-05-17 06:12:55,612][00035] Avg episode rewards: #0: 33.006, true rewards: #0: 12.840
|
686 |
+
[2024-05-17 06:12:55,614][00035] Avg episode reward: 33.006, avg true_objective: 12.840
|
687 |
+
[2024-05-17 06:12:55,746][00035] Num frames 7800...
|
688 |
+
[2024-05-17 06:12:55,881][00035] Num frames 7900...
|
689 |
+
[2024-05-17 06:12:56,013][00035] Num frames 8000...
|
690 |
+
[2024-05-17 06:12:56,147][00035] Num frames 8100...
|
691 |
+
[2024-05-17 06:12:56,285][00035] Num frames 8200...
|
692 |
+
[2024-05-17 06:12:56,421][00035] Num frames 8300...
|
693 |
+
[2024-05-17 06:12:56,555][00035] Num frames 8400...
|
694 |
+
[2024-05-17 06:12:56,707][00035] Avg episode rewards: #0: 30.670, true rewards: #0: 12.099
|
695 |
+
[2024-05-17 06:12:56,708][00035] Avg episode reward: 30.670, avg true_objective: 12.099
|
696 |
+
[2024-05-17 06:12:56,751][00035] Num frames 8500...
|
697 |
+
[2024-05-17 06:12:56,886][00035] Num frames 8600...
|
698 |
+
[2024-05-17 06:12:57,018][00035] Num frames 8700...
|
699 |
+
[2024-05-17 06:12:57,153][00035] Num frames 8800...
|
700 |
+
[2024-05-17 06:12:57,290][00035] Num frames 8900...
|
701 |
+
[2024-05-17 06:12:57,427][00035] Num frames 9000...
|
702 |
+
[2024-05-17 06:12:57,569][00035] Num frames 9100...
|
703 |
+
[2024-05-17 06:12:57,707][00035] Num frames 9200...
|
704 |
+
[2024-05-17 06:12:57,840][00035] Num frames 9300...
|
705 |
+
[2024-05-17 06:12:57,976][00035] Num frames 9400...
|
706 |
+
[2024-05-17 06:12:58,109][00035] Num frames 9500...
|
707 |
+
[2024-05-17 06:12:58,247][00035] Num frames 9600...
|
708 |
+
[2024-05-17 06:12:58,383][00035] Num frames 9700...
|
709 |
+
[2024-05-17 06:12:58,523][00035] Num frames 9800...
|
710 |
+
[2024-05-17 06:12:58,660][00035] Num frames 9900...
|
711 |
+
[2024-05-17 06:12:58,796][00035] Num frames 10000...
|
712 |
+
[2024-05-17 06:12:58,935][00035] Num frames 10100...
|
713 |
+
[2024-05-17 06:12:59,075][00035] Num frames 10200...
|
714 |
+
[2024-05-17 06:12:59,222][00035] Num frames 10300...
|
715 |
+
[2024-05-17 06:12:59,370][00035] Num frames 10400...
|
716 |
+
[2024-05-17 06:12:59,509][00035] Num frames 10500...
|
717 |
+
[2024-05-17 06:12:59,662][00035] Avg episode rewards: #0: 33.836, true rewards: #0: 13.211
|
718 |
+
[2024-05-17 06:12:59,663][00035] Avg episode reward: 33.836, avg true_objective: 13.211
|
719 |
+
[2024-05-17 06:12:59,707][00035] Num frames 10600...
|
720 |
+
[2024-05-17 06:12:59,841][00035] Num frames 10700...
|
721 |
+
[2024-05-17 06:12:59,974][00035] Num frames 10800...
|
722 |
+
[2024-05-17 06:13:00,109][00035] Num frames 10900...
|
723 |
+
[2024-05-17 06:13:00,244][00035] Num frames 11000...
|
724 |
+
[2024-05-17 06:13:00,381][00035] Num frames 11100...
|
725 |
+
[2024-05-17 06:13:00,517][00035] Num frames 11200...
|
726 |
+
[2024-05-17 06:13:00,658][00035] Num frames 11300...
|
727 |
+
[2024-05-17 06:13:00,792][00035] Num frames 11400...
|
728 |
+
[2024-05-17 06:13:00,932][00035] Num frames 11500...
|
729 |
+
[2024-05-17 06:13:01,072][00035] Num frames 11600...
|
730 |
+
[2024-05-17 06:13:01,212][00035] Num frames 11700...
|
731 |
+
[2024-05-17 06:13:01,353][00035] Num frames 11800...
|
732 |
+
[2024-05-17 06:13:01,541][00035] Avg episode rewards: #0: 33.546, true rewards: #0: 13.213
|
733 |
+
[2024-05-17 06:13:01,543][00035] Avg episode reward: 33.546, avg true_objective: 13.213
|
734 |
+
[2024-05-17 06:13:01,555][00035] Num frames 11900...
|
735 |
+
[2024-05-17 06:13:01,690][00035] Num frames 12000...
|
736 |
+
[2024-05-17 06:13:01,825][00035] Num frames 12100...
|
737 |
+
[2024-05-17 06:13:01,959][00035] Num frames 12200...
|
738 |
+
[2024-05-17 06:13:02,093][00035] Num frames 12300...
|
739 |
+
[2024-05-17 06:13:02,229][00035] Num frames 12400...
|
740 |
+
[2024-05-17 06:13:02,370][00035] Num frames 12500...
|
741 |
+
[2024-05-17 06:13:02,511][00035] Num frames 12600...
|
742 |
+
[2024-05-17 06:13:02,654][00035] Num frames 12700...
|
743 |
+
[2024-05-17 06:13:02,722][00035] Avg episode rewards: #0: 32.509, true rewards: #0: 12.709
|
744 |
+
[2024-05-17 06:13:02,724][00035] Avg episode reward: 32.509, avg true_objective: 12.709
|
745 |
+
[2024-05-17 06:13:46,469][00035] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|
746 |
+
[2024-05-17 06:13:55,720][00035] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
747 |
+
[2024-05-17 06:13:55,721][00035] Overriding arg 'num_workers' with value 1 passed from command line
|
748 |
+
[2024-05-17 06:13:55,722][00035] Adding new argument 'no_render'=True that is not in the saved config file!
|
749 |
+
[2024-05-17 06:13:55,723][00035] Adding new argument 'save_video'=True that is not in the saved config file!
|
750 |
+
[2024-05-17 06:13:55,724][00035] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
751 |
+
[2024-05-17 06:13:55,725][00035] Adding new argument 'video_name'=None that is not in the saved config file!
|
752 |
+
[2024-05-17 06:13:55,726][00035] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
753 |
+
[2024-05-17 06:13:55,727][00035] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
754 |
+
[2024-05-17 06:13:55,728][00035] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
755 |
+
[2024-05-17 06:13:55,729][00035] Adding new argument 'hf_repository'='jaymanvirk/ppo_sample_factory_doom_health_gathering_supreme' that is not in the saved config file!
|
756 |
+
[2024-05-17 06:13:55,730][00035] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
757 |
+
[2024-05-17 06:13:55,731][00035] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
758 |
+
[2024-05-17 06:13:55,733][00035] Adding new argument 'train_script'=None that is not in the saved config file!
|
759 |
+
[2024-05-17 06:13:55,733][00035] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
760 |
+
[2024-05-17 06:13:55,735][00035] Using frameskip 1 and render_action_repeat=4 for evaluation
|
761 |
+
[2024-05-17 06:13:55,764][00035] RunningMeanStd input shape: (3, 72, 128)
|
762 |
+
[2024-05-17 06:13:55,766][00035] RunningMeanStd input shape: (1,)
|
763 |
+
[2024-05-17 06:13:55,784][00035] ConvEncoder: input_channels=3
|
764 |
+
[2024-05-17 06:13:55,836][00035] Conv encoder output size: 512
|
765 |
+
[2024-05-17 06:13:55,837][00035] Policy head output size: 512
|
766 |
+
[2024-05-17 06:13:55,863][00035] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
767 |
+
[2024-05-17 06:13:56,376][00035] Num frames 100...
|
768 |
+
[2024-05-17 06:13:56,508][00035] Num frames 200...
|
769 |
+
[2024-05-17 06:13:56,640][00035] Num frames 300...
|
770 |
+
[2024-05-17 06:13:56,779][00035] Num frames 400...
|
771 |
+
[2024-05-17 06:13:56,917][00035] Num frames 500...
|
772 |
+
[2024-05-17 06:13:57,055][00035] Num frames 600...
|
773 |
+
[2024-05-17 06:13:57,193][00035] Num frames 700...
|
774 |
+
[2024-05-17 06:13:57,333][00035] Num frames 800...
|
775 |
+
[2024-05-17 06:13:57,434][00035] Avg episode rewards: #0: 15.320, true rewards: #0: 8.320
|
776 |
+
[2024-05-17 06:13:57,436][00035] Avg episode reward: 15.320, avg true_objective: 8.320
|
777 |
+
[2024-05-17 06:13:57,531][00035] Num frames 900...
|
778 |
+
[2024-05-17 06:13:57,664][00035] Num frames 1000...
|
779 |
+
[2024-05-17 06:13:57,800][00035] Num frames 1100...
|
780 |
+
[2024-05-17 06:13:57,939][00035] Num frames 1200...
|
781 |
+
[2024-05-17 06:13:58,077][00035] Num frames 1300...
|
782 |
+
[2024-05-17 06:13:58,218][00035] Num frames 1400...
|
783 |
+
[2024-05-17 06:13:58,355][00035] Num frames 1500...
|
784 |
+
[2024-05-17 06:13:58,491][00035] Num frames 1600...
|
785 |
+
[2024-05-17 06:13:58,635][00035] Num frames 1700...
|
786 |
+
[2024-05-17 06:13:58,729][00035] Avg episode rewards: #0: 17.140, true rewards: #0: 8.640
|
787 |
+
[2024-05-17 06:13:58,731][00035] Avg episode reward: 17.140, avg true_objective: 8.640
|
788 |
+
[2024-05-17 06:13:58,829][00035] Num frames 1800...
|
789 |
+
[2024-05-17 06:13:58,965][00035] Num frames 1900...
|
790 |
+
[2024-05-17 06:13:59,105][00035] Num frames 2000...
|
791 |
+
[2024-05-17 06:13:59,299][00035] Avg episode rewards: #0: 13.660, true rewards: #0: 6.993
|
792 |
+
[2024-05-17 06:13:59,301][00035] Avg episode reward: 13.660, avg true_objective: 6.993
|
793 |
+
[2024-05-17 06:13:59,305][00035] Num frames 2100...
|
794 |
+
[2024-05-17 06:13:59,440][00035] Num frames 2200...
|
795 |
+
[2024-05-17 06:13:59,574][00035] Num frames 2300...
|
796 |
+
[2024-05-17 06:13:59,712][00035] Num frames 2400...
|
797 |
+
[2024-05-17 06:13:59,850][00035] Num frames 2500...
|
798 |
+
[2024-05-17 06:13:59,981][00035] Num frames 2600...
|
799 |
+
[2024-05-17 06:14:00,117][00035] Num frames 2700...
|
800 |
+
[2024-05-17 06:14:00,249][00035] Num frames 2800...
|
801 |
+
[2024-05-17 06:14:00,384][00035] Num frames 2900...
|
802 |
+
[2024-05-17 06:14:00,522][00035] Num frames 3000...
|
803 |
+
[2024-05-17 06:14:00,656][00035] Num frames 3100...
|
804 |
+
[2024-05-17 06:14:00,743][00035] Avg episode rewards: #0: 15.555, true rewards: #0: 7.805
|
805 |
+
[2024-05-17 06:14:00,744][00035] Avg episode reward: 15.555, avg true_objective: 7.805
|
806 |
+
[2024-05-17 06:14:00,856][00035] Num frames 3200...
|
807 |
+
[2024-05-17 06:14:00,994][00035] Num frames 3300...
|
808 |
+
[2024-05-17 06:14:01,129][00035] Num frames 3400...
|
809 |
+
[2024-05-17 06:14:01,262][00035] Num frames 3500...
|
810 |
+
[2024-05-17 06:14:01,397][00035] Num frames 3600...
|
811 |
+
[2024-05-17 06:14:01,535][00035] Num frames 3700...
|
812 |
+
[2024-05-17 06:14:01,671][00035] Num frames 3800...
|
813 |
+
[2024-05-17 06:14:01,849][00035] Avg episode rewards: #0: 16.180, true rewards: #0: 7.780
|
814 |
+
[2024-05-17 06:14:01,851][00035] Avg episode reward: 16.180, avg true_objective: 7.780
|
815 |
+
[2024-05-17 06:14:01,866][00035] Num frames 3900...
|
816 |
+
[2024-05-17 06:14:02,003][00035] Num frames 4000...
|
817 |
+
[2024-05-17 06:14:02,138][00035] Num frames 4100...
|
818 |
+
[2024-05-17 06:14:02,272][00035] Num frames 4200...
|
819 |
+
[2024-05-17 06:14:02,409][00035] Num frames 4300...
|
820 |
+
[2024-05-17 06:14:02,516][00035] Avg episode rewards: #0: 15.397, true rewards: #0: 7.230
|
821 |
+
[2024-05-17 06:14:02,518][00035] Avg episode reward: 15.397, avg true_objective: 7.230
|
822 |
+
[2024-05-17 06:14:02,604][00035] Num frames 4400...
|
823 |
+
[2024-05-17 06:14:02,738][00035] Num frames 4500...
|
824 |
+
[2024-05-17 06:14:02,872][00035] Num frames 4600...
|
825 |
+
[2024-05-17 06:14:03,011][00035] Num frames 4700...
|
826 |
+
[2024-05-17 06:14:03,105][00035] Avg episode rewards: #0: 14.042, true rewards: #0: 6.756
|
827 |
+
[2024-05-17 06:14:03,106][00035] Avg episode reward: 14.042, avg true_objective: 6.756
|
828 |
+
[2024-05-17 06:14:03,201][00035] Num frames 4800...
|
829 |
+
[2024-05-17 06:14:03,335][00035] Num frames 4900...
|
830 |
+
[2024-05-17 06:14:03,473][00035] Num frames 5000...
|
831 |
+
[2024-05-17 06:14:03,613][00035] Num frames 5100...
|
832 |
+
[2024-05-17 06:14:03,746][00035] Num frames 5200...
|
833 |
+
[2024-05-17 06:14:03,893][00035] Num frames 5300...
|
834 |
+
[2024-05-17 06:14:04,030][00035] Num frames 5400...
|
835 |
+
[2024-05-17 06:14:04,181][00035] Num frames 5500...
|
836 |
+
[2024-05-17 06:14:04,316][00035] Num frames 5600...
|
837 |
+
[2024-05-17 06:14:04,455][00035] Num frames 5700...
|
838 |
+
[2024-05-17 06:14:04,599][00035] Num frames 5800...
|
839 |
+
[2024-05-17 06:14:04,734][00035] Num frames 5900...
|
840 |
+
[2024-05-17 06:14:04,870][00035] Num frames 6000...
|
841 |
+
[2024-05-17 06:14:05,011][00035] Num frames 6100...
|
842 |
+
[2024-05-17 06:14:05,152][00035] Num frames 6200...
|
843 |
+
[2024-05-17 06:14:05,286][00035] Num frames 6300...
|
844 |
+
[2024-05-17 06:14:05,428][00035] Num frames 6400...
|
845 |
+
[2024-05-17 06:14:05,571][00035] Num frames 6500...
|
846 |
+
[2024-05-17 06:14:05,712][00035] Num frames 6600...
|
847 |
+
[2024-05-17 06:14:05,850][00035] Num frames 6700...
|
848 |
+
[2024-05-17 06:14:05,985][00035] Num frames 6800...
|
849 |
+
[2024-05-17 06:14:06,072][00035] Avg episode rewards: #0: 18.905, true rewards: #0: 8.530
|
850 |
+
[2024-05-17 06:14:06,073][00035] Avg episode reward: 18.905, avg true_objective: 8.530
|
851 |
+
[2024-05-17 06:14:06,176][00035] Num frames 6900...
|
852 |
+
[2024-05-17 06:14:06,310][00035] Num frames 7000...
|
853 |
+
[2024-05-17 06:14:06,460][00035] Num frames 7100...
|
854 |
+
[2024-05-17 06:14:06,614][00035] Num frames 7200...
|
855 |
+
[2024-05-17 06:14:06,751][00035] Num frames 7300...
|
856 |
+
[2024-05-17 06:14:06,889][00035] Num frames 7400...
|
857 |
+
[2024-05-17 06:14:07,026][00035] Num frames 7500...
|
858 |
+
[2024-05-17 06:14:07,162][00035] Num frames 7600...
|
859 |
+
[2024-05-17 06:14:07,297][00035] Num frames 7700...
|
860 |
+
[2024-05-17 06:14:07,435][00035] Num frames 7800...
|
861 |
+
[2024-05-17 06:14:07,498][00035] Avg episode rewards: #0: 19.117, true rewards: #0: 8.672
|
862 |
+
[2024-05-17 06:14:07,499][00035] Avg episode reward: 19.117, avg true_objective: 8.672
|
863 |
+
[2024-05-17 06:14:07,629][00035] Num frames 7900...
|
864 |
+
[2024-05-17 06:14:07,765][00035] Num frames 8000...
|
865 |
+
[2024-05-17 06:14:07,901][00035] Num frames 8100...
|
866 |
+
[2024-05-17 06:14:08,037][00035] Num frames 8200...
|
867 |
+
[2024-05-17 06:14:08,173][00035] Num frames 8300...
|
868 |
+
[2024-05-17 06:14:08,315][00035] Avg episode rewards: #0: 18.363, true rewards: #0: 8.363
|
869 |
+
[2024-05-17 06:14:08,317][00035] Avg episode reward: 18.363, avg true_objective: 8.363
|
870 |
+
[2024-05-17 06:14:37,418][00035] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|