Upload custom_llama.py
Browse files- custom_llama.py +328 -0
custom_llama.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.llama.modeling_llama import * #LLaMAModel
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
4 |
+
from transformers.modeling_outputs import (
|
5 |
+
BaseModelOutputWithPast,
|
6 |
+
CausalLMOutputWithPast,
|
7 |
+
QuestionAnsweringModelOutput,
|
8 |
+
SequenceClassifierOutputWithPast,
|
9 |
+
TokenClassifierOutput,
|
10 |
+
)
|
11 |
+
from transformers.utils import (
|
12 |
+
add_start_docstrings,
|
13 |
+
add_start_docstrings_to_model_forward,
|
14 |
+
is_flash_attn_greater_or_equal_2_10,
|
15 |
+
is_torchdynamo_compiling,
|
16 |
+
logging,
|
17 |
+
replace_return_docstrings,
|
18 |
+
)
|
19 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
24 |
+
Args:
|
25 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
26 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
27 |
+
it.
|
28 |
+
|
29 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
30 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
31 |
+
|
32 |
+
[What are input IDs?](../glossary#input-ids)
|
33 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
34 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
35 |
+
|
36 |
+
- 1 for tokens that are **not masked**,
|
37 |
+
- 0 for tokens that are **masked**.
|
38 |
+
|
39 |
+
[What are attention masks?](../glossary#attention-mask)
|
40 |
+
|
41 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
42 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
43 |
+
|
44 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
45 |
+
`past_key_values`).
|
46 |
+
|
47 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
48 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
49 |
+
information on the default strategy.
|
50 |
+
|
51 |
+
- 1 indicates the head is **not masked**,
|
52 |
+
- 0 indicates the head is **masked**.
|
53 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
54 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
55 |
+
config.n_positions - 1]`.
|
56 |
+
|
57 |
+
[What are position IDs?](../glossary#position-ids)
|
58 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
59 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
60 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
61 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
62 |
+
|
63 |
+
Two formats are allowed:
|
64 |
+
- a [`~cache_utils.Cache`] instance, see our
|
65 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
66 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
67 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
68 |
+
cache format.
|
69 |
+
|
70 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
71 |
+
legacy cache format will be returned.
|
72 |
+
|
73 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
74 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
75 |
+
of shape `(batch_size, sequence_length)`.
|
76 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
77 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
78 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
79 |
+
model's internal embedding lookup matrix.
|
80 |
+
use_cache (`bool`, *optional*):
|
81 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
82 |
+
`past_key_values`).
|
83 |
+
output_attentions (`bool`, *optional*):
|
84 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
85 |
+
tensors for more detail.
|
86 |
+
output_hidden_states (`bool`, *optional*):
|
87 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
88 |
+
more detail.
|
89 |
+
return_dict (`bool`, *optional*):
|
90 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
91 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
92 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
93 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
94 |
+
the complete sequence length.
|
95 |
+
"""
|
96 |
+
|
97 |
+
class CustomLLamaModel(LlamaModel):
|
98 |
+
def __init__(self, config: LlamaConfig):
|
99 |
+
super().__init__(config)
|
100 |
+
self.padding_idx = config.pad_token_id
|
101 |
+
self.vocab_size = config.vocab_size
|
102 |
+
|
103 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
104 |
+
self.layers = nn.ModuleList(
|
105 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
106 |
+
)
|
107 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
108 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
109 |
+
self.gradient_checkpointing = False
|
110 |
+
|
111 |
+
# Initialize weights and apply final processing
|
112 |
+
self.post_init()
|
113 |
+
self.num_head = 4
|
114 |
+
self.split_idx = config.split_idx
|
115 |
+
self.set_quant = True
|
116 |
+
self.quant = config.quant
|
117 |
+
if self.quant == "fp16":
|
118 |
+
self.set_quant_16()
|
119 |
+
|
120 |
+
def set_quant_16(self):
|
121 |
+
|
122 |
+
if self.set_quant == True:
|
123 |
+
for idx in range(self.split_idx,32):
|
124 |
+
self.layers[idx] = self.layers[idx].half()
|
125 |
+
self.norm = self.norm.half()
|
126 |
+
|
127 |
+
self.set_quant = False
|
128 |
+
|
129 |
+
|
130 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
131 |
+
def forward(
|
132 |
+
self,
|
133 |
+
input_ids: torch.LongTensor = None,
|
134 |
+
attention_mask: Optional[torch.Tensor] = None,
|
135 |
+
position_ids: Optional[torch.LongTensor] = None,
|
136 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
137 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
138 |
+
use_cache: Optional[bool] = None,
|
139 |
+
output_attentions: Optional[bool] = None,
|
140 |
+
output_hidden_states: Optional[bool] = None,
|
141 |
+
return_dict: Optional[bool] = None,
|
142 |
+
cache_position: Optional[torch.LongTensor] = None,
|
143 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
144 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
145 |
+
output_hidden_states = (
|
146 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
147 |
+
)
|
148 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
149 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
150 |
+
|
151 |
+
# if self.set_fp16 == True:
|
152 |
+
# for idx in range(16,32):
|
153 |
+
# self.layers[idx] = self.layers[idx].half()
|
154 |
+
# self.norm = self.norm.half()
|
155 |
+
|
156 |
+
# self.set_fp16 = False
|
157 |
+
|
158 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
159 |
+
raise ValueError(
|
160 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
161 |
+
)
|
162 |
+
|
163 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
164 |
+
logger.warning_once(
|
165 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
166 |
+
)
|
167 |
+
use_cache = False
|
168 |
+
|
169 |
+
if inputs_embeds is None:
|
170 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
171 |
+
|
172 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
173 |
+
return_legacy_cache = False
|
174 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
175 |
+
return_legacy_cache = True
|
176 |
+
if past_key_values is None:
|
177 |
+
past_key_values = DynamicCache()
|
178 |
+
else:
|
179 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
180 |
+
logger.warning_once(
|
181 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
182 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
183 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
184 |
+
)
|
185 |
+
|
186 |
+
if cache_position is None:
|
187 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
188 |
+
cache_position = torch.arange(
|
189 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
190 |
+
)
|
191 |
+
if position_ids is None:
|
192 |
+
position_ids = cache_position.unsqueeze(0)
|
193 |
+
|
194 |
+
causal_mask = self._update_causal_mask(
|
195 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
196 |
+
)
|
197 |
+
hidden_states = inputs_embeds
|
198 |
+
|
199 |
+
# create position embeddings to be shared across the decoder layers
|
200 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
201 |
+
|
202 |
+
# decoder layers
|
203 |
+
all_hidden_states = () if output_hidden_states else None
|
204 |
+
all_self_attns = () if output_attentions else None
|
205 |
+
next_decoder_cache = None
|
206 |
+
# print(hidden_states.shape)
|
207 |
+
# print(attention_mask.shape)
|
208 |
+
# try:
|
209 |
+
# print(output_attentions.shape)
|
210 |
+
# except Exception as e:
|
211 |
+
# print(e)
|
212 |
+
|
213 |
+
for decoder_layer in self.layers[0:self.split_idx]:
|
214 |
+
if output_hidden_states:
|
215 |
+
all_hidden_states += (hidden_states,)
|
216 |
+
|
217 |
+
if self.gradient_checkpointing and self.training:
|
218 |
+
layer_outputs = self._gradient_checkpointing_func(
|
219 |
+
decoder_layer.__call__,
|
220 |
+
hidden_states,
|
221 |
+
causal_mask,
|
222 |
+
position_ids,
|
223 |
+
past_key_values,
|
224 |
+
output_attentions,
|
225 |
+
use_cache,
|
226 |
+
cache_position,
|
227 |
+
position_embeddings,
|
228 |
+
)
|
229 |
+
else:
|
230 |
+
layer_outputs = decoder_layer(
|
231 |
+
hidden_states,
|
232 |
+
attention_mask=causal_mask,
|
233 |
+
position_ids=position_ids,
|
234 |
+
past_key_value=past_key_values,
|
235 |
+
output_attentions=output_attentions,
|
236 |
+
use_cache=use_cache,
|
237 |
+
cache_position=cache_position,
|
238 |
+
position_embeddings=position_embeddings,
|
239 |
+
)
|
240 |
+
|
241 |
+
hidden_states = layer_outputs[0]
|
242 |
+
|
243 |
+
if use_cache:
|
244 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
245 |
+
|
246 |
+
if output_attentions:
|
247 |
+
all_self_attns += (layer_outputs[1],)
|
248 |
+
|
249 |
+
#################################################################
|
250 |
+
if self.quant == "fp16":
|
251 |
+
hidden_states = hidden_states.half()
|
252 |
+
position_embeddings = (position_embeddings[0].half(),position_embeddings[1].half())
|
253 |
+
# causal_mask, use_cache, cache_position, past_key_values are ignored
|
254 |
+
#################################################################
|
255 |
+
for decoder_layer in self.layers[self.split_idx:]:
|
256 |
+
if output_hidden_states:
|
257 |
+
all_hidden_states += (hidden_states,)
|
258 |
+
|
259 |
+
if self.gradient_checkpointing and self.training:
|
260 |
+
layer_outputs = self._gradient_checkpointing_func(
|
261 |
+
decoder_layer.__call__,
|
262 |
+
hidden_states,
|
263 |
+
causal_mask,
|
264 |
+
position_ids,
|
265 |
+
past_key_values,
|
266 |
+
output_attentions,
|
267 |
+
use_cache,
|
268 |
+
cache_position,
|
269 |
+
position_embeddings,
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
layer_outputs = decoder_layer(
|
273 |
+
hidden_states,
|
274 |
+
attention_mask=causal_mask,
|
275 |
+
position_ids=position_ids,
|
276 |
+
past_key_value=past_key_values,
|
277 |
+
output_attentions=output_attentions,
|
278 |
+
use_cache=use_cache,
|
279 |
+
cache_position=cache_position,
|
280 |
+
position_embeddings=position_embeddings,
|
281 |
+
)
|
282 |
+
|
283 |
+
hidden_states = layer_outputs[0]
|
284 |
+
|
285 |
+
if use_cache:
|
286 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
287 |
+
|
288 |
+
if output_attentions:
|
289 |
+
all_self_attns += (layer_outputs[1],)
|
290 |
+
|
291 |
+
hidden_states = self.norm(hidden_states)
|
292 |
+
|
293 |
+
# add hidden states from the last decoder layer
|
294 |
+
if output_hidden_states:
|
295 |
+
all_hidden_states += (hidden_states,)
|
296 |
+
|
297 |
+
next_cache = next_decoder_cache if use_cache else None
|
298 |
+
if return_legacy_cache:
|
299 |
+
next_cache = next_cache.to_legacy_cache()
|
300 |
+
|
301 |
+
if not return_dict:
|
302 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
303 |
+
return BaseModelOutputWithPast(
|
304 |
+
last_hidden_state=hidden_states,
|
305 |
+
past_key_values=next_cache,
|
306 |
+
hidden_states=all_hidden_states,
|
307 |
+
attentions=all_self_attns,
|
308 |
+
)
|
309 |
+
|
310 |
+
class CustomLlamaForCausalLM(LlamaForCausalLM):
|
311 |
+
def __init__(self, config):
|
312 |
+
super().__init__(config)
|
313 |
+
self.model = CustomLLamaModel(config)
|
314 |
+
self.vocab_size = config.vocab_size
|
315 |
+
# self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
316 |
+
|
317 |
+
# Initialize weights and apply final processing
|
318 |
+
self.post_init()
|
319 |
+
self.quant = config.quant
|
320 |
+
self.set_quant = True
|
321 |
+
if self.quant == "fp16":
|
322 |
+
self.set_quant_16()
|
323 |
+
|
324 |
+
def set_quant_16(self):
|
325 |
+
if self.set_quant == True:
|
326 |
+
self.lm_head = self.lm_head.half()
|
327 |
+
self.set_quant = False
|
328 |
+
|