{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a66f41acd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 360448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724304883152235453, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2w7r47FMC8Ep+wvasolbxB3l++bhMdPQAAgD8AAIA/vXbmPmDTo70I9gS9HlMlPFgFhz46UsW7AAAAAAAAAAAjjTU/LT8NvrjQfrlfk4G4bgg0vW/cnDgAAIA/AACAP+YdEj3heJC6yz17vOjXBL2FOYC6O9bovQAAAAAAAIA/mm3ju2xzkLvL/qM9Luyivd17sDyqMoQ+AACAPwAAgD9ajfK+nb4ZPg7J2D45A5q+KR4xviKYwj4AAAAAAAAAANpvVj64mMw8VCIVPg0EgDyQOmY+qXKMPQAAgD8AAIA/e1/fvjg70L3Omkk8qumUOmoXoL0zR3w8AACAPwAAgD825/I+UsSIvWuvL75yZx+9OPymPtAMoDcAAIA/AACAPxp9pr0sD5s/rjekvpamCL/NCxm9UFnFvAAAAAAAAAAAWhypvR9twLnKTNI6mq2TNkAmPrvLN/S5AACAPwAAgD8Ki98+FCSoO5+xLr1F4I67xIJIvQ3lSr0AAAAAAAAAAJrikD2pQWG8eEtxvfwXnb0pEx+9Ax7EvgAAgD8AAIA/zdpMvSb/FD/24RY+7uKgvrWxZT4VYGM+AAAAAAAAAADg3yA+ZDEBPOV79DnATLY3oI2JPQPvG7kAAIA/AACAP2ZmCz4K2206qsBiOrT7Gjeqens8LU+JuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.639552, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFqxG4qgAZOMAWyUTegDjAF0lEdAdmH3uNPxhHV9lChoBkfAby4l/H5rQGgHTaoBaAhHQHZiDrVvuPV1fZQoaAZHQFPdVN5+pfhoB03oA2gIR0B2ZMOz6ab4dX2UKGgGR0Bf3vRJEpiJaAdN6ANoCEdAdmUG8mKIi3V9lChoBkdATods7+1jRWgHTegDaAhHQHZndPtUn5V1fZQoaAZHwFUrWbPQfIVoB0u+aAhHQHZvA2ycCo11fZQoaAZHQE55Gecx0uFoB03oA2gIR0B2bz6l+EytdX2UKGgGR0BSsLv5P/JeaAdN6ANoCEdAdnSfGdZq23V9lChoBkfAYG09lEqlQGgHS35oCEdAdniRoRIz33V9lChoBkfATHhCjUNKAmgHS7FoCEdAdnz7LMcIaHV9lChoBkfAP5T5sTFl1GgHS9NoCEdAdoMwaisXBXV9lChoBkfAW4w/lhgE2mgHS9RoCEdAdomQWepXIXV9lChoBkfATrXJV81Gb2gHS9hoCEdAdo0GBnSOR3V9lChoBkfAU4XJtBOYY2gHS/doCEdAdo6l2/zreXV9lChoBkdAVedBVuJk5WgHTegDaAhHQHaSI20iQkp1fZQoaAZHwGNMOP3i705oB0vLaAhHQHaSnGjsUqR1fZQoaAZHwFqWVbiZOSJoB0veaAhHQHamopYs/Y91fZQoaAZHwGFBfu9eyAxoB0v6aAhHQHam2Kl54W11fZQoaAZHwG9Za68QI2RoB0uNaAhHQHapF23azu51fZQoaAZHQFZYD/VAiV1oB0vAaAhHQHax09IPK+11fZQoaAZHQCl1bmlqJuVoB0vgaAhHQHa00sjFAFB1fZQoaAZHwE6MBvJiiItoB0u9aAhHQHa2brC3w1B1fZQoaAZHwGIH9PLxI8RoB0vtaAhHQHbBIsZpBX11fZQoaAZHwGrSqebutwJoB0uxaAhHQHbLCZjQRf51fZQoaAZHQDZCXTmW+oNoB0u0aAhHQHbL7eMyaeB1fZQoaAZHQBQdzXBguyxoB0uIaAhHQHbVdWQwK0F1fZQoaAZHwGPbBxgiNbVoB0vPaAhHQHbW4j0L+gl1fZQoaAZHQB9sbNr0rbxoB0ucaAhHQHbZRlDneSB1fZQoaAZHQEK9OxB3RohoB03oA2gIR0B22U86mwaBdX2UKGgGR8BUqjQeFL39aAdNwgFoCEdAduOF8ohIOHV9lChoBkdAUhU9gWrOq2gHTegDaAhHQHbmv95yEL91fZQoaAZHwFUbC9h7VrhoB0veaAhHQHbn0cOskpt1fZQoaAZHwEH45mRNh3JoB0vCaAhHQHbzc3dbgTB1fZQoaAZHwGT6ResxO+JoB0vGaAhHQHcBCgPEsJ91fZQoaAZHwFHS5y2hIvtoB0uxaAhHQHcGTu0CzTp1fZQoaAZHwEP5fx+az/poB0uyaAhHQHdY0dmxt551fZQoaAZHwGHpcDSw4bVoB0vBaAhHQHdfE/B3zMB1fZQoaAZHQFwcoOx0MgFoB03oA2gIR0B3ZRadMCcPdX2UKGgGR0BhV2l9BrvcaAdN6ANoCEdAd2WLkjopx3V9lChoBkfAWlucjJMg2mgHS+poCEdAd2kezlcQiHV9lChoBkfAMgB0dRzij2gHS7xoCEdAd3eDYywfQ3V9lChoBkdAYtrHZK3/gmgHTegDaAhHQHd8lZX+2mZ1fZQoaAZHQF1deMAFPi1oB03oA2gIR0B3gmLAHmihdX2UKGgGR8BVooEbHZK4aAdLw2gIR0B3h8+kgwGodX2UKGgGR0BhTLiVB2OiaAdN6ANoCEdAd41t78ejmHV9lChoBkdAUz42l2vB8GgHTegDaAhHQHeT2xhUipx1fZQoaAZHQDWpr6+FlCloB0ulaAhHQHei5xWDHwR1fZQoaAZHwFarcz67/XJoB0vraAhHQHeodxdY4hl1fZQoaAZHQCvN/YraufVoB0uraAhHQHesWP1ct5F1fZQoaAZHwE4cWdEsrd5oB0uvaAhHQHe1f8AJb+t1fZQoaAZHQBTaubI91U5oB0uyaAhHQHfZZnpSrHV1fZQoaAZHwDxna4+bExZoB0uqaAhHQHfbzziCJ411fZQoaAZHQEF2PvKEFntoB0vEaAhHQHflnbuc+aB1fZQoaAZHwCOVIiC8OCpoB0uyaAhHQHfo6iO/+Kl1fZQoaAZHwFzxoJiRW91oB01SAWgIR0B37iOHWSU1dX2UKGgGR0AwGP8yeqaPaAdN6ANoCEdAeA2pSaVlgHV9lChoBkdAW24GNaQmu2gHTegDaAhHQHgXV2q1gIB1fZQoaAZHQFIc1vl2eQNoB0vDaAhHQHgZuq7yxzJ1fZQoaAZHQFOE47ihnJ1oB03oA2gIR0B4GoQEpy6udX2UKGgGR0BW0xNqQA+7aAdN6ANoCEdAeBqN2ki2UnV9lChoBkdAF/8DB/I8yWgHS7doCEdAeB6itJWeYnV9lChoBkfAK01donKGL2gHTegDaAhHQHgwjQZ4wAV1fZQoaAZHwEK/0h/y5I9oB0upaAhHQHg11gtvn8t1fZQoaAZHQGCNEKmbb11oB03oA2gIR0B4OzhXKbKBdX2UKGgGR8BQrLZ8KG+LaAdLpWgIR0B4QvHNorWidX2UKGgGR8BiqE+9rXUZaAdLxmgIR0B4Rh5IH1OCdX2UKGgGR0BNSLq+rU9ZaAdN6ANoCEdAeEnFglWwNnV9lChoBkfAUL+tT1kDp2gHS9doCEdAeEn2GZeAu3V9lChoBkdAZCbolD4QBmgHTegDaAhHQHipL1M/QjV1fZQoaAZHQFiOWT5ftyBoB03oA2gIR0B4qaKoAGSqdX2UKGgGR0BeLNtIkJKKaAdN6ANoCEdAeKzUkfLcK3V9lChoBkfANMM189fTkWgHS85oCEdAeLAUQkHD8HV9lChoBkdAQzBJRO1v22gHS71oCEdAeLGSsKb8WXV9lChoBkfATZ+cz67/XGgHS6xoCEdAeLLX+2mYSnV9lChoBkdAQOXhuO0b+GgHS5xoCEdAeLjpJPIn0HV9lChoBkdANYkpqh11XGgHS71oCEdAeLwX3QD3d3V9lChoBkdAIRJHy3CsO2gHTegDaAhHQHi9w2dd3St1fZQoaAZHwBWKyfL9uP5oB0veaAhHQHjHpZ4fOlh1fZQoaAZHwCKkJa7mMfloB0uWaAhHQHjNhvaURnR1fZQoaAZHwECrXmvGIbhoB0ujaAhHQHjOgHE/B311fZQoaAZHQEH8/TLGJepoB0uzaAhHQHjP9ozvZyx1fZQoaAZHQAnaJ66asp5oB0u2aAhHQHjan3QD3dt1fZQoaAZHwEazb8m8dxRoB0u5aAhHQHj5Zvo/zJ91fZQoaAZHwFBiVYISlFdoB00qAWgIR0B5DFFEy+HrdX2UKGgGR0Ad+U+s5n14aAdLx2gIR0B5DJCMPz4DdX2UKGgGR0BW+7I5o4+9aAdN6ANoCEdAeRFD4gzP8nV9lChoBkdAV3V6lchTwWgHTegDaAhHQHkUVQ/HHWB1fZQoaAZHQF6rexwAEMdoB03oA2gIR0B5ITzbvgFYdX2UKGgGR8BER6tT1kDqaAdLr2gIR0B5J04OtnwodX2UKGgGR8A+3f5DZ13daAdLpGgIR0B5NJh9b5dodX2UKGgGR8BD+kxASnLraAdLvWgIR0B5Osg6ltTDdX2UKGgGR0A36XQ+lj3FaAdLt2gIR0B5P9B1LamGdX2UKGgGR0BC5RWkrPMTaAdL4WgIR0B5SWJLuhK2dX2UKGgGR0BZ3B/qgRK6aAdN6ANoCEdAeU0ce8wpOXV9lChoBkdARJExCY1HfGgHS5NoCEdAeU1zvJA+p3V9lChoBkdAUzlLteD3/WgHTegDaAhHQHlP1qveP7x1fZQoaAZHQDZGNNrTH81oB0v/aAhHQHlk+NgjQiR1fZQoaAZHwE8SyFfzBhxoB0t8aAhHQHluJQDV6NV1fZQoaAZHQEk4TnJT2nNoB0u0aAhHQHl1Y3rD6311fZQoaAZHQFrXzyz5XU9oB03oA2gIR0B5i2L2pQ1rdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 84, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}