--- license: other library_name: peft tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: facebook/opt-125m model-index: - name: opt-125m-pattern-based_finetuning_with_lora-mnli-mm-d2_fs3 results: [] --- # opt-125m-pattern-based_finetuning_with_lora-mnli-mm-d2_fs3 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8108 - Accuracy: 0.5104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5951 | 1.0 | 1 | 0.8108 | 0.5104 | | 0.5927 | 2.0 | 2 | 0.8105 | 0.5098 | | 0.6093 | 3.0 | 3 | 0.8103 | 0.5098 | | 0.5865 | 4.0 | 4 | 0.8102 | 0.5098 | | 0.5553 | 5.0 | 5 | 0.8101 | 0.5098 | ### Framework versions - PEFT 0.7.1.dev0 - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0