File size: 4,803 Bytes
516a027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2019, The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Encoding stages implementing various clipping strategies.

The base classes, `ClipByNormEncodingStage` and `ClipByValueEncodingStage`, are
expected to be subclassed as implementations of
`AdaptiveEncodingStageInterface`, to realize a variety of clipping strategies
that are adaptive to the data being processed in an iterative execution.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import tensorflow as tf

from tensorflow_model_optimization.python.core.internal.tensor_encoding.core import encoding_stage


@encoding_stage.tf_style_encoding_stage
class ClipByNormEncodingStage(encoding_stage.EncodingStageInterface):
  """Encoding stage applying clipping by norm (L-2 ball projection).

  See `tf.clip_by_norm` for more information.
  """

  ENCODED_VALUES_KEY = 'clipped_values'
  NORM_PARAMS_KEY = 'norm_param'

  def __init__(self, clip_norm):
    """Initializer for the `ClipByNormEncodingStage`.

    Args:
      clip_norm: A scalar, norm of the ball onto which to project.
    """
    self._clip_norm = clip_norm

  @property
  def name(self):
    """See base class."""
    return 'clip_by_norm'

  @property
  def compressible_tensors_keys(self):
    """See base class."""
    return [self.ENCODED_VALUES_KEY]

  @property
  def commutes_with_sum(self):
    """See base class."""
    return True

  @property
  def decode_needs_input_shape(self):
    """See base class."""
    return False

  def get_params(self):
    """See base class."""
    encode_params = collections.OrderedDict([(self.NORM_PARAMS_KEY,
                                              self._clip_norm)])
    decode_params = collections.OrderedDict()
    return encode_params, decode_params

  def encode(self, x, encode_params):
    """See base class."""
    clipped_x = tf.clip_by_norm(
        x, tf.cast(encode_params[self.NORM_PARAMS_KEY], x.dtype))
    return collections.OrderedDict([(self.ENCODED_VALUES_KEY, clipped_x)])

  def decode(self,
             encoded_tensors,
             decode_params,
             num_summands=None,
             shape=None):
    """See base class."""
    del decode_params, num_summands, shape  # Unused.
    return tf.identity(encoded_tensors[self.ENCODED_VALUES_KEY])


@encoding_stage.tf_style_encoding_stage
class ClipByValueEncodingStage(encoding_stage.EncodingStageInterface):
  """Encoding stage applying clipping by value (L-infinity ball projection).

  See `tf.clip_by_value` for more information.
  """

  ENCODED_VALUES_KEY = 'clipped_values'
  MIN_PARAMS_KEY = 'min_param'
  MAX_PARAMS_KEY = 'max_param'

  def __init__(self, clip_value_min, clip_value_max):
    """Initializer for the `ClipByValueEncodingStage`.

    Args:
      clip_value_min: A scalar, the minimum value to which to clip.
      clip_value_max: A scalar, the maximum value to which to clip.
    """
    self._clip_value_min = clip_value_min
    self._clip_value_max = clip_value_max

  @property
  def name(self):
    """See base class."""
    return 'clip_by_value'

  @property
  def compressible_tensors_keys(self):
    """See base class."""
    return [self.ENCODED_VALUES_KEY]

  @property
  def commutes_with_sum(self):
    """See base class."""
    return True

  @property
  def decode_needs_input_shape(self):
    """See base class."""
    return False

  def get_params(self):
    """See base class."""
    params = collections.OrderedDict([
        (self.MIN_PARAMS_KEY, self._clip_value_min),
        (self.MAX_PARAMS_KEY, self._clip_value_max)
    ])
    return params, collections.OrderedDict()

  def encode(self, x, encode_params):
    """See base class."""
    clipped_x = tf.clip_by_value(
        x,
        tf.cast(encode_params[self.MIN_PARAMS_KEY], x.dtype),
        tf.cast(encode_params[self.MAX_PARAMS_KEY], x.dtype))
    return collections.OrderedDict([(self.ENCODED_VALUES_KEY, clipped_x)])

  def decode(self,
             encoded_tensors,
             decode_params,
             num_summands=None,
             shape=None):
    """See base class."""
    del decode_params, num_summands, shape  # Unused.
    return tf.identity(encoded_tensors[self.ENCODED_VALUES_KEY])