File size: 27,925 Bytes
516a027 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Integration tests for CQAT, PCQAT cases."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow_model_optimization.python.core.clustering.keras import cluster
from tensorflow_model_optimization.python.core.clustering.keras import cluster_config
from tensorflow_model_optimization.python.core.clustering.keras.experimental import cluster as experimental_cluster
from tensorflow_model_optimization.python.core.keras.compat import keras
from tensorflow_model_optimization.python.core.quantization.keras import quantize
from tensorflow_model_optimization.python.core.quantization.keras.collab_opts.cluster_preserve import (
default_8bit_cluster_preserve_quantize_scheme,)
from tensorflow_model_optimization.python.core.quantization.keras.collab_opts.cluster_preserve.cluster_utils import (
strip_clustering_cqat,)
layers = keras.layers
class ClusterPreserveIntegrationTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(ClusterPreserveIntegrationTest, self).setUp()
self.cluster_params = {
'number_of_clusters': 4,
'cluster_centroids_init': cluster_config.CentroidInitialization.LINEAR
}
def compile_and_fit(self, model):
"""Here we compile and fit the model."""
model.compile(
loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'],
)
model.fit(
np.random.rand(20, 10),
keras.utils.to_categorical(np.random.randint(5, size=(20, 1)), 5),
batch_size=20,
)
def _get_number_of_unique_weights(self, stripped_model, layer_nr,
weight_name):
layer = stripped_model.layers[layer_nr]
if isinstance(layer, quantize.quantize_wrapper.QuantizeWrapper):
for weight_item in layer.trainable_weights:
if weight_name in weight_item.name:
weight = weight_item
else:
weight = getattr(layer, weight_name)
weights_as_list = weight.numpy().flatten()
nr_of_unique_weights = len(set(weights_as_list))
return nr_of_unique_weights
def _get_sparsity(self, model):
sparsity_list = []
for layer in model.layers:
for weights in layer.trainable_weights:
if 'kernel' in weights.name:
np_weights = keras.backend.get_value(weights)
sparsity = 1.0 - np.count_nonzero(np_weights) / float(
np_weights.size)
sparsity_list.append(sparsity)
return sparsity_list
def _get_clustered_model(self, preserve_sparsity):
"""Cluster the (sparse) model and return clustered_model."""
tf.random.set_seed(1)
original_model = keras.Sequential([
layers.Dense(5, activation='softmax', input_shape=(10,)),
layers.Flatten(),
])
# Manually set sparsity in the Dense layer if preserve_sparsity is on
if preserve_sparsity:
first_layer_weights = original_model.layers[0].get_weights()
first_layer_weights[0][:][0:2] = 0.0
original_model.layers[0].set_weights(first_layer_weights)
# Start the sparsity-aware clustering
clustering_params = {
'number_of_clusters': 4,
'cluster_centroids_init': cluster_config.CentroidInitialization.LINEAR,
'preserve_sparsity': True
}
clustered_model = experimental_cluster.cluster_weights(
original_model, **clustering_params)
return clustered_model
def _get_conv_model(self,
nr_of_channels,
data_format=None,
kernel_size=(3, 3)):
"""Returns functional model with Conv2D layer."""
inp = keras.layers.Input(shape=(32, 32), batch_size=100)
shape = (1, 32, 32) if data_format == 'channels_first' else (32, 32, 1)
x = keras.layers.Reshape(shape)(inp)
x = keras.layers.Conv2D(
filters=nr_of_channels,
kernel_size=kernel_size,
data_format=data_format,
activation='relu',
)(x)
x = keras.layers.MaxPool2D(2, 2)(x)
out = keras.layers.Flatten()(x)
model = keras.Model(inputs=inp, outputs=out)
return model
def _compile_and_fit_conv_model(self, model, nr_epochs=1):
"""Compile and fit conv model from _get_conv_model."""
x_train = np.random.uniform(size=(500, 32, 32))
y_train = np.random.randint(low=0, high=1024, size=(500,))
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=1e-4),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy(name='accuracy')],
)
model.fit(x_train, y_train, epochs=nr_epochs, batch_size=100, verbose=1)
return model
def _get_conv_clustered_model(self,
nr_of_channels,
nr_of_clusters,
data_format,
preserve_sparsity,
kernel_size=(3, 3)):
"""Returns clustered per channel model with Conv2D layer."""
tf.random.set_seed(42)
model = self._get_conv_model(nr_of_channels, data_format, kernel_size)
if preserve_sparsity:
# Make the convolutional layer sparse by nullifying half of weights
assert model.layers[2].name == 'conv2d'
conv_layer_weights = model.layers[2].get_weights()
shape = conv_layer_weights[0].shape
conv_layer_weights_flatten = conv_layer_weights[0].flatten()
nr_elems = len(conv_layer_weights_flatten)
conv_layer_weights_flatten[0:1 + nr_elems // 2] = 0.0
pruned_conv_layer_weights = tf.reshape(conv_layer_weights_flatten, shape)
conv_layer_weights[0] = pruned_conv_layer_weights
model.layers[2].set_weights(conv_layer_weights)
clustering_params = {
'number_of_clusters':
nr_of_clusters,
'cluster_centroids_init':
cluster_config.CentroidInitialization.KMEANS_PLUS_PLUS,
'cluster_per_channel':
True,
'preserve_sparsity':
preserve_sparsity
}
clustered_model = experimental_cluster.cluster_weights(model,
**clustering_params)
clustered_model = self._compile_and_fit_conv_model(clustered_model)
# Returns un-stripped model
return clustered_model
def _pcqat_training(self, preserve_sparsity, quant_aware_annotate_model):
"""PCQAT training on the input model."""
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme(preserve_sparsity))
self.compile_and_fit(quant_aware_model)
stripped_pcqat_model = strip_clustering_cqat(quant_aware_model)
# Check the unique weights of clustered_model and pcqat_model
# layer 0 is the quantize_layer
num_of_unique_weights_pcqat = self._get_number_of_unique_weights(
stripped_pcqat_model, 1, 'kernel')
sparsity_pcqat = self._get_sparsity(stripped_pcqat_model)
return sparsity_pcqat, num_of_unique_weights_pcqat
def testEndToEndClusterPreserve(self):
"""Runs CQAT end to end and whole model is quantized."""
original_model = keras.Sequential(
[layers.Dense(5, activation='softmax', input_shape=(10,))]
)
clustered_model = cluster.cluster_weights(
original_model,
**self.cluster_params)
self.compile_and_fit(clustered_model)
clustered_model = cluster.strip_clustering(clustered_model)
num_of_unique_weights_clustering = self._get_number_of_unique_weights(
clustered_model, 0, 'kernel')
quant_aware_annotate_model = (
quantize.quantize_annotate_model(clustered_model))
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme())
self.compile_and_fit(quant_aware_model)
stripped_cqat_model = strip_clustering_cqat(quant_aware_model)
# Check the unique weights of a certain layer of
# clustered_model and pcqat_model
num_of_unique_weights_cqat = self._get_number_of_unique_weights(
stripped_cqat_model, 1, 'kernel')
self.assertAllEqual(num_of_unique_weights_clustering,
num_of_unique_weights_cqat)
def testEndToEndClusterPreservePerLayer(self):
"""Runs CQAT end to end and model is quantized per layers."""
original_model = keras.Sequential([
layers.Dense(5, activation='relu', input_shape=(10,)),
layers.Dense(5, activation='softmax', input_shape=(10,)),
])
clustered_model = cluster.cluster_weights(
original_model,
**self.cluster_params)
self.compile_and_fit(clustered_model)
clustered_model = cluster.strip_clustering(clustered_model)
num_of_unique_weights_clustering = self._get_number_of_unique_weights(
clustered_model, 1, 'kernel')
def apply_quantization_to_dense(layer):
if isinstance(layer, keras.layers.Dense):
return quantize.quantize_annotate_layer(layer)
return layer
quant_aware_annotate_model = keras.models.clone_model(
clustered_model,
clone_function=apply_quantization_to_dense,
)
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme())
self.compile_and_fit(quant_aware_model)
stripped_cqat_model = strip_clustering_cqat(
quant_aware_model)
# Check the unique weights of a certain layer of
# clustered_model and pcqat_model
num_of_unique_weights_cqat = self._get_number_of_unique_weights(
stripped_cqat_model, 2, 'kernel')
self.assertAllEqual(num_of_unique_weights_clustering,
num_of_unique_weights_cqat)
def testEndToEndClusterPreserveOneLayer(self):
"""Runs CQAT end to end and model is quantized only for a single layer."""
original_model = keras.Sequential([
layers.Dense(5, activation='relu', input_shape=(10,)),
layers.Dense(5, activation='softmax', input_shape=(10,), name='qat'),
])
clustered_model = cluster.cluster_weights(
original_model,
**self.cluster_params)
self.compile_and_fit(clustered_model)
clustered_model = cluster.strip_clustering(clustered_model)
num_of_unique_weights_clustering = self._get_number_of_unique_weights(
clustered_model, 1, 'kernel')
def apply_quantization_to_dense(layer):
if isinstance(layer, keras.layers.Dense):
if layer.name == 'qat':
return quantize.quantize_annotate_layer(layer)
return layer
quant_aware_annotate_model = keras.models.clone_model(
clustered_model,
clone_function=apply_quantization_to_dense,
)
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme())
self.compile_and_fit(quant_aware_model)
stripped_cqat_model = strip_clustering_cqat(
quant_aware_model)
# Check the unique weights of a certain layer of
# clustered_model and pcqat_model
num_of_unique_weights_cqat = self._get_number_of_unique_weights(
stripped_cqat_model, 1, 'kernel')
self.assertAllEqual(num_of_unique_weights_clustering,
num_of_unique_weights_cqat)
def testEndToEndPruneClusterPreserveQAT(self):
"""Runs PCQAT end to end when we quantize the whole model."""
preserve_sparsity = True
clustered_model = self._get_clustered_model(preserve_sparsity)
# Save the kernel weights
first_layer_weights = clustered_model.layers[0].weights[1]
stripped_model_before_tuning = cluster.strip_clustering(
clustered_model)
nr_of_unique_weights_before = self._get_number_of_unique_weights(
stripped_model_before_tuning, 0, 'kernel')
self.compile_and_fit(clustered_model)
stripped_model_clustered = cluster.strip_clustering(clustered_model)
weights_after_tuning = stripped_model_clustered.layers[0].kernel
nr_of_unique_weights_after = self._get_number_of_unique_weights(
stripped_model_clustered, 0, 'kernel')
# Check after sparsity-aware clustering, despite zero centroid can drift,
# the final number of unique weights remains the same
self.assertEqual(nr_of_unique_weights_before, nr_of_unique_weights_after)
# Check that the zero weights stayed the same before and after tuning.
# There might be new weights that become zeros but sparsity-aware
# clustering preserves the original zero weights in the original positions
# of the weight array
self.assertTrue(
np.array_equal(first_layer_weights[:][0:2],
weights_after_tuning[:][0:2]))
# Check sparsity before the input of PCQAT
sparsity_pruning = self._get_sparsity(stripped_model_clustered)
# PCQAT: when the preserve_sparsity flag is True, the PCQAT should work
quant_aware_annotate_model = (
quantize.quantize_annotate_model(stripped_model_clustered)
)
# When preserve_sparsity is True in PCQAT, the final sparsity of
# the layer stays the same or larger than that of the input layer
preserve_sparsity = True
sparsity_pcqat, unique_weights_pcqat = self._pcqat_training(
preserve_sparsity, quant_aware_annotate_model)
self.assertAllGreaterEqual(np.array(sparsity_pcqat),
sparsity_pruning[0])
self.assertAllEqual(nr_of_unique_weights_after, unique_weights_pcqat)
def testEndToEndClusterPreserveQATClusteredPerChannel(
self, data_format='channels_last'):
"""Runs CQAT end to end for the model that is clustered per channel."""
nr_of_channels = 12
nr_of_clusters = 4
clustered_model = self._get_conv_clustered_model(
nr_of_channels, nr_of_clusters, data_format, preserve_sparsity=False)
stripped_model = cluster.strip_clustering(clustered_model)
# Save the kernel weights
conv2d_layer = stripped_model.layers[2]
self.assertEqual(conv2d_layer.name, 'conv2d')
# should be nr_of_channels * nr_of_clusters
nr_unique_weights = -1
for weight in conv2d_layer.weights:
if 'kernel' in weight.name:
nr_unique_weights = len(np.unique(weight.numpy()))
self.assertLessEqual(nr_unique_weights, nr_of_clusters*nr_of_channels)
quant_aware_annotate_model = (
quantize.quantize_annotate_model(stripped_model)
)
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme())
# Lets train for more epochs to have a chance to scatter clusters
model = self._compile_and_fit_conv_model(quant_aware_model, 3)
stripped_cqat_model = strip_clustering_cqat(model)
# Check the unique weights of a certain layer of
# clustered_model and pcqat_model
layer_nr = 3
num_of_unique_weights_cqat = self._get_number_of_unique_weights(
stripped_cqat_model, layer_nr, 'kernel')
self.assertLessEqual(num_of_unique_weights_cqat, nr_unique_weights)
# We need to do tighter check: we check that the number of unique
# weights per channel is less than the given nr_of_channels
layer = stripped_cqat_model.layers[layer_nr]
weight_to_check = None
if isinstance(layer, quantize.quantize_wrapper.QuantizeWrapper):
for weight_item in layer.trainable_weights:
if 'kernel' in weight_item.name:
weight_to_check = weight_item
assert weight_to_check is not None
for i in range(nr_of_channels):
nr_unique_weights_per_channel = len(
np.unique(weight_to_check[:, :, :, i]))
assert nr_unique_weights_per_channel == nr_of_clusters
def testEndToEndPCQATClusteredPerChannel(self, data_format='channels_last'):
"""Runs PCQAT end to end for the model that is clustered per channel."""
nr_of_channels = 12
nr_of_clusters = 4
clustered_model = self._get_conv_clustered_model(
nr_of_channels, nr_of_clusters, data_format, preserve_sparsity=True)
stripped_model = cluster.strip_clustering(clustered_model)
# Save the kernel weights
conv2d_layer = stripped_model.layers[2]
self.assertEqual(conv2d_layer.name, 'conv2d')
# should be nr_of_channels * nr_of_clusters
nr_unique_weights = -1
for weight in conv2d_layer.weights:
if 'kernel' in weight.name:
nr_unique_weights = len(np.unique(weight.numpy()))
self.assertLessEqual(nr_unique_weights, nr_of_clusters*nr_of_channels)
# get sparsity before PCQAT training
# we expect that only one value will be returned
control_sparsity = self._get_sparsity(stripped_model)
self.assertGreater(control_sparsity[0], 0.5)
quant_aware_annotate_model = (
quantize.quantize_annotate_model(stripped_model)
)
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme())
# Lets train for more epochs to have a chance to scatter clusters
model = self._compile_and_fit_conv_model(quant_aware_model, 3)
stripped_cqat_model = strip_clustering_cqat(model)
# Check the unique weights of a certain layer of
# clustered_model and cqat_model
layer_nr = 3
num_of_unique_weights_cqat = self._get_number_of_unique_weights(
stripped_cqat_model, layer_nr, 'kernel')
self.assertLessEqual(num_of_unique_weights_cqat, nr_unique_weights)
# We need to do tighter check: we check that the number of unique
# weights per channel is less than the given nr_of_channels
layer = stripped_cqat_model.layers[layer_nr]
weight_to_check = None
if isinstance(layer, quantize.quantize_wrapper.QuantizeWrapper):
for weight_item in layer.trainable_weights:
if 'kernel' in weight_item.name:
weight_to_check = weight_item
assert weight_to_check is not None
for i in range(nr_of_channels):
nr_unique_weights_per_channel = len(
np.unique(weight_to_check[:, :, :, i]))
assert nr_unique_weights_per_channel == nr_of_clusters
cqat_sparsity = self._get_sparsity(stripped_cqat_model)
self.assertLessEqual(cqat_sparsity[0], control_sparsity[0])
def testEndToEndPCQATClusteredPerChannelConv2d1x1(self,
data_format='channels_last'
):
"""Runs PCQAT for model containing a 1x1 Conv2D.
(with insufficient number of weights per channel).
Args:
data_format: Format of input data.
"""
nr_of_channels = 12
nr_of_clusters = 4
# Ensure a warning is given to the user that
# clustering is not implemented for this layer
with self.assertWarnsRegex(Warning,
r'Layer conv2d does not have enough weights'):
clustered_model = self._get_conv_clustered_model(
nr_of_channels,
nr_of_clusters,
data_format,
preserve_sparsity=True,
kernel_size=(1, 1))
stripped_model = cluster.strip_clustering(clustered_model)
# Save the kernel weights
conv2d_layer = stripped_model.layers[2]
self.assertEqual(conv2d_layer.name, 'conv2d')
for weight in conv2d_layer.weights:
if 'kernel' in weight.name:
# Original number of unique weights
nr_original_weights = len(np.unique(weight.numpy()))
self.assertLess(nr_original_weights, nr_of_channels * nr_of_clusters)
# Demonstrate unmodified test layer has less weights
# than requested clusters
for channel in range(nr_of_channels):
channel_weights = (
weight[:, channel, :, :]
if data_format == 'channels_first' else weight[:, :, :, channel])
nr_channel_weights = len(channel_weights)
self.assertGreater(nr_channel_weights, 0)
self.assertLessEqual(nr_channel_weights, nr_of_clusters)
# get sparsity before PCQAT training
# we expect that only one value will be returned
control_sparsity = self._get_sparsity(stripped_model)
self.assertGreater(control_sparsity[0], 0.5)
quant_aware_annotate_model = (
quantize.quantize_annotate_model(stripped_model))
with self.assertWarnsRegex(
Warning, r'No clustering performed on layer quant_conv2d'):
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme(preserve_sparsity=True))
# Lets train for more epochs to have a chance to scatter clusters
model = self._compile_and_fit_conv_model(quant_aware_model, 3)
stripped_cqat_model = strip_clustering_cqat(model)
# Check the unique weights of a certain layer of
# clustered_model and cqat_model, ensuring unchanged
layer_nr = 3
num_of_unique_weights_cqat = self._get_number_of_unique_weights(
stripped_cqat_model, layer_nr, 'kernel')
self.assertEqual(num_of_unique_weights_cqat, nr_original_weights)
cqat_sparsity = self._get_sparsity(stripped_cqat_model)
self.assertLessEqual(cqat_sparsity[0], control_sparsity[0])
def testPassingNonPrunedModelToPCQAT(self):
"""Runs PCQAT as CQAT if the input model is not pruned."""
preserve_sparsity = False
clustered_model = self._get_clustered_model(preserve_sparsity)
clustered_model = cluster.strip_clustering(clustered_model)
nr_of_unique_weights_after = self._get_number_of_unique_weights(
clustered_model, 0, 'kernel')
# Check after plain clustering, if there are no zero weights,
# PCQAT falls back to CQAT
quant_aware_annotate_model = (
quantize.quantize_annotate_model(clustered_model)
)
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme(True))
self.compile_and_fit(quant_aware_model)
stripped_pcqat_model = strip_clustering_cqat(
quant_aware_model)
# Check the unique weights of clustered_model and pcqat_model
num_of_unique_weights_pcqat = self._get_number_of_unique_weights(
stripped_pcqat_model, 1, 'kernel')
self.assertAllEqual(nr_of_unique_weights_after,
num_of_unique_weights_pcqat)
@parameterized.parameters((0.), (2.))
def testPassingModelWithUniformWeightsToPCQAT(self, uniform_weights):
"""If pruned_clustered_model has uniform weights, it won't break PCQAT."""
preserve_sparsity = True
original_model = keras.Sequential([
layers.Dense(5, activation='softmax', input_shape=(10,)),
layers.Flatten(),
])
# Manually set all weights to the same value in the Dense layer
first_layer_weights = original_model.layers[0].get_weights()
first_layer_weights[0][:] = uniform_weights
original_model.layers[0].set_weights(first_layer_weights)
# Start the sparsity-aware clustering
clustering_params = {
'number_of_clusters': 4,
'cluster_centroids_init': cluster_config.CentroidInitialization.LINEAR,
'preserve_sparsity': True
}
clustered_model = experimental_cluster.cluster_weights(
original_model, **clustering_params)
clustered_model = cluster.strip_clustering(clustered_model)
nr_of_unique_weights_after = self._get_number_of_unique_weights(
clustered_model, 0, 'kernel')
sparsity_pruning = self._get_sparsity(clustered_model)
quant_aware_annotate_model = (
quantize.quantize_annotate_model(clustered_model)
)
sparsity_pcqat, unique_weights_pcqat = self._pcqat_training(
preserve_sparsity, quant_aware_annotate_model)
self.assertAllGreaterEqual(np.array(sparsity_pcqat),
sparsity_pruning[0])
self.assertAllEqual(nr_of_unique_weights_after, unique_weights_pcqat)
def testTrainableWeightsBehaveCorrectlyDuringPCQAT(self):
"""PCQAT zero centroid masks stay the same and trainable variables are updating between epochs."""
preserve_sparsity = True
clustered_model = self._get_clustered_model(preserve_sparsity)
clustered_model = cluster.strip_clustering(clustered_model)
# Apply PCQAT
quant_aware_annotate_model = (
quantize.quantize_annotate_model(clustered_model)
)
quant_aware_model = quantize.quantize_apply(
quant_aware_annotate_model,
scheme=default_8bit_cluster_preserve_quantize_scheme
.Default8BitClusterPreserveQuantizeScheme(True))
quant_aware_model.compile(
loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'],
)
class CheckCentroidsAndTrainableVarsCallback(keras.callbacks.Callback):
"""Check the updates of trainable variables and centroid masks."""
def on_epoch_begin(self, batch, logs=None):
# Check cluster centroids have the zero in the right position
vars_dictionary = self.model.layers[1]._weight_vars[0][2]
self.centroid_mask = vars_dictionary['centroids_mask']
self.zero_centroid_index_begin = np.where(
self.centroid_mask == 0)[0]
# Check trainable weights before training
self.layer_kernel = (
self.model.layers[1].weights[3].numpy()
)
self.original_weight = vars_dictionary['ori_weights_vars_tf'].numpy()
self.centroids = vars_dictionary['cluster_centroids_tf'].numpy()
def on_epoch_end(self, batch, logs=None):
# Check the index of the zero centroids are not changed after training
vars_dictionary = self.model.layers[1]._weight_vars[0][2]
self.zero_centroid_index_end = np.where(
vars_dictionary['centroids_mask'] == 0)[0]
assert np.array_equal(
self.zero_centroid_index_begin,
self.zero_centroid_index_end
)
# Check trainable variables after training are updated
assert not np.array_equal(
self.layer_kernel,
self.model.layers[1].weights[3].numpy()
)
assert not np.array_equal(
self.original_weight,
vars_dictionary['ori_weights_vars_tf'].numpy()
)
assert not np.array_equal(
self.centroids,
vars_dictionary['cluster_centroids_tf'].numpy()
)
# Use many epochs to verify layer's kernel weights are updating because
# they can stay the same after being trained using only the first batch
# of data for instance
quant_aware_model.fit(
np.random.rand(20, 10),
keras.utils.to_categorical(np.random.randint(5, size=(20, 1)), 5),
steps_per_epoch=5,
epochs=3,
callbacks=[CheckCentroidsAndTrainableVarsCallback()],
)
if __name__ == '__main__':
tf.test.main()
|