File size: 5,823 Bytes
516a027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for ClusterPreserveQuantizeRegistry."""

import tensorflow as tf

from tensorflow_model_optimization.python.core.clustering.keras import clustering_registry
from tensorflow_model_optimization.python.core.keras.compat import keras
from tensorflow_model_optimization.python.core.quantization.keras import quantize_config
from tensorflow_model_optimization.python.core.quantization.keras.collab_opts.cluster_preserve import cluster_preserve_quantize_registry
from tensorflow_model_optimization.python.core.quantization.keras.default_8bit import default_8bit_quantize_registry


QuantizeConfig = quantize_config.QuantizeConfig
layers = keras.layers


class ClusterPreserveQuantizeRegistryTest(tf.test.TestCase):

  def setUp(self):
    super(ClusterPreserveQuantizeRegistryTest, self).setUp()
    # Test CQAT by default
    self.cluster_preserve_quantize_registry = (
        cluster_preserve_quantize_registry.ClusterPreserveQuantizeRegistry(
            False)
        )
    # layers which are supported
    # initial and build a Conv2D layer
    self.layer_conv2d = layers.Conv2D(10, (2, 2))
    self.layer_conv2d.build((2, 2))
    # initial and build a Dense layer
    self.layer_dense = layers.Dense(10)
    self.layer_dense.build((2, 2))
    # initial and build a ReLU layer
    self.layer_relu = layers.ReLU()
    self.layer_relu.build((2, 2))

    # a layer which is not supported
    # initial and build a Custom layer
    self.layer_custom = self.CustomLayer()
    self.layer_custom.build()

  class CustomLayer(layers.Layer):
    """A simple custom layer with training weights."""

    def build(self, input_shape=(2, 2)):
      self.add_weight(shape=input_shape,
                      initializer='random_normal',
                      trainable=True)

  class CustomQuantizeConfig(QuantizeConfig):
    """A dummy concrete class for testing unregistered configs."""

    def get_weights_and_quantizers(self, layer):
      return []

    def get_activations_and_quantizers(self, layer):
      return []

    def set_quantize_weights(self, layer, quantize_weights):
      pass

    def set_quantize_activations(self, layer, quantize_activations):
      pass

    def get_output_quantizers(self, layer):
      return []

    def get_config(self):
      return {}

  def testSupportsKerasLayer(self):
    # test registered layer
    self.assertTrue(
        self.cluster_preserve_quantize_registry.supports(self.layer_dense))
    self.assertTrue(
        self.cluster_preserve_quantize_registry.supports(self.layer_conv2d))
    # test layer without training weights
    self.assertTrue(
        self.cluster_preserve_quantize_registry.supports(self.layer_relu))

  def testDoesNotSupportCustomLayer(self):
    self.assertFalse(
        self.cluster_preserve_quantize_registry.supports(self.layer_custom))

  def testApplyClusterPreserveWithQuantizeConfig(self):
    (self.cluster_preserve_quantize_registry
     .apply_cluster_preserve_quantize_config(
         self.layer_conv2d,
         default_8bit_quantize_registry.Default8BitConvQuantizeConfig(
             ['kernel'], ['activation'], False)))

  def testRaisesErrorUnsupportedQuantizeConfigWithLayer(self):
    with self.assertRaises(
        ValueError, msg='Unregistered QuantizeConfigs should raise error.'):
      (self.cluster_preserve_quantize_registry.
       apply_cluster_preserve_quantize_config(
           self.layer_conv2d, self.CustomQuantizeConfig))

    with self.assertRaises(ValueError,
                           msg='Unregistered layers should raise error.'):
      (self.cluster_preserve_quantize_registry.
       apply_cluster_preserve_quantize_config(
           self.layer_custom, self.CustomQuantizeConfig))


class ClusterPreserveDefault8bitQuantizeRegistryTest(tf.test.TestCase):

  def setUp(self):
    super(ClusterPreserveDefault8bitQuantizeRegistryTest, self).setUp()
    self.default_8bit_quantize_registry = (
        default_8bit_quantize_registry.Default8BitQuantizeRegistry())
    self.cluster_registry = clustering_registry.ClusteringRegistry()
    # Test CQAT by default
    self.cluster_preserve_quantize_registry = (
        cluster_preserve_quantize_registry.ClusterPreserveQuantizeRegistry(
            False))

  def testSupportsClusterDefault8bitQuantizeKerasLayers(self):
    # ClusterPreserveQuantize supported layer, must be suppoted
    # by both Cluster and Quantize
    cqat_layers_config_map = (
        self.cluster_preserve_quantize_registry._LAYERS_CONFIG_MAP)
    for cqat_support_layer in cqat_layers_config_map:
      if cqat_layers_config_map[cqat_support_layer].weight_attrs and (
          cqat_layers_config_map[cqat_support_layer].quantize_config_attrs):
        self.assertIn(
            cqat_support_layer, self.cluster_registry._LAYERS_WEIGHTS_MAP,
            msg='Clusteirng doesn\'t support {}'.format(cqat_support_layer))
        self.assertIn(
            cqat_support_layer,
            self.default_8bit_quantize_registry._layer_quantize_map,
            msg='Default 8bit QAT doesn\'t support {}'.format(
                cqat_support_layer))


if __name__ == '__main__':
  tf.test.main()