File size: 6,477 Bytes
516a027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=missing-docstring
"""Train a simple convnet on the MNIST dataset."""
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf

from tensorflow_model_optimization.python.core.keras.compat import keras
from tensorflow_model_optimization.python.core.sparsity.keras import prune
from tensorflow_model_optimization.python.core.sparsity.keras import pruning_callbacks
from tensorflow_model_optimization.python.core.sparsity.keras import pruning_schedule


PolynomialDecay = pruning_schedule.PolynomialDecay
l = keras.layers

FLAGS = flags.FLAGS

batch_size = 128
num_classes = 10
epochs = 12

flags.DEFINE_string('output_dir', '/tmp/mnist_train/',
                    'Output directory to hold tensorboard events')


def build_sequential_model(input_shape):
  return keras.Sequential([
      l.Conv2D(
          32, 5, padding='same', activation='relu', input_shape=input_shape
      ),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.BatchNormalization(),
      l.Conv2D(64, 5, padding='same', activation='relu'),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.Flatten(),
      l.Dense(1024, activation='relu'),
      l.Dropout(0.4),
      l.Dense(num_classes, activation='softmax'),
  ])


def build_functional_model(input_shape):
  inp = keras.Input(shape=input_shape)
  x = l.Conv2D(32, 5, padding='same', activation='relu')(inp)
  x = l.MaxPooling2D((2, 2), (2, 2), padding='same')(x)
  x = l.BatchNormalization()(x)
  x = l.Conv2D(64, 5, padding='same', activation='relu')(x)
  x = l.MaxPooling2D((2, 2), (2, 2), padding='same')(x)
  x = l.Flatten()(x)
  x = l.Dense(1024, activation='relu')(x)
  x = l.Dropout(0.4)(x)
  out = l.Dense(num_classes, activation='softmax')(x)

  return keras.models.Model([inp], [out])


def build_layerwise_model(input_shape, **pruning_params):
  return keras.Sequential([
      prune.prune_low_magnitude(
          l.Conv2D(32, 5, padding='same', activation='relu'),
          input_shape=input_shape,
          **pruning_params
      ),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.BatchNormalization(),
      prune.prune_low_magnitude(
          l.Conv2D(64, 5, padding='same', activation='relu'), **pruning_params
      ),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.Flatten(),
      prune.prune_low_magnitude(
          l.Dense(1024, activation='relu'), **pruning_params
      ),
      l.Dropout(0.4),
      prune.prune_low_magnitude(
          l.Dense(num_classes, activation='softmax'), **pruning_params
      ),
  ])


def train_and_save(models, x_train, y_train, x_test, y_test):
  for model in models:
    model.compile(
        loss=keras.losses.categorical_crossentropy,
        optimizer='adam',
        metrics=['accuracy'],
    )

    # Print the model summary.
    model.summary()

    # Add a pruning step callback to peg the pruning step to the optimizer's
    # step. Also add a callback to add pruning summaries to tensorboard
    callbacks = [
        pruning_callbacks.UpdatePruningStep(),
        pruning_callbacks.PruningSummaries(log_dir=FLAGS.output_dir)
    ]

    model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs,
        verbose=1,
        callbacks=callbacks,
        validation_data=(x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])

    # Export and import the model. Check that accuracy persists.
    saved_model_dir = '/tmp/saved_model'
    print('Saving model to: ', saved_model_dir)
    keras.models.save_model(model, saved_model_dir, save_format='tf')
    print('Loading model from: ', saved_model_dir)
    loaded_model = keras.models.load_model(saved_model_dir)

    score = loaded_model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])


def main(unused_argv):
  # input image dimensions
  img_rows, img_cols = 28, 28

  # the data, shuffled and split between train and test sets
  (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

  if keras.backend.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
  else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

  x_train = x_train.astype('float32')
  x_test = x_test.astype('float32')
  x_train /= 255
  x_test /= 255
  print('x_train shape:', x_train.shape)
  print(x_train.shape[0], 'train samples')
  print(x_test.shape[0], 'test samples')

  # convert class vectors to binary class matrices
  y_train = keras.utils.to_categorical(y_train, num_classes)
  y_test = keras.utils.to_categorical(y_test, num_classes)

  pruning_params = {
      'pruning_schedule':
          PolynomialDecay(
              initial_sparsity=0.1,
              final_sparsity=0.75,
              begin_step=1000,
              end_step=5000,
              frequency=100)
  }

  layerwise_model = build_layerwise_model(input_shape, **pruning_params)
  sequential_model = build_sequential_model(input_shape)
  sequential_model = prune.prune_low_magnitude(
      sequential_model, **pruning_params)
  functional_model = build_functional_model(input_shape)
  functional_model = prune.prune_low_magnitude(
      functional_model, **pruning_params)

  models = [layerwise_model, sequential_model, functional_model]
  train_and_save(models, x_train, y_train, x_test, y_test)


if __name__ == '__main__':
  absl_app.run(main)