File size: 6,477 Bytes
516a027 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=missing-docstring
"""Train a simple convnet on the MNIST dataset."""
from __future__ import print_function
from absl import app as absl_app
from absl import flags
import tensorflow as tf
from tensorflow_model_optimization.python.core.keras.compat import keras
from tensorflow_model_optimization.python.core.sparsity.keras import prune
from tensorflow_model_optimization.python.core.sparsity.keras import pruning_callbacks
from tensorflow_model_optimization.python.core.sparsity.keras import pruning_schedule
PolynomialDecay = pruning_schedule.PolynomialDecay
l = keras.layers
FLAGS = flags.FLAGS
batch_size = 128
num_classes = 10
epochs = 12
flags.DEFINE_string('output_dir', '/tmp/mnist_train/',
'Output directory to hold tensorboard events')
def build_sequential_model(input_shape):
return keras.Sequential([
l.Conv2D(
32, 5, padding='same', activation='relu', input_shape=input_shape
),
l.MaxPooling2D((2, 2), (2, 2), padding='same'),
l.BatchNormalization(),
l.Conv2D(64, 5, padding='same', activation='relu'),
l.MaxPooling2D((2, 2), (2, 2), padding='same'),
l.Flatten(),
l.Dense(1024, activation='relu'),
l.Dropout(0.4),
l.Dense(num_classes, activation='softmax'),
])
def build_functional_model(input_shape):
inp = keras.Input(shape=input_shape)
x = l.Conv2D(32, 5, padding='same', activation='relu')(inp)
x = l.MaxPooling2D((2, 2), (2, 2), padding='same')(x)
x = l.BatchNormalization()(x)
x = l.Conv2D(64, 5, padding='same', activation='relu')(x)
x = l.MaxPooling2D((2, 2), (2, 2), padding='same')(x)
x = l.Flatten()(x)
x = l.Dense(1024, activation='relu')(x)
x = l.Dropout(0.4)(x)
out = l.Dense(num_classes, activation='softmax')(x)
return keras.models.Model([inp], [out])
def build_layerwise_model(input_shape, **pruning_params):
return keras.Sequential([
prune.prune_low_magnitude(
l.Conv2D(32, 5, padding='same', activation='relu'),
input_shape=input_shape,
**pruning_params
),
l.MaxPooling2D((2, 2), (2, 2), padding='same'),
l.BatchNormalization(),
prune.prune_low_magnitude(
l.Conv2D(64, 5, padding='same', activation='relu'), **pruning_params
),
l.MaxPooling2D((2, 2), (2, 2), padding='same'),
l.Flatten(),
prune.prune_low_magnitude(
l.Dense(1024, activation='relu'), **pruning_params
),
l.Dropout(0.4),
prune.prune_low_magnitude(
l.Dense(num_classes, activation='softmax'), **pruning_params
),
])
def train_and_save(models, x_train, y_train, x_test, y_test):
for model in models:
model.compile(
loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'],
)
# Print the model summary.
model.summary()
# Add a pruning step callback to peg the pruning step to the optimizer's
# step. Also add a callback to add pruning summaries to tensorboard
callbacks = [
pruning_callbacks.UpdatePruningStep(),
pruning_callbacks.PruningSummaries(log_dir=FLAGS.output_dir)
]
model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
# Export and import the model. Check that accuracy persists.
saved_model_dir = '/tmp/saved_model'
print('Saving model to: ', saved_model_dir)
keras.models.save_model(model, saved_model_dir, save_format='tf')
print('Loading model from: ', saved_model_dir)
loaded_model = keras.models.load_model(saved_model_dir)
score = loaded_model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
def main(unused_argv):
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
if keras.backend.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
pruning_params = {
'pruning_schedule':
PolynomialDecay(
initial_sparsity=0.1,
final_sparsity=0.75,
begin_step=1000,
end_step=5000,
frequency=100)
}
layerwise_model = build_layerwise_model(input_shape, **pruning_params)
sequential_model = build_sequential_model(input_shape)
sequential_model = prune.prune_low_magnitude(
sequential_model, **pruning_params)
functional_model = build_functional_model(input_shape)
functional_model = prune.prune_low_magnitude(
functional_model, **pruning_params)
models = [layerwise_model, sequential_model, functional_model]
train_and_save(models, x_train, y_train, x_test, y_test)
if __name__ == '__main__':
absl_app.run(main)
|