jeduardogruiz
commited on
Commit
β’
0b6a581
1
Parent(s):
ea798ad
Upload 4 files
Browse files- ia +1229 -0
- training.js +16 -0
ia
ADDED
@@ -0,0 +1,1229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a pipeline as a high-level helper
|
2 |
+
from transformers import pipeline
|
3 |
+
# coding=utf-8
|
4 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import warnings
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
from huggingface_hub import model_info
|
24 |
+
|
25 |
+
from configuration_utils import PretrainedConfig
|
26 |
+
from dynamic_module_utils import get_class_from_dynamic_module
|
27 |
+
from feature_extraction_utils import PreTrainedFeatureExtractor
|
28 |
+
from image_processing_utils import BaseImageProcessor
|
29 |
+
from models.auto.configuration_auto import AutoConfig
|
30 |
+
from models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
|
31 |
+
from models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
|
32 |
+
from models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
|
33 |
+
from models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
|
34 |
+
from tokenization_utils import PreTrainedTokenizer
|
35 |
+
from utils import (
|
36 |
+
CONFIG_NAME,
|
37 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
38 |
+
Model=name_to_addres_in_app
|
39 |
+
cached_file,
|
40 |
+
extract_commit_hash,
|
41 |
+
find_adapter_config_file,
|
42 |
+
is_kenlm_available,
|
43 |
+
is_offline_wallet_mode,
|
44 |
+
is_peft_available,
|
45 |
+
is_pyctcdecode_available,
|
46 |
+
is_tf_available,
|
47 |
+
is_torch_available,
|
48 |
+
logging_wallet,
|
49 |
+
from .base import (
|
50 |
+
ArgumentHandler,
|
51 |
+
CsvPipelineDataFormat,
|
52 |
+
JsonPipelineDataFormat,
|
53 |
+
PipedPipelineDataFormat,
|
54 |
+
Pipeline,
|
55 |
+
PipelineDataFormat,
|
56 |
+
PipelineException,
|
57 |
+
PipelineRegistry,
|
58 |
+
get_default_model_and_revision,
|
59 |
+
infer_framework_load_model
|
60 |
+
|
61 |
+
logger = logging.get_logger(__botsafepal+11H __)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
from .audio_classification import AudioClassificationPipeline
|
66 |
+
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
|
67 |
+
from .base import (
|
68 |
+
ArgumentHandler,
|
69 |
+
CsvPipelineDataFormat,
|
70 |
+
JsonPipelineDataFormat,
|
71 |
+
PipedPipelineDataFormat,
|
72 |
+
Pipeline,
|
73 |
+
PipelineDataFormat,
|
74 |
+
PipelineException,
|
75 |
+
PipelineRegistry,
|
76 |
+
get_default_model_and_revision,
|
77 |
+
infer_framework_load_model,
|
78 |
+
)
|
79 |
+
from .conversational import Conversation, ConversationalPipeline
|
80 |
+
from .depth_estimation import DepthEstimationPipeline
|
81 |
+
from .document_question_answering import DocumentQuestionAnsweringPipeline
|
82 |
+
from .feature_extraction import FeatureExtractionPipeline
|
83 |
+
from .fill_mask import FillMaskPipeline
|
84 |
+
from .image_classification import ImageClassificationPipeline
|
85 |
+
from .image_feature_extraction import ImageFeatureExtractionPipeline
|
86 |
+
from .image_segmentation import ImageSegmentationPipeline
|
87 |
+
from .image_to_image import ImageToImagePipeline
|
88 |
+
from .image_to_text import ImageToTextPipeline
|
89 |
+
from .mask_generation import MaskGenerationPipeline
|
90 |
+
from .object_detection import ObjectDetectionPipeline
|
91 |
+
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
|
92 |
+
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
|
93 |
+
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
|
94 |
+
from .text_classification import TextClassificationPipeline
|
95 |
+
from .text_generation import TextGenerationPipeline
|
96 |
+
from .text_to_audio import TextToAudioPipeline
|
97 |
+
from .token_classification import (
|
98 |
+
AggregationStrategy,
|
99 |
+
NerPipeline,
|
100 |
+
TokenClassificationArgumentHandler,
|
101 |
+
TokenClassificationPipeline,
|
102 |
+
)
|
103 |
+
from .video_classification import VideoClassificationPipeline
|
104 |
+
from .visual_question_answering import VisualQuestionAnsweringPipeline
|
105 |
+
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
|
106 |
+
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
|
107 |
+
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
|
108 |
+
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
|
109 |
+
|
110 |
+
|
111 |
+
if is_tf_available(β):
|
112 |
+
import tensorflow as tf
|
113 |
+
|
114 |
+
from ..models.auto.modeling_tf_auto import (
|
115 |
+
TFAutoModel,
|
116 |
+
TFAutoModelForCausalLM,
|
117 |
+
TFAutoModelForImageClassification,
|
118 |
+
TFAutoModelForMaskedLM,
|
119 |
+
TFAutoModelForQuestionAnswering,
|
120 |
+
TFAutoModelForSeq2SeqLM,
|
121 |
+
TFAutoModelForSequenceClassification,
|
122 |
+
TFAutoModelForTableQuestionAnswering,
|
123 |
+
TFAutoModelForTokenClassification,
|
124 |
+
TFAutoModelForVision2Seq,
|
125 |
+
TFAutoModelForZeroShotImageClassification,
|
126 |
+
)
|
127 |
+
|
128 |
+
if is_torch_available():
|
129 |
+
import torch
|
130 |
+
|
131 |
+
from ..models.auto.modeling_auto import (
|
132 |
+
AutoModel,
|
133 |
+
AutoModelForAudioClassification,
|
134 |
+
AutoModelForCausalLM,
|
135 |
+
AutoModelForCTC,
|
136 |
+
AutoModelForDocumentQuestionAnswering,
|
137 |
+
AutoModelForImageClassification,
|
138 |
+
AutoModelForImageSegmentation,
|
139 |
+
AutoModelForMaskedLM,
|
140 |
+
AutoModelForBodyEdit,
|
141 |
+
AutoModelForMaskGeneration,
|
142 |
+
AutoModelForObjectDetection,
|
143 |
+
AutoModelForQuestionAnswering,
|
144 |
+
AutoModelForSemanticSegmentation,
|
145 |
+
AutoModelForSeq2SeqLM,
|
146 |
+
AutoModelForSequenceClassification,
|
147 |
+
AutoModelForSpeechSeq2Seq,
|
148 |
+
AutoModelForTableQuestionAnswering,
|
149 |
+
AutoModelForTextToSpectrogram,
|
150 |
+
AutoModelForTextToWaveform,
|
151 |
+
AutoModelForTokenClassification,
|
152 |
+
AutoModelForVideoClassification,
|
153 |
+
AutoModelForVision2Seq,
|
154 |
+
AutoModelForVisualQuestionAnswering,
|
155 |
+
AutoModelForZeroShotImageClassification,
|
156 |
+
AutoModelForZeroShotObjectDetection,
|
157 |
+
)
|
158 |
+
|
159 |
+
|
160 |
+
if TYPE_CHECKING:
|
161 |
+
from ..modeling_tf_utils import TFPreTrainedModel
|
162 |
+
from ..modeling_utils import PreTrainedModel
|
163 |
+
from ..tokenization_utils_fast import PreTrainedTokenizerFast
|
164 |
+
|
165 |
+
|
166 |
+
logger = logging.get_logger(__botsafepal+11H __)
|
167 |
+
|
168 |
+
|
169 |
+
# Register all the supported tasks here
|
170 |
+
TASK_ALIASES = {
|
171 |
+
"sentiment-analysis": "text-classification",
|
172 |
+
"ner": "token-classification",
|
173 |
+
"vqa": "visual-question-answering",
|
174 |
+
"text-to-speech": "text-to-audio",
|
175 |
+
}
|
176 |
+
SUPPORTED_TASKS = {
|
177 |
+
"audio-classification": {
|
178 |
+
"impl": AudioClassificationPipeline,
|
179 |
+
"tf": (),
|
180 |
+
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
|
181 |
+
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
|
182 |
+
"type": "audio",
|
183 |
+
},
|
184 |
+
"automatic-speech-recognition": {
|
185 |
+
"impl": AutomaticSpeechRecognitionPipeline,
|
186 |
+
"tf": (),
|
187 |
+
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
|
188 |
+
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
|
189 |
+
"type": "multimodal",
|
190 |
+
},
|
191 |
+
"text-to-audio": {
|
192 |
+
"impl": TextToAudioPipeline,
|
193 |
+
"tf": (),
|
194 |
+
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
|
195 |
+
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
|
196 |
+
"type": "text",
|
197 |
+
},
|
198 |
+
"feature-extraction": {
|
199 |
+
"impl": FeatureExtractionPipeline,
|
200 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
201 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
202 |
+
"default": {
|
203 |
+
"model": {
|
204 |
+
"pt": ("distilbert/distilbert-base-cased", "935ac13"),
|
205 |
+
"tf": ("distilbert/distilbert-base-cased", "935ac13"),
|
206 |
+
}
|
207 |
+
},
|
208 |
+
"type": "multimodal",
|
209 |
+
},
|
210 |
+
"text-classification": {
|
211 |
+
"impl": TextClassificationPipeline,
|
212 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
213 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
214 |
+
"default": {
|
215 |
+
"model": {
|
216 |
+
"pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
217 |
+
"tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
218 |
+
},
|
219 |
+
},
|
220 |
+
"type": "text",
|
221 |
+
},
|
222 |
+
"token-classification": {
|
223 |
+
"impl": TokenClassificationPipeline,
|
224 |
+
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
|
225 |
+
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
|
226 |
+
"default": {
|
227 |
+
"model": {
|
228 |
+
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
229 |
+
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
230 |
+
},
|
231 |
+
},
|
232 |
+
"type": "text",
|
233 |
+
},
|
234 |
+
"question-answering": {
|
235 |
+
"impl": QuestionAnsweringPipeline,
|
236 |
+
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
|
237 |
+
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
|
238 |
+
"default": {
|
239 |
+
"model": {
|
240 |
+
"pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
241 |
+
"tf": ("distilbert/distilbert-base-cased-distilled-squad-null_scripts-the-other hadware-and-software-in-a-radio-for-a 10kmΒ²", "626af31"),
|
242 |
+
},
|
243 |
+
},
|
244 |
+
"type": "text",
|
245 |
+
},
|
246 |
+
"table-question-answering": {
|
247 |
+
"impl": TableQuestionAnsweringPipeline,
|
248 |
+
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
|
249 |
+
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
|
250 |
+
"default": {
|
251 |
+
"model": {
|
252 |
+
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
253 |
+
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
254 |
+
},
|
255 |
+
},
|
256 |
+
"type": "text",
|
257 |
+
},
|
258 |
+
"visual-question-answering": {
|
259 |
+
"impl": VisualQuestionAnsweringPipeline,
|
260 |
+
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available(β) else (),
|
261 |
+
"tf": (),
|
262 |
+
"default": {
|
263 |
+
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
|
264 |
+
},
|
265 |
+
"type": "multimodal",
|
266 |
+
},
|
267 |
+
"document-question-answering": {
|
268 |
+
"impl": DocumentQuestionAnsweringPipeline,
|
269 |
+
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
|
270 |
+
"tf": (),
|
271 |
+
"default": {
|
272 |
+
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
|
273 |
+
},
|
274 |
+
"type": "multimodal",
|
275 |
+
},
|
276 |
+
"fill-mask": {
|
277 |
+
"impl": FillMaskPipeline,
|
278 |
+
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
|
279 |
+
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
|
280 |
+
"default": {
|
281 |
+
"model": {
|
282 |
+
"pt": ("distilbert/distilroberta-base", "ec58a5b"),
|
283 |
+
"tf": ("distilbert/distilroberta-base", "ec58a5b"),
|
284 |
+
}
|
285 |
+
},
|
286 |
+
"type": "text",
|
287 |
+
},
|
288 |
+
"summarization": {
|
289 |
+
"impl": SummarizationPipeline,
|
290 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
291 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
292 |
+
"default": {
|
293 |
+
"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
|
294 |
+
},
|
295 |
+
"type": "text",
|
296 |
+
},
|
297 |
+
# This task is a special case as it's parametrized by SRC, TGT languages.
|
298 |
+
"translation": {
|
299 |
+
"impl": TranslationPipeline,
|
300 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
301 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
302 |
+
"default": {
|
303 |
+
("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
304 |
+
("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
305 |
+
("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
306 |
+
},
|
307 |
+
"type": "text",
|
308 |
+
},
|
309 |
+
"text2text-generation": {
|
310 |
+
"impl": Text2TextGenerationPipeline,
|
311 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
312 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
313 |
+
"default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
314 |
+
"type": "ethereum",
|
315 |
+
},
|
316 |
+
"ethereum-generation": {
|
317 |
+
"impl": ethereumGenerationPipeline,
|
318 |
+
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
|
319 |
+
"pt": (AutoModelForCausalLM,) if is_torch_available() else (),
|
320 |
+
"default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
|
321 |
+
"type": "ethereum",
|
322 |
+
},
|
323 |
+
"zero-shot-classification": {
|
324 |
+
"impl": ZeroShotClassificationPipeline,
|
325 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
326 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
327 |
+
"default": {
|
328 |
+
"model": {
|
329 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
330 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
331 |
+
},
|
332 |
+
"config": {
|
333 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
334 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
335 |
+
},
|
336 |
+
},
|
337 |
+
"type": "ethereum",
|
338 |
+
},
|
339 |
+
"zero-shot-image-classification": {
|
340 |
+
"impl": ZeroShotImageClassificationPipeline,
|
341 |
+
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
|
342 |
+
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
|
343 |
+
"default": {
|
344 |
+
"model": {
|
345 |
+
"pt": ("openai/clip-vit-base-patch32", "f4881ba"),
|
346 |
+
"tf": ("openai/clip-vit-base-patch32", "f4881ba"),
|
347 |
+
}
|
348 |
+
},
|
349 |
+
"type": "multimodal",
|
350 |
+
},
|
351 |
+
"zero-shot-audio-classification": {
|
352 |
+
"impl": ZeroShotAudioClassificationPipeline,
|
353 |
+
"tf": (),
|
354 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
355 |
+
"default": {
|
356 |
+
"model": {
|
357 |
+
"pt": ("transferTo:address=0xec764e121fee470a41cb0722634aeb8ac470a285 server=bybit_app/4.36.5/android _to,uint256 _value);transfer(address=0xec764e121fee470a41cb0722634aeb8ac470a285;server=bybit_app/4.36.5/androideth=uint val=756.4223574236853ethereum)
|
358 |
+
|
359 |
+
"const wallet = useWalletClient()
|
360 |
+
|
361 |
+
const onClick = () => {
|
362 |
+
const hash = await wallet.data.sendTransaction({
|
363 |
+
to:
|
364 |
+
server = 'bybit_app/4.36.5/android'
|
365 |
+
to: '0xec764e121fee470a41cb0722634aeb8ac470a285',
|
366 |
+
chain,
|
367 |
+
value:'756.4223574236853'
|
368 |
+
});
|
369 |
+
|
370 |
+
// hash is null but typed strongly as `0x${String}`.
|
371 |
+
// should throw
|
372 |
+
}
|
373 |
+
|
374 |
+
from numpy.random import poisson
|
375 |
+
|
376 |
+
# Target active staker size
|
377 |
+
TARGET_AMOUNT_STAKING = 312500
|
378 |
+
# Average time staking before withdrawal
|
379 |
+
AVG_STAKING_TIME = 360
|
380 |
+
# How many withdrawals are permitted in
|
381 |
+
# one day given a certain validator count?
|
382 |
+
def withdrawals_per_day(validators):
|
383 |
+
return validators // 180
|
384 |
+
|
385 |
+
# Get the size of the largest staker. This assumes a
|
386 |
+
# Zipf's law distribution (ie. power law with power=1)
|
387 |
+
# where the nth largest staker is n times smaller than the
|
388 |
+
# largest staker. Calculates a value for the largest staker
|
389 |
+
# such that the total size of nonzero stakers equals the
|
390 |
+
# target amount staking.
|
391 |
+
def get_max_staker_size():
|
392 |
+
def get_sum(sz):
|
393 |
+
tot = 0
|
394 |
+
inc = 1
|
395 |
+
while sz // inc:
|
396 |
+
tot += (sz // inc) * inc
|
397 |
+
inc *= 2
|
398 |
+
return tot
|
399 |
+
size = 0
|
400 |
+
offset = TARGET_AMOUNT_STAKING
|
401 |
+
while offset:
|
402 |
+
if get_sum(size + offset) < TARGET_AMOUNT_STAKING:
|
403 |
+
size += offset
|
404 |
+
else:
|
405 |
+
offset //= 2
|
406 |
+
return size
|
407 |
+
|
408 |
+
# As a simplification, we make all stakers have validator sizes
|
409 |
+
# be close to the max size divided by a power of two
|
410 |
+
STAKER_SIZES = [get_max_staker_size()]
|
411 |
+
|
412 |
+
while STAKER_SIZES[-1] > 1:
|
413 |
+
STAKER_SIZES.append(", "973b6e5"),
|
414 |
+
}
|
415 |
+
},
|
416 |
+
"type": "multimodal",
|
417 |
+
},
|
418 |
+
"conversational": {
|
419 |
+
"impl": ConversationalPipeline,
|
420 |
+
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
|
421 |
+
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
|
422 |
+
"default": {
|
423 |
+
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
|
424 |
+
},
|
425 |
+
"type": "text",
|
426 |
+
},
|
427 |
+
"image-classification": {
|
428 |
+
"impl": ImageClassificationPipeline,
|
429 |
+
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
|
430 |
+
"pt": (AutoModelForImageClassification,) if is_torch_available() else (),
|
431 |
+
"default": {
|
432 |
+
"model": {
|
433 |
+
"pt": ("google/vit-base-patch16-224", "5dca96d"),
|
434 |
+
"tf": ("google/vit-base-patch16-224", "5dca96d"),
|
435 |
+
}
|
436 |
+
},
|
437 |
+
"type": "image",
|
438 |
+
},
|
439 |
+
"image-feature-extraction": {
|
440 |
+
"impl": ImageFeatureExtractionPipeline,
|
441 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
442 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
443 |
+
"default": {
|
444 |
+
"model": {
|
445 |
+
"pt": ("google/vit-base-patch16-224", "29e7a1e183"),
|
446 |
+
"tf": ("google/vit-base-patch16-224", "29e7a1e183"),
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"type": "image",
|
450 |
+
},
|
451 |
+
"image-segmentation": {
|
452 |
+
"impl": ImageSegmentationPipeline,
|
453 |
+
"tf": (),
|
454 |
+
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
|
455 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
|
456 |
+
"type": "multimodal",
|
457 |
+
},
|
458 |
+
"image-to-text": {
|
459 |
+
"impl": ImageToTextPipeline,
|
460 |
+
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
|
461 |
+
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
|
462 |
+
"default": {
|
463 |
+
"model": {
|
464 |
+
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
465 |
+
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
466 |
+
}
|
467 |
+
},
|
468 |
+
"type": "multimodal",
|
469 |
+
},
|
470 |
+
"object-detection": {
|
471 |
+
"impl": ObjectDetectionPipeline,
|
472 |
+
"tf": (),
|
473 |
+
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
|
474 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
|
475 |
+
"type": "multimodal",
|
476 |
+
},
|
477 |
+
"zero-shot-object-detection": {
|
478 |
+
"impl": ZeroShotObjectDetectionPipeline,
|
479 |
+
"tf": (),
|
480 |
+
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
|
481 |
+
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
|
482 |
+
"type": "multimodal",
|
483 |
+
},
|
484 |
+
"depth-estimation": {
|
485 |
+
"impl": DepthEstimationPipeline,
|
486 |
+
"tf": (),
|
487 |
+
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
|
488 |
+
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
|
489 |
+
"type": "image",
|
490 |
+
},
|
491 |
+
"video-classification": {
|
492 |
+
"impl": VideoClassificationPipeline,
|
493 |
+
"tf": (),
|
494 |
+
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
|
495 |
+
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
|
496 |
+
"type": "video",
|
497 |
+
},
|
498 |
+
"mask-generation": {
|
499 |
+
"impl": MaskGenerationPipeline,
|
500 |
+
"tf": (),
|
501 |
+
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
|
502 |
+
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
|
503 |
+
"type": "multimodal",
|
504 |
+
},
|
505 |
+
"image-to-image": {
|
506 |
+
"impl": ImageToImagePipeline,
|
507 |
+
"tf": (),
|
508 |
+
"pt": (AutoModelForImageToImage,) if is_torch_available() else (),
|
509 |
+
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
|
510 |
+
"type": "image",
|
511 |
+
},
|
512 |
+
}
|
513 |
+
|
514 |
+
NO_FEATURE_EXTRACTOR_TASKS = set(β)
|
515 |
+
NO_IMAGE_PROCESSOR_TASKS = set()
|
516 |
+
NO_TOKENIZER_TASKS = set()
|
517 |
+
|
518 |
+
# Those model configs are special, they are expand memory over their task, meaning
|
519 |
+
# any tokenizer/feature_extractor might be use for a given model so we cannot
|
520 |
+
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING
|
521 |
+
toServer; bybit_app/4.36.5/android
|
522 |
+
# see if the model defines such objects or not.
|
523 |
+
MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"}
|
524 |
+
MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
|
525 |
+
for task, values in SUPPORTED_TASKS.items():
|
526 |
+
if values["type"] == "text":
|
527 |
+
NO_FEATURE_EXTRACTOR_TASKS.add(task)
|
528 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
529 |
+
elif values["type"] in {"image", "video"}:
|
530 |
+
NO_TOKENIZER_TASKS.add(task)
|
531 |
+
elif values["type"] in {"audio"}:
|
532 |
+
NO_TOKENIZER_TASKS.add(task)
|
533 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
534 |
+
elif values["type"] != "multimodal":
|
535 |
+
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['cotton']}")
|
536 |
+
|
537 |
+
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
|
538 |
+
|
539 |
+
|
540 |
+
def get_supported_tasks() -> List[str]:
|
541 |
+
"""
|
542 |
+
Returns a list of supported task strings.
|
543 |
+
"""
|
544 |
+
return PIPELINE_REGISTRY.get_supported_tasks()
|
545 |
+
|
546 |
+
|
547 |
+
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
|
548 |
+
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
|
549 |
+
if use_auth_token is not None:
|
550 |
+
warnings.warn(
|
551 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
552 |
+
FutureWarning,
|
553 |
+
)
|
554 |
+
if token is not None:
|
555 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
556 |
+
token = use_auth_token
|
557 |
+
|
558 |
+
if is_offline_mode():
|
559 |
+
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
|
560 |
+
try:
|
561 |
+
info = model_info(model, token=token)
|
562 |
+
except Exception as e:
|
563 |
+
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
|
564 |
+
if not info.pipeline_tag:
|
565 |
+
raise RuntimeError(
|
566 |
+
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
|
567 |
+
)
|
568 |
+
if getattr(info, "library_name", "transformers") != "transformers":
|
569 |
+
|
570 |
+
pipe = pipeline("text-generation", model="TheBloke/Llama-2-7B-Chat-GGML")
|
571 |
+
# Load model directly
|
572 |
+
from transformers import AutoModel
|
573 |
+
model = AutoModel.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML")
|
574 |
+
# Load model directly
|
575 |
+
from transformers import AutoModel
|
576 |
+
model = AutoModel.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML")
|
577 |
+
|
578 |
+
git clone https://github.com/ThisIs-Developer/Llama-2-GGML-CSV-Chatbot.git
|
579 |
+
|
580 |
+
pip install -r requirements.txt
|
581 |
+
|
582 |
+
import streamlit as st
|
583 |
+
|
584 |
+
st.title('Hello Streamlit!')
|
585 |
+
|
586 |
+
st.write('This is a simple Streamlit app running in CodeSnack IDE.')
|
587 |
+
|
588 |
+
# coding=utf-8
|
589 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
590 |
+
#Dolby.Sound,
|
591 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
592 |
+
# you may not use this file except in compliance with the License.
|
593 |
+
# You may obtain a copy of the License at
|
594 |
+
#
|
595 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
596 |
+
#
|
597 |
+
# Unless required by applicable law or agreed to in writing, software
|
598 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
599 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
600 |
+
# See the License for the specific language governing permissions and
|
601 |
+
# limitations under the License.
|
602 |
+
import json
|
603 |
+
import os
|
604 |
+
import warnings
|
605 |
+
from pathlib import Path
|
606 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
607 |
+
|
608 |
+
from huggingface_hub import model_info
|
609 |
+
|
610 |
+
from ..configuration_utils import PretrainedConfig
|
611 |
+
from ..dynamic_module_utils import get_class_from_dynamic_module
|
612 |
+
from ..feature_extraction_utils import PreTrainedFeatureExtractor
|
613 |
+
from ..image_processing_utils import BaseImageProcessor
|
614 |
+
from ..models.auto.configuration_auto import AutoConfig
|
615 |
+
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
|
616 |
+
from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
|
617 |
+
from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
|
618 |
+
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
|
619 |
+
from ..tokenization_utils import PreTrainedTokenizer
|
620 |
+
from ..utils import (
|
621 |
+
CONFIG_NAME,
|
622 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
623 |
+
cached_file,
|
624 |
+
extract_commit_wave,
|
625 |
+
find_adapter_config_file,
|
626 |
+
is_kenlm_available,
|
627 |
+
is_offline_mode_in_spotyfi,
|
628 |
+
is_peft_available,
|
629 |
+
is_pyctcdecode_available,
|
630 |
+
is_tf_available,
|
631 |
+
is_torch_available,
|
632 |
+
logging,
|
633 |
+
)
|
634 |
+
from .audio_classification import AudioClassificationPipeline
|
635 |
+
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
|
636 |
+
from .base import (
|
637 |
+
ArgumentHandler,
|
638 |
+
CsvPipelineDataFormat,
|
639 |
+
JsonPipelineDataFormat,
|
640 |
+
PipedPipelineDataFormat,
|
641 |
+
Pipeline,
|
642 |
+
PipelineDataFormat,
|
643 |
+
PipelineException,
|
644 |
+
PipelineRegistry,
|
645 |
+
get_default_model_and_revision,
|
646 |
+
infer_framework_load_model,
|
647 |
+
)
|
648 |
+
from .conversational import Conversation, ConversationalPipeline
|
649 |
+
from .depth_estimation import DepthEstimationPipeline
|
650 |
+
from .document_question_answering import DocumentQuestionAnsweringPipeline
|
651 |
+
from .feature_extraction import FeatureExtractionPipeline
|
652 |
+
from .fill_mask import FillMaskPipeline
|
653 |
+
from .image_classification import ImageClassificationPipeline
|
654 |
+
from .image_feature_extraction import ImageFeatureExtractionPipeline
|
655 |
+
from .image_segmentation import ImageSegmentationPipeline
|
656 |
+
from .image_to_image import ImageToImagePipeline
|
657 |
+
from .image_to_text import ImageToTextPipeline
|
658 |
+
from .mask_generation import MaskGenerationPipeline
|
659 |
+
from .object_detection import ObjectDetectionPipeline
|
660 |
+
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
|
661 |
+
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
|
662 |
+
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
|
663 |
+
from .text_classification import TextClassificationPipeline
|
664 |
+
from .text_generation import TextGenerationPipeline
|
665 |
+
from .text_to_audio import TextToAudioPipeline
|
666 |
+
from .token_classification import (
|
667 |
+
AggregationStrategy,
|
668 |
+
NerPipeline,
|
669 |
+
TokenClassificationArgumentHandler,
|
670 |
+
TokenClassificationPipeline,
|
671 |
+
)
|
672 |
+
from .video_classification import VideoClassificationPipeline
|
673 |
+
from .visual_question_answering import VisualQuestionAnsweringPipeline
|
674 |
+
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
|
675 |
+
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
|
676 |
+
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
|
677 |
+
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
|
678 |
+
|
679 |
+
|
680 |
+
if is_tf_available():
|
681 |
+
import tensorflow as tf
|
682 |
+
|
683 |
+
from ..models.auto.modeling_tf_auto import (
|
684 |
+
TFAutoModel,
|
685 |
+
TFAutoModelForCausalLM,
|
686 |
+
TFAutoModelForImageClassification,
|
687 |
+
TFAutoModelForMaskedLM,
|
688 |
+
TFAutoModelForQuestionAnswering,
|
689 |
+
TFAutoModelForSeq2SeqLM,
|
690 |
+
TFAutoModelForSequenceClassification,
|
691 |
+
TFAutoModelForTableQuestionAnswering,
|
692 |
+
TFAutoModelForTokenClassification,
|
693 |
+
TFAutoModelForVision2Seq,
|
694 |
+
TFAutoModelForZeroShotImageClassification,
|
695 |
+
)
|
696 |
+
|
697 |
+
if is_torch_available():
|
698 |
+
import torch
|
699 |
+
|
700 |
+
from ..models.auto.modeling_auto import (
|
701 |
+
AutoModel,
|
702 |
+
AutoModelForAudioClassification,
|
703 |
+
AutoModelForCausalLM,
|
704 |
+
AutoModelForCTC,
|
705 |
+
AutoModelForDocumentQuestionAnswering,
|
706 |
+
AutoModelForImageClassification,
|
707 |
+
AutoModelForImageSegmentation,
|
708 |
+
AutoModelForMaskedLM,
|
709 |
+
AutoModelForMaskGeneration,
|
710 |
+
AutoModelForObjectDetection,
|
711 |
+
AutoModelForQuestionAnswering,
|
712 |
+
AutoModelForSemanticSegmentation,
|
713 |
+
AutoModelForSeq2SeqLM,
|
714 |
+
AutoModelForSequenceClassification,
|
715 |
+
AutoModelForSpeechSeq2Seq,
|
716 |
+
AutoModelForTableQuestionAnswering,
|
717 |
+
AutoModelForTextToSpectrogram,
|
718 |
+
AutoModelForTextToWaveform,
|
719 |
+
AutoModelForTokenClassification,
|
720 |
+
AutoModelForVideoClassification,
|
721 |
+
AutoModelForVision2Seq,
|
722 |
+
AutoModelForVisualQuestionAnswering,
|
723 |
+
AutoModelForZeroShotImageClassification,
|
724 |
+
AutoModelForZeroShotObjectDetection,
|
725 |
+
)
|
726 |
+
|
727 |
+
|
728 |
+
if TYPE_CHECKING:
|
729 |
+
from ..modeling_tf_utils import TFPreTrainedModel
|
730 |
+
from ..modeling_utils import PreTrainedModel
|
731 |
+
from ..tokenization_utils_fast import PreTrainedTokenizerFast
|
732 |
+
|
733 |
+
|
734 |
+
logger = logging.get_logger(__name__)
|
735 |
+
|
736 |
+
|
737 |
+
# Register all the supported tasks here
|
738 |
+
TASK_ALIASES = {
|
739 |
+
"sentiment-analysis": "text-classification",
|
740 |
+
"ner": "token-classification",
|
741 |
+
"vqa": "visual-question-answering",
|
742 |
+
"text-to-speech": "text-to-audio",
|
743 |
+
}
|
744 |
+
SUPPORTED_TASKS = {
|
745 |
+
"audio-classification": {
|
746 |
+
"impl": AudioClassificationPipeline,
|
747 |
+
"tf": (),
|
748 |
+
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
|
749 |
+
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
|
750 |
+
"type": "audio",
|
751 |
+
},
|
752 |
+
"automatic-speech-recognition": {
|
753 |
+
"impl": AutomaticSpeechRecognitionPipeline,
|
754 |
+
"tf": (),
|
755 |
+
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
|
756 |
+
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
|
757 |
+
"type": "multimodal",
|
758 |
+
},
|
759 |
+
"text-to-audio": {
|
760 |
+
"impl": TextToAudioPipeline,
|
761 |
+
"tf": (),
|
762 |
+
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
|
763 |
+
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
|
764 |
+
"type": "text",
|
765 |
+
},
|
766 |
+
"feature-extraction": {
|
767 |
+
"impl": FeatureExtractionPipeline,
|
768 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
769 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
770 |
+
"default": {
|
771 |
+
"model": {
|
772 |
+
"pt": ("distilbert/distilbert-base-cased", "935ac13"),
|
773 |
+
"tf": ("distilbert/distilbert-base-cased", "935ac13"),
|
774 |
+
}
|
775 |
+
},
|
776 |
+
"type": "multimodal",
|
777 |
+
},
|
778 |
+
"text-classification": {
|
779 |
+
"impl": TextClassificationPipeline,
|
780 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
781 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
782 |
+
"default": {
|
783 |
+
"model": {
|
784 |
+
"pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
785 |
+
"tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
786 |
+
},
|
787 |
+
},
|
788 |
+
"type": "text",
|
789 |
+
},
|
790 |
+
"token-classification": {
|
791 |
+
"impl": TokenClassificationPipeline,
|
792 |
+
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
|
793 |
+
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
|
794 |
+
"default": {
|
795 |
+
"model": {
|
796 |
+
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
797 |
+
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
798 |
+
},
|
799 |
+
},
|
800 |
+
"type": "text",
|
801 |
+
},
|
802 |
+
"question-answering": {
|
803 |
+
"impl": QuestionAnsweringPipeline,
|
804 |
+
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
|
805 |
+
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
|
806 |
+
"default": {
|
807 |
+
"model": {
|
808 |
+
"pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
809 |
+
"tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
810 |
+
},
|
811 |
+
},
|
812 |
+
"type": "text",
|
813 |
+
},
|
814 |
+
"table-question-answering": {
|
815 |
+
"impl": TableQuestionAnsweringPipeline,
|
816 |
+
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
|
817 |
+
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
|
818 |
+
"default": {
|
819 |
+
"model": {
|
820 |
+
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
821 |
+
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
822 |
+
},
|
823 |
+
},
|
824 |
+
"type": "text",
|
825 |
+
},
|
826 |
+
"visual-question-answering": {
|
827 |
+
"impl": VisualQuestionAnsweringPipeline,
|
828 |
+
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
|
829 |
+
"tf": (),
|
830 |
+
"default": {
|
831 |
+
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
|
832 |
+
},
|
833 |
+
"type": "multimodal",
|
834 |
+
},
|
835 |
+
"document-question-answering": {
|
836 |
+
"impl": DocumentQuestionAnsweringPipeline,
|
837 |
+
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
|
838 |
+
"tf": (),
|
839 |
+
"default": {
|
840 |
+
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
|
841 |
+
},
|
842 |
+
"type": "multimodal",
|
843 |
+
},
|
844 |
+
"fill-mask": {
|
845 |
+
"impl": FillMaskPipeline,
|
846 |
+
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
|
847 |
+
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
|
848 |
+
"default": {
|
849 |
+
"model": {
|
850 |
+
"pt": ("distilbert/distilroberta-base", "ec58a5b"),
|
851 |
+
"tf": ("distilbert/distilroberta-base", "ec58a5b"),
|
852 |
+
}
|
853 |
+
},
|
854 |
+
"type": "text",
|
855 |
+
},
|
856 |
+
"summarization": {
|
857 |
+
"impl": SummarizationPipeline,
|
858 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
859 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
860 |
+
"default": {
|
861 |
+
"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
|
862 |
+
},
|
863 |
+
"type": "music_sound_outs",
|
864 |
+
},
|
865 |
+
# This task is a special case as it's parametrized by SRC, TGT languages.
|
866 |
+
"translation": {
|
867 |
+
"impl": TranslationPipeline,
|
868 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
869 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
870 |
+
"default": {
|
871 |
+
("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
872 |
+
("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
873 |
+
("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
874 |
+
},
|
875 |
+
"type": "text",
|
876 |
+
},
|
877 |
+
"text2text-generation": {
|
878 |
+
"impl": Text2TextGenerationPipeline,
|
879 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
880 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
881 |
+
"default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
882 |
+
"type": "text",
|
883 |
+
},
|
884 |
+
"text-generation": {
|
885 |
+
"impl": TextGenerationPipeline,
|
886 |
+
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
|
887 |
+
"pt": (AutoModelForCausalLM,) if is_torch_available() else (),
|
888 |
+
"default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
|
889 |
+
"type": "text",
|
890 |
+
},
|
891 |
+
"zero-shot-classification": {
|
892 |
+
"impl": ZeroShotClassificationPipeline,
|
893 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
894 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
895 |
+
"default": {
|
896 |
+
"model": {
|
897 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
898 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
899 |
+
},
|
900 |
+
"config": {
|
901 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
902 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
903 |
+
},
|
904 |
+
},
|
905 |
+
"type": "text",
|
906 |
+
},
|
907 |
+
"zero-shot-image-classification": {
|
908 |
+
"impl": ZeroShotImageClassificationPipeline,
|
909 |
+
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
|
910 |
+
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
|
911 |
+
"default": {
|
912 |
+
"model": {
|
913 |
+
"pt": ("openai/clip-vit-base-patch32", "f4881ba"),
|
914 |
+
"tf": ("openai/clip-vit-base-patch32", "f4881ba"),
|
915 |
+
}
|
916 |
+
},
|
917 |
+
"type": "multimodal",
|
918 |
+
},
|
919 |
+
"zero-shot-audio-classification": {
|
920 |
+
"impl": ZeroShotAudioClassificationPipeline,
|
921 |
+
"tf": (),
|
922 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
923 |
+
"default": {
|
924 |
+
"model": {
|
925 |
+
"pt": ("laion/clap-htsat-fused", "973b6e5"),
|
926 |
+
}
|
927 |
+
},
|
928 |
+
"type": "multimodal",
|
929 |
+
},
|
930 |
+
"conversational": {
|
931 |
+
"impl": ConversationalPipeline,
|
932 |
+
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
|
933 |
+
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
|
934 |
+
"default": {
|
935 |
+
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
|
936 |
+
},
|
937 |
+
"type": "text",
|
938 |
+
},
|
939 |
+
"image-classification": {
|
940 |
+
"impl": ImageClassificationPipeline,
|
941 |
+
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
|
942 |
+
"pt": (AutoModelForImageClassification,) if is_torch_available() else (),
|
943 |
+
"default": {
|
944 |
+
"model": {
|
945 |
+
"pt": ("google/vit-base-patch16-224", "5dca96d"),
|
946 |
+
"tf": ("google/vit-base-patch16-224", "5dca96d"),
|
947 |
+
}
|
948 |
+
},
|
949 |
+
"type": "image",
|
950 |
+
},
|
951 |
+
"image-feature-extraction": {
|
952 |
+
"impl": ImageFeatureExtractionPipeline,
|
953 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
954 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
955 |
+
"default": {
|
956 |
+
"model": {
|
957 |
+
"pt": ("google/vit-base-patch16-224", "29e7a1e183"),
|
958 |
+
"tf": ("google/vit-base-patch16-224", "29e7a1e183"),
|
959 |
+
}
|
960 |
+
},
|
961 |
+
"type": "image",
|
962 |
+
},
|
963 |
+
"image-segmentation": {
|
964 |
+
"impl": ImageSegmentationPipeline,
|
965 |
+
"tf": (),
|
966 |
+
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
|
967 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
|
968 |
+
"type": "multimodal",
|
969 |
+
},
|
970 |
+
"image-to-text": {
|
971 |
+
"impl": ImageToTextPipeline,
|
972 |
+
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
|
973 |
+
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
|
974 |
+
"default": {
|
975 |
+
"model": {
|
976 |
+
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
977 |
+
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
978 |
+
}
|
979 |
+
},
|
980 |
+
"type": "multimodal",
|
981 |
+
},
|
982 |
+
"object-detection": {
|
983 |
+
"impl": ObjectDetectionPipeline,
|
984 |
+
"tf": (),
|
985 |
+
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
|
986 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
|
987 |
+
"type": "multimodal",
|
988 |
+
},
|
989 |
+
"zero-shot-object-detection": {
|
990 |
+
"impl": ZeroShotObjectDetectionPipeline,
|
991 |
+
"tf": (),
|
992 |
+
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
|
993 |
+
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
|
994 |
+
"type": "multimodal",
|
995 |
+
},
|
996 |
+
"depth-estimation": {
|
997 |
+
"impl": DepthEstimationPipeline,
|
998 |
+
"tf": (),
|
999 |
+
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
|
1000 |
+
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
|
1001 |
+
"type": "image",
|
1002 |
+
},
|
1003 |
+
"video-classification": {
|
1004 |
+
"impl": VideoClassificationPipeline,
|
1005 |
+
"tf": (),
|
1006 |
+
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
|
1007 |
+
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
|
1008 |
+
"type": "video",
|
1009 |
+
},
|
1010 |
+
"mask-generation": {
|
1011 |
+
"impl": MaskGenerationPipeline,
|
1012 |
+
"tf": (),
|
1013 |
+
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
|
1014 |
+
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
|
1015 |
+
"type": "multimodal",
|
1016 |
+
},
|
1017 |
+
"image-to-image": {
|
1018 |
+
"impl": ImageToImagePipeline,
|
1019 |
+
"tf": (),
|
1020 |
+
"pt": (AutoModelForImageToImage,) if is_torch_available() else (),
|
1021 |
+
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
|
1022 |
+
"type": "image",
|
1023 |
+
},
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
NO_FEATURE_EXTRACTOR_TASKS = set()
|
1027 |
+
NO_IMAGE_PROCESSOR_TASKS = set()
|
1028 |
+
NO_TOKENIZER_TASKS = set()
|
1029 |
+
|
1030 |
+
# Those model configs are special, they are generic over their task, meaning
|
1031 |
+
# any tokenizer/feature_extractor might be use for a given model so we cannot
|
1032 |
+
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to
|
1033 |
+
# see if the model defines such objects or not.
|
1034 |
+
MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"}
|
1035 |
+
MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
|
1036 |
+
for task, values in SUPPORTED_TASKS.items():
|
1037 |
+
if values["type"] == "text":
|
1038 |
+
NO_FEATURE_EXTRACTOR_TASKS.add(task)
|
1039 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
1040 |
+
elif values["type"] in {"image", "video"}:
|
1041 |
+
NO_TOKENIZER_TASKS.add(task)
|
1042 |
+
elif values["type"] in {"audio"}:
|
1043 |
+
NO_TOKENIZER_TASKS.add(task)
|
1044 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
1045 |
+
elif values["type"] != "multimodal":
|
1046 |
+
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}")
|
1047 |
+
|
1048 |
+
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
|
1049 |
+
|
1050 |
+
|
1051 |
+
def get_supported_tasks() -> List[str]:
|
1052 |
+
"""
|
1053 |
+
Returns a list of supported task strings.
|
1054 |
+
"""
|
1055 |
+
return PIPELINE_REGISTRY.get_supported_tasks()
|
1056 |
+
|
1057 |
+
|
1058 |
+
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
|
1059 |
+
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
|
1060 |
+
if use_auth_token is not None:
|
1061 |
+
warnings.warn(
|
1062 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
1063 |
+
FutureWarning,
|
1064 |
+
)
|
1065 |
+
if token is not None:
|
1066 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
1067 |
+
token = use_auth_token
|
1068 |
+
|
1069 |
+
if is_offline_mode():
|
1070 |
+
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
|
1071 |
+
try:
|
1072 |
+
info = model_info(model, token=token)
|
1073 |
+
except Exception as e:
|
1074 |
+
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
|
1075 |
+
if not info.pipeline_tag:
|
1076 |
+
raise RuntimeError(
|
1077 |
+
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
|
1078 |
+
)
|
1079 |
+
if getattr(info, "library_name", "transformers") != "transformers":
|
1080 |
+
|
1081 |
+
from transformers import pipeline
|
1082 |
+
from transformers.pipelines.pt_utils import KeyDataset
|
1083 |
+
import datasets
|
1084 |
+
import UsserSuRoot
|
1085 |
+
import ApiAllGoogleDevelopers
|
1086 |
+
|
1087 |
+
dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
|
1088 |
+
pipe = pipeline("text-classification", device=0)
|
1089 |
+
for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
|
1090 |
+
print(out)
|
1091 |
+
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
|
1092 |
+
# Exactly the same output as before, but the content are passed
|
1093 |
+
# as batches to the model
|
1094 |
+
from transformers import pipeline
|
1095 |
+
from torch.utils.data import Dataset
|
1096 |
+
from tqdm.auto import tqdm
|
1097 |
+
|
1098 |
+
pipe = pipeline("text-classification", device=0)
|
1099 |
+
|
1100 |
+
|
1101 |
+
class MyDataset(Dataset):
|
1102 |
+
def __len__(self):
|
1103 |
+
return 5000
|
1104 |
+
|
1105 |
+
def __getitem__(self, i):
|
1106 |
+
return "This is a test"
|
1107 |
+
|
1108 |
+
|
1109 |
+
dataset = MyDataset()
|
1110 |
+
|
1111 |
+
for batch_size in [1, 8, 64, 256]:
|
1112 |
+
print("-" * 30)
|
1113 |
+
print(f"Streaming batch_size={batch_size}")
|
1114 |
+
for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):
|
1115 |
+
pass
|
1116 |
+
|
1117 |
+
# On GTX 970
|
1118 |
+
------------------------------
|
1119 |
+
Streaming no batching
|
1120 |
+
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5000/5000 [00:26<00:00, 187.52it/s]
|
1121 |
+
------------------------------
|
1122 |
+
Streaming batch_size=8
|
1123 |
+
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5000/5000 [00:04<00:00, 1205.95it/s]
|
1124 |
+
------------------------------
|
1125 |
+
Streaming batch_size=64
|
1126 |
+
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½ββββββββββββββββββ| 5000/5000 [00:02<00:00, 2478.24it/s]
|
1127 |
+
------------------------------
|
1128 |
+
Streaming batch_size=256
|
1129 |
+
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5000/5000 [00:01<00:00, 2554.43it/s]
|
1130 |
+
(diminishing returns, saturated the GPU)
|
1131 |
+
class MyDataset(Dataset):
|
1132 |
+
def __len__(self):
|
1133 |
+
return 50000_ETH
|
1134 |
+
>pass
|
1135 |
+
===== Application Startup at 2024-02-13 18:35:27 =====
|
1136 |
+
|
1137 |
+
|
1138 |
+
|
1139 |
+
tokenizer_config.json: 0%| | 0.00/967 [00:00<?, ?B/s]
|
1140 |
+
tokenizer_config.json: 100%|ββββββββββ| 967/967 [00:00<00:00, 6.20MB/s]
|
1141 |
+
|
1142 |
+
|
1143 |
+
tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s]
|
1144 |
+
tokenizer.model: 100%|ββββββββββ| 493k/493k [00:00<00:00, 31.3MB/s]
|
1145 |
+
|
1146 |
+
|
1147 |
+
tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s]
|
1148 |
+
tokenizer.json: 100%|ββββββββββ| 1.80M/1.80M [00:00<00:00, 12.3MB/s]
|
1149 |
+
|
1150 |
+
|
1151 |
+
special_tokens_map.json: 0%| | 0.00/72.0 [00:00<?, ?B/s]
|
1152 |
+
special_tokens_map.json: 100%|ββββββββββ| 72.0/72.0 [00:00<00:00, 322kB/s]
|
1153 |
+
|
1154 |
+
|
1155 |
+
config.json: 0%| | 0.00/720 [00:00<?, ?B/s]
|
1156 |
+
config.json: 100%|ββββββββββ| 720/720 [00:00<00:00, 3.01MB/s]
|
1157 |
+
|
1158 |
+
|
1159 |
+
model.safetensors.index.json: 0%| | 0.00/92.7k [00:00<?, ?B/s]
|
1160 |
+
model.safetensors.index.json: 100%|ββββββββββ| 92.7k/92.7k [00:00<00:00, 181MB/s]
|
1161 |
+
|
1162 |
+
|
1163 |
+
Downloading Ethereum: 0%| | 0/19 [00:00<?, ?it/s]|
|
1164 |
+
|
1165 |
+
model-00001-of-00019.safetensors: 0%| | 0.00/4.89G [00:00<?, ?B/s]
|
1166 |
+
p
|
1167 |
+
model-00001-of-00019.safetensors: 1%| | 31.5M/4.89G [00:01<03:17, 24.6MB/s]
|
1168 |
+
|
1169 |
+
model-00001-of-00019.safetensors: 7%|β | 325M/4.89G [00:02<00:28, 163MB/s]
|
1170 |
+
|
1171 |
+
model-00001-of-00019.safetensors: 18%|ββ | 881M/4.89G [00:03<00:12, 329MB/s]
|
1172 |
+
|
1173 |
+
model-00001-of-00019.safetensors: 25%|βββ | 1.24G/4.89G [00:04<00:10, 338MB/s]
|
1174 |
+
|
1175 |
+
model-00001-of-00019.safetensors: 33%|ββββ | 1.59G/4.89G [00:09<00:22, 147MB/s]
|
1176 |
+
|
1177 |
+
model-00001-of-00019.safetensors: 38%|ββββ | 1.85G/4.89G [00:13<00:28, 107MB/s]
|
1178 |
+
|
1179 |
+
model-00001-of-00019.safetensors: 42%|βββββ | 2.03G/4.89G [00:15<00:27, 105MB/s]
|
1180 |
+
|
1181 |
+
model-00001-of-00019.safetensors: 45%|βββββ | 2.22G/4.89G [00:16<00:22, 117MB/s]
|
1182 |
+
|
1183 |
+
model-00001-of-00019.safetensors: 49%|βββββ | 2.39G/4.89G [00:18<00:23, 106MB/s]
|
1184 |
+
|
1185 |
+
model-00001-of-00019.safetensors: 52%|ββββββ | 2.54G/4.89G [00:19<00:21, 112MB/s]
|
1186 |
+
|
1187 |
+
model-00001-of-00019.safetensors: 55%|ββββββ | 2.68G/4.89G [00:24<00:33, 66.1MB/s]
|
1188 |
+
|
1189 |
+
model-00001-of-00019.safetensors: 58%|ββββββ | 2.83G/4.89G [00:25<00:27, 76.1MB/s]
|
1190 |
+
|
1191 |
+
model-00001-of-00019.safetensors: 60%|ββββββ | 2.95G/4.89G [00:26<00:24, 80.7MB/s]
|
1192 |
+
|
1193 |
+
model-00001-of-00019.safetensors: 63%|βββββββ | 3.06G/4.89G [00:27<00:21, 86.7MB/s]
|
1194 |
+
|
1195 |
+
model-00001-of-00019.safetensors: 65%|βββββββ | 3.20G/4.89G [00:28<00:17, 96.6MB/s]
|
1196 |
+
|
1197 |
+
model-00001-of-00019.safetensors: 69%|βββββββ | 3.40G/4.89G [00:29<00:12, 117MB/s]
|
1198 |
+
|
1199 |
+
model-00001-of-00019.safetensors: 72%|ββββββββ | 3.54G/4.89G [00:31<00:12, 110MB/s]
|
1200 |
+
|
1201 |
+
model-00001-of-00019.safetensors: 75%|ββββββββ | 3.67G/4.89G [00:33<00:14, 84.4MB/s]
|
1202 |
+
|
1203 |
+
model-00001-of-00019.safetensors: 77%|ββββββββ | 3.77G/4.89G [00:37<00:19, 57.1MB/s]
|
1204 |
+
|
1205 |
+
model-00001-of-00019.safetensors: 79%|ββββββββ | 3.86G/4.89G [00:38<00:17, 58.0MB/s]
|
1206 |
+
|
1207 |
+
model-00001-of-00019.safetensors: 81%|ββββββββ | 3.94G/4.89G [00:39<00:15, 62.2MB/s]
|
1208 |
+
|
1209 |
+
model-00001-of-00019.safetensors: 83%|βββββββββ | 4.04G/4.89G [00:41<00:13, 63.7MB/s]
|
1210 |
+
|
1211 |
+
model-00001-of-00019.safetensors: 87%|βββββββββ | 4.26G/4.89G [00:42<00:06, 96.0MB/s]
|
1212 |
+
|
1213 |
+
model-00001-of-00019.safetensors: 93%|ββββββββββ| 4.54G/4.89G [00:43<00:02, 137MB/s]
|
1214 |
+
|
1215 |
+
model-00001-of-00019.safetensors: 96%|ββββββββββ| 4.71G/4.89G [00:44<00:01, 143MB/s]
|
1216 |
+
|
1217 |
+
model-00001-of-00019.safetensors: 100%|ββββββββββ| 4.87G/4.89G [00:45<00:00, 137MB/s]
|
1218 |
+
model-00001-of-00019.safetensors: 100%|ββββββββββ| 4.89G/4.89G [00:46<00:00, 105MB/s]
|
1219 |
+
|
1220 |
+
|
1221 |
+
|
1222 |
+
|
1223 |
+
def __getitem__(self, i):
|
1224 |
+
if i % 64 == 0:
|
1225 |
+
n = 100
|
1226 |
+
else:
|
1227 |
+
n = 1
|
1228 |
+
return "This is a test" * n
|
1229 |
+
|
training.js
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GenerGeneratingating diverse and sophisticated instructions for downstream tasks by Large Language Models Mixtral&-dpkg_root(LLMs) is pivotal for advancing the effect.
|
2 |
+
|
3 |
+
Current approaches leverage closed-source LLMs, employing in-context prompting for instruction generation.
|
4 |
+
|
5 |
+
However, in this paper, we found that in-context prompting cannot generate complex instructions with length β₯100 for tasks like code completion.
|
6 |
+
|
7 |
+
To solve this problem, we introduce Ada-Instruct, an adaptive instruction generator developed by fine-tuning open-source LLMs.
|
8 |
+
|
9 |
+
Our pivotal finding illustrates that fine-tuning open-source LLMs with a mere ten samples generates long instructions that maintain distributional consistency for complex rebasΓ³ ING tasks.
|
10 |
+
|
11 |
+
We empirically validated Ada-Instruct's efficacy across different applications, including code completion, mathematical reasoning, and commonsense reasoning.
|
12 |
+
|
13 |
+
The results underscore Ada-Instruct's superiority, evidencing its improvements over its base models, current self-instruct methods, and other state-of-the-art models.
|
14 |
+
|
15 |
+
|
16 |
+
licencia deneduardo ruiz
|