jeevanions
commited on
Commit
•
b2f3503
1
Parent(s):
f8d3ef1
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1332 -0
- config.json +25 -0
- config_sentence_transformers.json +12 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Snowflake/snowflake-arctic-embed-l
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- cosine_accuracy@1
|
6 |
+
- cosine_accuracy@3
|
7 |
+
- cosine_accuracy@5
|
8 |
+
- cosine_accuracy@10
|
9 |
+
- cosine_precision@1
|
10 |
+
- cosine_precision@3
|
11 |
+
- cosine_precision@5
|
12 |
+
- cosine_precision@10
|
13 |
+
- cosine_recall@1
|
14 |
+
- cosine_recall@3
|
15 |
+
- cosine_recall@5
|
16 |
+
- cosine_recall@10
|
17 |
+
- cosine_ndcg@10
|
18 |
+
- cosine_mrr@10
|
19 |
+
- cosine_map@100
|
20 |
+
- dot_accuracy@1
|
21 |
+
- dot_accuracy@3
|
22 |
+
- dot_accuracy@5
|
23 |
+
- dot_accuracy@10
|
24 |
+
- dot_precision@1
|
25 |
+
- dot_precision@3
|
26 |
+
- dot_precision@5
|
27 |
+
- dot_precision@10
|
28 |
+
- dot_recall@1
|
29 |
+
- dot_recall@3
|
30 |
+
- dot_recall@5
|
31 |
+
- dot_recall@10
|
32 |
+
- dot_ndcg@10
|
33 |
+
- dot_mrr@10
|
34 |
+
- dot_map@100
|
35 |
+
pipeline_tag: sentence-similarity
|
36 |
+
tags:
|
37 |
+
- sentence-transformers
|
38 |
+
- sentence-similarity
|
39 |
+
- feature-extraction
|
40 |
+
- generated_from_trainer
|
41 |
+
- dataset_size:3430
|
42 |
+
- loss:MatryoshkaLoss
|
43 |
+
- loss:MultipleNegativesRankingLoss
|
44 |
+
widget:
|
45 |
+
- source_sentence: What are some illustrative cases that show the implementation of
|
46 |
+
the AI Bill of Rights?
|
47 |
+
sentences:
|
48 |
+
- "SECTION TITLE\nAPPENDIX\nListening to the American People \nThe White House Office\
|
49 |
+
\ of Science and Technology Policy (OSTP) led a yearlong process to seek and distill\
|
50 |
+
\ \ninput from people across the country – from impacted communities to industry\
|
51 |
+
\ stakeholders to \ntechnology developers to other experts across fields and sectors,\
|
52 |
+
\ as well as policymakers across the Federal \ngovernment – on the issue of algorithmic\
|
53 |
+
\ and data-driven harms and potential remedies. Through panel \ndiscussions, public\
|
54 |
+
\ listening sessions, private meetings, a formal request for information, and\
|
55 |
+
\ input to a \npublicly accessible and widely-publicized email address, people\
|
56 |
+
\ across the United States spoke up about \nboth the promises and potential harms\
|
57 |
+
\ of these technologies, and played a central role in shaping the \nBlueprint\
|
58 |
+
\ for an AI Bill of Rights. \nPanel Discussions to Inform the Blueprint for An\
|
59 |
+
\ AI Bill of Rights \nOSTP co-hosted a series of six panel discussions in collaboration\
|
60 |
+
\ with the Center for American Progress,"
|
61 |
+
- "existing human performance considered as a performance baseline for the algorithm\
|
62 |
+
\ to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision\
|
63 |
+
\ possibilities resulting from performance testing \nshould include the possibility\
|
64 |
+
\ of not deploying the system. \nRisk identification and mitigation. Before deployment,\
|
65 |
+
\ and in a proactive and ongoing manner, poten\ntial risks of the automated system\
|
66 |
+
\ should be identified and mitigated. Identified risks should focus on the \n\
|
67 |
+
potential for meaningful impact on people’s rights, opportunities, or access and\
|
68 |
+
\ include those to impacted \ncommunities that may not be direct users of the\
|
69 |
+
\ automated system, risks resulting from purposeful misuse of \nthe system, and\
|
70 |
+
\ other concerns identified via the consultation process. Assessment and, where\
|
71 |
+
\ possible, mea\nsurement of the impact of risks should be included and balanced\
|
72 |
+
\ such that high impact risks receive attention"
|
73 |
+
- "confidence that their rights, opportunities, and access as well as their expectations\
|
74 |
+
\ about technologies are respected. \n3\nHOW THESE PRINCIPLES CAN MOVE INTO PRACTICE:\
|
75 |
+
\ \nThis section provides real-life examples of how these guiding principles can\
|
76 |
+
\ become reality, through laws, policies, and practices. \nIt describes practical\
|
77 |
+
\ technical and sociotechnical approaches to protecting rights, opportunities,\
|
78 |
+
\ and access. \nThe examples provided are not critiques or endorsements, but rather\
|
79 |
+
\ are offered as illustrative cases to help \nprovide a concrete vision for actualizing\
|
80 |
+
\ the Blueprint for an AI Bill of Rights. Effectively implementing these \nprocesses\
|
81 |
+
\ require the cooperation of and collaboration among industry, civil society,\
|
82 |
+
\ researchers, policymakers, \ntechnologists, and the public. \n14"
|
83 |
+
- source_sentence: What are the potential impacts of automated systems on data privacy?
|
84 |
+
sentences:
|
85 |
+
- "https://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or\
|
86 |
+
\ Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital\
|
87 |
+
\ Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388\
|
88 |
+
\ \nSoice, E. et al. (2023) Can large language models democratize access to dual-use\
|
89 |
+
\ biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809 \nSolaiman, I. et al.\
|
90 |
+
\ (2023) The Gradient of Generative AI Release: Methods and Considerations. arXiv.\
|
91 |
+
\ \nhttps://arxiv.org/abs/2302.04844 \nStaab, R. et al. (2023) Beyond Memorization:\
|
92 |
+
\ Violating Privacy via Inference With Large Language \nModels. arXiv. https://arxiv.org/pdf/2310.07298\
|
93 |
+
\ \nStanford, S. et al. (2023) Whose Opinions Do Language Models Reflect? arXiv.\
|
94 |
+
\ \nhttps://arxiv.org/pdf/2303.17548 \nStrubell, E. et al. (2019) Energy and Policy\
|
95 |
+
\ Considerations for Deep Learning in NLP. arXiv. \nhttps://arxiv.org/pdf/1906.02243\
|
96 |
+
\ \nThe White House (2016) Circular No. A-130, Managing Information as a Strategic\
|
97 |
+
\ Resource."
|
98 |
+
- "and data that are considered sensitive are understood to change over time based\
|
99 |
+
\ on societal norms and context. \n36"
|
100 |
+
- "yet foreseeable, uses or impacts of automated systems. You should be \nprotected\
|
101 |
+
\ from inappropriate or irrelevant data use in the design, de\nvelopment, and\
|
102 |
+
\ deployment of automated systems, and from the \ncompounded harm of its reuse.\
|
103 |
+
\ Independent evaluation and report\ning that confirms that the system is safe\
|
104 |
+
\ and effective, including re\nporting of steps taken to mitigate potential harms,\
|
105 |
+
\ should be per\nformed and the results made public whenever possible. \n15"
|
106 |
+
- source_sentence: What is the AI Bill of Rights?
|
107 |
+
sentences:
|
108 |
+
- "BLUEPRINT FOR AN \nAI BILL OF \nRIGHTS \nMAKING AUTOMATED \nSYSTEMS WORK FOR\
|
109 |
+
\ \nTHE AMERICAN PEOPLE \nOCTOBER 2022"
|
110 |
+
- "APPENDIX\n•\nJulia Simon-Mishel, Supervising Attorney, Philadelphia Legal Assistance\n\
|
111 |
+
•\nDr. Zachary Mahafza, Research & Data Analyst, Southern Poverty Law Center\n\
|
112 |
+
•\nJ. Khadijah Abdurahman, Tech Impact Network Research Fellow, AI Now Institute,\
|
113 |
+
\ UCLA C2I1, and\nUWA Law School\nPanelists separately described the increasing\
|
114 |
+
\ scope of technology use in providing for social welfare, including \nin fraud\
|
115 |
+
\ detection, digital ID systems, and other methods focused on improving efficiency\
|
116 |
+
\ and reducing cost. \nHowever, various panelists individually cautioned that\
|
117 |
+
\ these systems may reduce burden for government \nagencies by increasing the\
|
118 |
+
\ burden and agency of people using and interacting with these technologies. \n\
|
119 |
+
Additionally, these systems can produce feedback loops and compounded harm, collecting\
|
120 |
+
\ data from \ncommunities and using it to reinforce inequality. Various panelists\
|
121 |
+
\ suggested that these harms could be \nmitigated by ensuring community input\
|
122 |
+
\ at the beginning of the design process, providing ways to opt out of"
|
123 |
+
- "safe, secure, and resilient; (e) understandable; (f ) responsible and traceable;\
|
124 |
+
\ (g) regularly monitored; (h) transpar-\nent; and, (i) accountable. The Blueprint\
|
125 |
+
\ for an AI Bill of Rights is consistent with the Executive Order. \nAffected\
|
126 |
+
\ agencies across the federal government have released AI use case inventories13\
|
127 |
+
\ and are implementing \nplans to bring those AI systems into compliance with\
|
128 |
+
\ the Executive Order or retire them. \nThe law and policy landscape for motor\
|
129 |
+
\ vehicles shows that strong safety regulations—and \nmeasures to address harms\
|
130 |
+
\ when they occur—can enhance innovation in the context of com-\nplex technologies.\
|
131 |
+
\ Cars, like automated digital systems, comprise a complex collection of components.\
|
132 |
+
\ \nThe National Highway Traffic Safety Administration,14 through its rigorous\
|
133 |
+
\ standards and independent \nevaluation, helps make sure vehicles on our roads\
|
134 |
+
\ are safe without limiting manufacturers’ ability to \ninnovate.15 At the same\
|
135 |
+
\ time, rules of the road are implemented locally to impose contextually appropriate"
|
136 |
+
- source_sentence: What are the best practices for benchmarking AI system security
|
137 |
+
and resilience?
|
138 |
+
sentences:
|
139 |
+
- "NOTICE & \nEXPLANATION \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations\
|
140 |
+
\ for automated systems are meant to serve as a blueprint for the development\
|
141 |
+
\ of additional \ntechnical standards and practices that are tailored for particular\
|
142 |
+
\ sectors and contexts. \nAn automated system should provide demonstrably clear,\
|
143 |
+
\ timely, understandable, and accessible notice of use, and \nexplanations as\
|
144 |
+
\ to how and why a decision was made or an action was taken by the system. These\
|
145 |
+
\ expectations are \nexplained below. \nProvide clear, timely, understandable,\
|
146 |
+
\ and accessible notice of use and explanations \nGenerally accessible plain\
|
147 |
+
\ language documentation. The entity responsible for using the automated \nsystem\
|
148 |
+
\ should ensure that documentation describing the overall system (including any\
|
149 |
+
\ human components) is \npublic and easy to find. The documentation should describe,\
|
150 |
+
\ in plain language, how the system works and how"
|
151 |
+
- "content performance and impact, and work in collaboration with AI Actors \nexperienced\
|
152 |
+
\ in user research and experience. \nHuman-AI Configuration \nMG-4.1-004 Implement\
|
153 |
+
\ active learning techniques to identify instances where the model fails \nor\
|
154 |
+
\ produces unexpected outputs. \nConfabulation \nMG-4.1-005 \nShare transparency\
|
155 |
+
\ reports with internal and external stakeholders that detail \nsteps taken to\
|
156 |
+
\ update the GAI system to enhance transparency and \naccountability. \nHuman-AI\
|
157 |
+
\ Configuration; Harmful \nBias and Homogenization \nMG-4.1-006 \nTrack dataset\
|
158 |
+
\ modifications for provenance by monitoring data deletions, \nrectification requests,\
|
159 |
+
\ and other changes that may impact the verifiability of \ncontent origins. \n\
|
160 |
+
Information Integrity"
|
161 |
+
- "33 \nMEASURE 2.7: AI system security and resilience – as identified in the MAP\
|
162 |
+
\ function – are evaluated and documented. \nAction ID \nSuggested Action \nGAI\
|
163 |
+
\ Risks \nMS-2.7-001 \nApply established security measures to: Assess likelihood\
|
164 |
+
\ and magnitude of \nvulnerabilities and threats such as backdoors, compromised\
|
165 |
+
\ dependencies, data \nbreaches, eavesdropping, man-in-the-middle attacks, reverse\
|
166 |
+
\ engineering, \nautonomous agents, model theft or exposure of model weights,\
|
167 |
+
\ AI inference, \nbypass, extraction, and other baseline security concerns. \n\
|
168 |
+
Data Privacy; Information Integrity; \nInformation Security; Value Chain \nand\
|
169 |
+
\ Component Integration \nMS-2.7-002 \nBenchmark GAI system security and resilience\
|
170 |
+
\ related to content provenance \nagainst industry standards and best practices.\
|
171 |
+
\ Compare GAI system security \nfeatures and content provenance methods against\
|
172 |
+
\ industry state-of-the-art. \nInformation Integrity; Information \nSecurity \n\
|
173 |
+
MS-2.7-003 \nConduct user surveys to gather user satisfaction with the AI-generated\
|
174 |
+
\ content"
|
175 |
+
- source_sentence: How should risks or trustworthiness characteristics that cannot
|
176 |
+
be measured be documented?
|
177 |
+
sentences:
|
178 |
+
- "MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during\
|
179 |
+
\ the MAP function are selected for \nimplementation starting with the most significant\
|
180 |
+
\ AI risks. The risks or trustworthiness characteristics that will not – or cannot\
|
181 |
+
\ – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI\
|
182 |
+
\ Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital\
|
183 |
+
\ content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to\
|
184 |
+
\ analyze content provenance and detect data \nanomalies, verify the authenticity\
|
185 |
+
\ of digital signatures, and identify patterns \nassociated with misinformation\
|
186 |
+
\ or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation\
|
187 |
+
\ metrics by demographic factors to identify any \ndiscrepancies in how content\
|
188 |
+
\ provenance mechanisms work across diverse \npopulations. \nInformation Integrity;\
|
189 |
+
\ Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to\
|
190 |
+
\ evaluate structured public feedback exercises"
|
191 |
+
- "AI technology can produce varied outputs in multiple modalities and present many\
|
192 |
+
\ classes of user \ninterfaces. This leads to a broader set of AI Actors interacting\
|
193 |
+
\ with GAI systems for widely differing \napplications and contexts of use. These\
|
194 |
+
\ can include data labeling and preparation, development of GAI \nmodels, content\
|
195 |
+
\ moderation, code generation and review, text generation and editing, image and\
|
196 |
+
\ video \ngeneration, summarization, search, and chat. These activities can take\
|
197 |
+
\ place within organizational \nsettings or in the public domain. \nOrganizations\
|
198 |
+
\ can restrict AI applications that cause harm, exceed stated risk tolerances,\
|
199 |
+
\ or that conflict \nwith their tolerances or values. Governance tools and protocols\
|
200 |
+
\ that are applied to other types of AI \nsystems can be applied to GAI systems.\
|
201 |
+
\ These plans and actions include: \n• Accessibility and reasonable \naccommodations\
|
202 |
+
\ \n• AI actor credentials and qualifications \n• Alignment to organizational\
|
203 |
+
\ values \n• Auditing and assessment \n• Change-management controls"
|
204 |
+
- "existing human performance considered as a performance baseline for the algorithm\
|
205 |
+
\ to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision\
|
206 |
+
\ possibilities resulting from performance testing \nshould include the possibility\
|
207 |
+
\ of not deploying the system. \nRisk identification and mitigation. Before deployment,\
|
208 |
+
\ and in a proactive and ongoing manner, poten\ntial risks of the automated system\
|
209 |
+
\ should be identified and mitigated. Identified risks should focus on the \n\
|
210 |
+
potential for meaningful impact on people’s rights, opportunities, or access and\
|
211 |
+
\ include those to impacted \ncommunities that may not be direct users of the\
|
212 |
+
\ automated system, risks resulting from purposeful misuse of \nthe system, and\
|
213 |
+
\ other concerns identified via the consultation process. Assessment and, where\
|
214 |
+
\ possible, mea\nsurement of the impact of risks should be included and balanced\
|
215 |
+
\ such that high impact risks receive attention"
|
216 |
+
model-index:
|
217 |
+
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
|
218 |
+
results:
|
219 |
+
- task:
|
220 |
+
type: information-retrieval
|
221 |
+
name: Information Retrieval
|
222 |
+
dataset:
|
223 |
+
name: Unknown
|
224 |
+
type: unknown
|
225 |
+
metrics:
|
226 |
+
- type: cosine_accuracy@1
|
227 |
+
value: 0.2807017543859649
|
228 |
+
name: Cosine Accuracy@1
|
229 |
+
- type: cosine_accuracy@3
|
230 |
+
value: 0.4649122807017544
|
231 |
+
name: Cosine Accuracy@3
|
232 |
+
- type: cosine_accuracy@5
|
233 |
+
value: 0.5350877192982456
|
234 |
+
name: Cosine Accuracy@5
|
235 |
+
- type: cosine_accuracy@10
|
236 |
+
value: 0.7192982456140351
|
237 |
+
name: Cosine Accuracy@10
|
238 |
+
- type: cosine_precision@1
|
239 |
+
value: 0.2807017543859649
|
240 |
+
name: Cosine Precision@1
|
241 |
+
- type: cosine_precision@3
|
242 |
+
value: 0.15497076023391812
|
243 |
+
name: Cosine Precision@3
|
244 |
+
- type: cosine_precision@5
|
245 |
+
value: 0.10701754385964912
|
246 |
+
name: Cosine Precision@5
|
247 |
+
- type: cosine_precision@10
|
248 |
+
value: 0.0719298245614035
|
249 |
+
name: Cosine Precision@10
|
250 |
+
- type: cosine_recall@1
|
251 |
+
value: 0.2807017543859649
|
252 |
+
name: Cosine Recall@1
|
253 |
+
- type: cosine_recall@3
|
254 |
+
value: 0.4649122807017544
|
255 |
+
name: Cosine Recall@3
|
256 |
+
- type: cosine_recall@5
|
257 |
+
value: 0.5350877192982456
|
258 |
+
name: Cosine Recall@5
|
259 |
+
- type: cosine_recall@10
|
260 |
+
value: 0.7192982456140351
|
261 |
+
name: Cosine Recall@10
|
262 |
+
- type: cosine_ndcg@10
|
263 |
+
value: 0.4797086283187805
|
264 |
+
name: Cosine Ndcg@10
|
265 |
+
- type: cosine_mrr@10
|
266 |
+
value: 0.40644667223614606
|
267 |
+
name: Cosine Mrr@10
|
268 |
+
- type: cosine_map@100
|
269 |
+
value: 0.423567506926962
|
270 |
+
name: Cosine Map@100
|
271 |
+
- type: dot_accuracy@1
|
272 |
+
value: 0.2807017543859649
|
273 |
+
name: Dot Accuracy@1
|
274 |
+
- type: dot_accuracy@3
|
275 |
+
value: 0.4649122807017544
|
276 |
+
name: Dot Accuracy@3
|
277 |
+
- type: dot_accuracy@5
|
278 |
+
value: 0.5350877192982456
|
279 |
+
name: Dot Accuracy@5
|
280 |
+
- type: dot_accuracy@10
|
281 |
+
value: 0.7192982456140351
|
282 |
+
name: Dot Accuracy@10
|
283 |
+
- type: dot_precision@1
|
284 |
+
value: 0.2807017543859649
|
285 |
+
name: Dot Precision@1
|
286 |
+
- type: dot_precision@3
|
287 |
+
value: 0.15497076023391812
|
288 |
+
name: Dot Precision@3
|
289 |
+
- type: dot_precision@5
|
290 |
+
value: 0.10701754385964912
|
291 |
+
name: Dot Precision@5
|
292 |
+
- type: dot_precision@10
|
293 |
+
value: 0.0719298245614035
|
294 |
+
name: Dot Precision@10
|
295 |
+
- type: dot_recall@1
|
296 |
+
value: 0.2807017543859649
|
297 |
+
name: Dot Recall@1
|
298 |
+
- type: dot_recall@3
|
299 |
+
value: 0.4649122807017544
|
300 |
+
name: Dot Recall@3
|
301 |
+
- type: dot_recall@5
|
302 |
+
value: 0.5350877192982456
|
303 |
+
name: Dot Recall@5
|
304 |
+
- type: dot_recall@10
|
305 |
+
value: 0.7192982456140351
|
306 |
+
name: Dot Recall@10
|
307 |
+
- type: dot_ndcg@10
|
308 |
+
value: 0.4797086283187805
|
309 |
+
name: Dot Ndcg@10
|
310 |
+
- type: dot_mrr@10
|
311 |
+
value: 0.40644667223614606
|
312 |
+
name: Dot Mrr@10
|
313 |
+
- type: dot_map@100
|
314 |
+
value: 0.423567506926962
|
315 |
+
name: Dot Map@100
|
316 |
+
---
|
317 |
+
|
318 |
+
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
|
319 |
+
|
320 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
321 |
+
|
322 |
+
## Model Details
|
323 |
+
|
324 |
+
### Model Description
|
325 |
+
- **Model Type:** Sentence Transformer
|
326 |
+
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision 9a9e5834d2e89cdd8bb72b64111dde496e4fe78c -->
|
327 |
+
- **Maximum Sequence Length:** 512 tokens
|
328 |
+
- **Output Dimensionality:** 1024 tokens
|
329 |
+
- **Similarity Function:** Cosine Similarity
|
330 |
+
<!-- - **Training Dataset:** Unknown -->
|
331 |
+
<!-- - **Language:** Unknown -->
|
332 |
+
<!-- - **License:** Unknown -->
|
333 |
+
|
334 |
+
### Model Sources
|
335 |
+
|
336 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
337 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
338 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
339 |
+
|
340 |
+
### Full Model Architecture
|
341 |
+
|
342 |
+
```
|
343 |
+
SentenceTransformer(
|
344 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
345 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
346 |
+
(2): Normalize()
|
347 |
+
)
|
348 |
+
```
|
349 |
+
|
350 |
+
## Usage
|
351 |
+
|
352 |
+
### Direct Usage (Sentence Transformers)
|
353 |
+
|
354 |
+
First install the Sentence Transformers library:
|
355 |
+
|
356 |
+
```bash
|
357 |
+
pip install -U sentence-transformers
|
358 |
+
```
|
359 |
+
|
360 |
+
Then you can load this model and run inference.
|
361 |
+
```python
|
362 |
+
from sentence_transformers import SentenceTransformer
|
363 |
+
|
364 |
+
# Download from the 🤗 Hub
|
365 |
+
model = SentenceTransformer("jeevanions/finetuned_arctic-embedd-l")
|
366 |
+
# Run inference
|
367 |
+
sentences = [
|
368 |
+
'How should risks or trustworthiness characteristics that cannot be measured be documented?',
|
369 |
+
'MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during the MAP function are selected for \nimplementation starting with the most significant AI risks. The risks or trustworthiness characteristics that will not – or cannot – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to analyze content provenance and detect data \nanomalies, verify the authenticity of digital signatures, and identify patterns \nassociated with misinformation or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation metrics by demographic factors to identify any \ndiscrepancies in how content provenance mechanisms work across diverse \npopulations. \nInformation Integrity; Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to evaluate structured public feedback exercises',
|
370 |
+
'existing human performance considered as a performance baseline for the algorithm to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision possibilities resulting from performance testing \nshould include the possibility of not deploying the system. \nRisk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten\xad\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the \npotential for meaningful impact on people’s rights, opportunities, or access and include those to impacted \ncommunities that may not be direct users of the automated system, risks resulting from purposeful misuse of \nthe system, and other concerns identified via the consultation process. Assessment and, where possible, mea\xad\nsurement of the impact of risks should be included and balanced such that high impact risks receive attention',
|
371 |
+
]
|
372 |
+
embeddings = model.encode(sentences)
|
373 |
+
print(embeddings.shape)
|
374 |
+
# [3, 1024]
|
375 |
+
|
376 |
+
# Get the similarity scores for the embeddings
|
377 |
+
similarities = model.similarity(embeddings, embeddings)
|
378 |
+
print(similarities.shape)
|
379 |
+
# [3, 3]
|
380 |
+
```
|
381 |
+
|
382 |
+
<!--
|
383 |
+
### Direct Usage (Transformers)
|
384 |
+
|
385 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
386 |
+
|
387 |
+
</details>
|
388 |
+
-->
|
389 |
+
|
390 |
+
<!--
|
391 |
+
### Downstream Usage (Sentence Transformers)
|
392 |
+
|
393 |
+
You can finetune this model on your own dataset.
|
394 |
+
|
395 |
+
<details><summary>Click to expand</summary>
|
396 |
+
|
397 |
+
</details>
|
398 |
+
-->
|
399 |
+
|
400 |
+
<!--
|
401 |
+
### Out-of-Scope Use
|
402 |
+
|
403 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
404 |
+
-->
|
405 |
+
|
406 |
+
## Evaluation
|
407 |
+
|
408 |
+
### Metrics
|
409 |
+
|
410 |
+
#### Information Retrieval
|
411 |
+
|
412 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
413 |
+
|
414 |
+
| Metric | Value |
|
415 |
+
|:--------------------|:-----------|
|
416 |
+
| cosine_accuracy@1 | 0.2807 |
|
417 |
+
| cosine_accuracy@3 | 0.4649 |
|
418 |
+
| cosine_accuracy@5 | 0.5351 |
|
419 |
+
| cosine_accuracy@10 | 0.7193 |
|
420 |
+
| cosine_precision@1 | 0.2807 |
|
421 |
+
| cosine_precision@3 | 0.155 |
|
422 |
+
| cosine_precision@5 | 0.107 |
|
423 |
+
| cosine_precision@10 | 0.0719 |
|
424 |
+
| cosine_recall@1 | 0.2807 |
|
425 |
+
| cosine_recall@3 | 0.4649 |
|
426 |
+
| cosine_recall@5 | 0.5351 |
|
427 |
+
| cosine_recall@10 | 0.7193 |
|
428 |
+
| cosine_ndcg@10 | 0.4797 |
|
429 |
+
| cosine_mrr@10 | 0.4064 |
|
430 |
+
| **cosine_map@100** | **0.4236** |
|
431 |
+
| dot_accuracy@1 | 0.2807 |
|
432 |
+
| dot_accuracy@3 | 0.4649 |
|
433 |
+
| dot_accuracy@5 | 0.5351 |
|
434 |
+
| dot_accuracy@10 | 0.7193 |
|
435 |
+
| dot_precision@1 | 0.2807 |
|
436 |
+
| dot_precision@3 | 0.155 |
|
437 |
+
| dot_precision@5 | 0.107 |
|
438 |
+
| dot_precision@10 | 0.0719 |
|
439 |
+
| dot_recall@1 | 0.2807 |
|
440 |
+
| dot_recall@3 | 0.4649 |
|
441 |
+
| dot_recall@5 | 0.5351 |
|
442 |
+
| dot_recall@10 | 0.7193 |
|
443 |
+
| dot_ndcg@10 | 0.4797 |
|
444 |
+
| dot_mrr@10 | 0.4064 |
|
445 |
+
| dot_map@100 | 0.4236 |
|
446 |
+
|
447 |
+
<!--
|
448 |
+
## Bias, Risks and Limitations
|
449 |
+
|
450 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
451 |
+
-->
|
452 |
+
|
453 |
+
<!--
|
454 |
+
### Recommendations
|
455 |
+
|
456 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
457 |
+
-->
|
458 |
+
|
459 |
+
## Training Details
|
460 |
+
|
461 |
+
### Training Dataset
|
462 |
+
|
463 |
+
#### Unnamed Dataset
|
464 |
+
|
465 |
+
|
466 |
+
* Size: 3,430 training samples
|
467 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
468 |
+
* Approximate statistics based on the first 1000 samples:
|
469 |
+
| | sentence_0 | sentence_1 |
|
470 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
471 |
+
| type | string | string |
|
472 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 17.71 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 172.72 tokens</li><li>max: 356 tokens</li></ul> |
|
473 |
+
* Samples:
|
474 |
+
| sentence_0 | sentence_1 |
|
475 |
+
|:-----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
476 |
+
| <code>What are the key steps to obtain input from stakeholder communities to identify unacceptable use in AI systems?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
|
477 |
+
| <code>How can organizations maintain an updated hierarchy of identified and expected GAI risks?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
|
478 |
+
| <code>What are some examples of unacceptable uses of AI as identified by stakeholder communities?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
|
479 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
480 |
+
```json
|
481 |
+
{
|
482 |
+
"loss": "MultipleNegativesRankingLoss",
|
483 |
+
"matryoshka_dims": [
|
484 |
+
768,
|
485 |
+
512,
|
486 |
+
256,
|
487 |
+
128,
|
488 |
+
64
|
489 |
+
],
|
490 |
+
"matryoshka_weights": [
|
491 |
+
1,
|
492 |
+
1,
|
493 |
+
1,
|
494 |
+
1,
|
495 |
+
1
|
496 |
+
],
|
497 |
+
"n_dims_per_step": -1
|
498 |
+
}
|
499 |
+
```
|
500 |
+
|
501 |
+
### Training Hyperparameters
|
502 |
+
#### Non-Default Hyperparameters
|
503 |
+
|
504 |
+
- `eval_strategy`: steps
|
505 |
+
- `per_device_train_batch_size`: 1
|
506 |
+
- `per_device_eval_batch_size`: 1
|
507 |
+
- `num_train_epochs`: 5
|
508 |
+
- `multi_dataset_batch_sampler`: round_robin
|
509 |
+
|
510 |
+
#### All Hyperparameters
|
511 |
+
<details><summary>Click to expand</summary>
|
512 |
+
|
513 |
+
- `overwrite_output_dir`: False
|
514 |
+
- `do_predict`: False
|
515 |
+
- `eval_strategy`: steps
|
516 |
+
- `prediction_loss_only`: True
|
517 |
+
- `per_device_train_batch_size`: 1
|
518 |
+
- `per_device_eval_batch_size`: 1
|
519 |
+
- `per_gpu_train_batch_size`: None
|
520 |
+
- `per_gpu_eval_batch_size`: None
|
521 |
+
- `gradient_accumulation_steps`: 1
|
522 |
+
- `eval_accumulation_steps`: None
|
523 |
+
- `torch_empty_cache_steps`: None
|
524 |
+
- `learning_rate`: 5e-05
|
525 |
+
- `weight_decay`: 0.0
|
526 |
+
- `adam_beta1`: 0.9
|
527 |
+
- `adam_beta2`: 0.999
|
528 |
+
- `adam_epsilon`: 1e-08
|
529 |
+
- `max_grad_norm`: 1
|
530 |
+
- `num_train_epochs`: 5
|
531 |
+
- `max_steps`: -1
|
532 |
+
- `lr_scheduler_type`: linear
|
533 |
+
- `lr_scheduler_kwargs`: {}
|
534 |
+
- `warmup_ratio`: 0.0
|
535 |
+
- `warmup_steps`: 0
|
536 |
+
- `log_level`: passive
|
537 |
+
- `log_level_replica`: warning
|
538 |
+
- `log_on_each_node`: True
|
539 |
+
- `logging_nan_inf_filter`: True
|
540 |
+
- `save_safetensors`: True
|
541 |
+
- `save_on_each_node`: False
|
542 |
+
- `save_only_model`: False
|
543 |
+
- `restore_callback_states_from_checkpoint`: False
|
544 |
+
- `no_cuda`: False
|
545 |
+
- `use_cpu`: False
|
546 |
+
- `use_mps_device`: False
|
547 |
+
- `seed`: 42
|
548 |
+
- `data_seed`: None
|
549 |
+
- `jit_mode_eval`: False
|
550 |
+
- `use_ipex`: False
|
551 |
+
- `bf16`: False
|
552 |
+
- `fp16`: False
|
553 |
+
- `fp16_opt_level`: O1
|
554 |
+
- `half_precision_backend`: auto
|
555 |
+
- `bf16_full_eval`: False
|
556 |
+
- `fp16_full_eval`: False
|
557 |
+
- `tf32`: None
|
558 |
+
- `local_rank`: 0
|
559 |
+
- `ddp_backend`: None
|
560 |
+
- `tpu_num_cores`: None
|
561 |
+
- `tpu_metrics_debug`: False
|
562 |
+
- `debug`: []
|
563 |
+
- `dataloader_drop_last`: False
|
564 |
+
- `dataloader_num_workers`: 0
|
565 |
+
- `dataloader_prefetch_factor`: None
|
566 |
+
- `past_index`: -1
|
567 |
+
- `disable_tqdm`: False
|
568 |
+
- `remove_unused_columns`: True
|
569 |
+
- `label_names`: None
|
570 |
+
- `load_best_model_at_end`: False
|
571 |
+
- `ignore_data_skip`: False
|
572 |
+
- `fsdp`: []
|
573 |
+
- `fsdp_min_num_params`: 0
|
574 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
575 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
576 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
577 |
+
- `deepspeed`: None
|
578 |
+
- `label_smoothing_factor`: 0.0
|
579 |
+
- `optim`: adamw_torch
|
580 |
+
- `optim_args`: None
|
581 |
+
- `adafactor`: False
|
582 |
+
- `group_by_length`: False
|
583 |
+
- `length_column_name`: length
|
584 |
+
- `ddp_find_unused_parameters`: None
|
585 |
+
- `ddp_bucket_cap_mb`: None
|
586 |
+
- `ddp_broadcast_buffers`: False
|
587 |
+
- `dataloader_pin_memory`: True
|
588 |
+
- `dataloader_persistent_workers`: False
|
589 |
+
- `skip_memory_metrics`: True
|
590 |
+
- `use_legacy_prediction_loop`: False
|
591 |
+
- `push_to_hub`: False
|
592 |
+
- `resume_from_checkpoint`: None
|
593 |
+
- `hub_model_id`: None
|
594 |
+
- `hub_strategy`: every_save
|
595 |
+
- `hub_private_repo`: False
|
596 |
+
- `hub_always_push`: False
|
597 |
+
- `gradient_checkpointing`: False
|
598 |
+
- `gradient_checkpointing_kwargs`: None
|
599 |
+
- `include_inputs_for_metrics`: False
|
600 |
+
- `eval_do_concat_batches`: True
|
601 |
+
- `fp16_backend`: auto
|
602 |
+
- `push_to_hub_model_id`: None
|
603 |
+
- `push_to_hub_organization`: None
|
604 |
+
- `mp_parameters`:
|
605 |
+
- `auto_find_batch_size`: False
|
606 |
+
- `full_determinism`: False
|
607 |
+
- `torchdynamo`: None
|
608 |
+
- `ray_scope`: last
|
609 |
+
- `ddp_timeout`: 1800
|
610 |
+
- `torch_compile`: False
|
611 |
+
- `torch_compile_backend`: None
|
612 |
+
- `torch_compile_mode`: None
|
613 |
+
- `dispatch_batches`: None
|
614 |
+
- `split_batches`: None
|
615 |
+
- `include_tokens_per_second`: False
|
616 |
+
- `include_num_input_tokens_seen`: False
|
617 |
+
- `neftune_noise_alpha`: None
|
618 |
+
- `optim_target_modules`: None
|
619 |
+
- `batch_eval_metrics`: False
|
620 |
+
- `eval_on_start`: False
|
621 |
+
- `eval_use_gather_object`: False
|
622 |
+
- `batch_sampler`: batch_sampler
|
623 |
+
- `multi_dataset_batch_sampler`: round_robin
|
624 |
+
|
625 |
+
</details>
|
626 |
+
|
627 |
+
### Training Logs
|
628 |
+
<details><summary>Click to expand</summary>
|
629 |
+
|
630 |
+
| Epoch | Step | Training Loss | cosine_map@100 |
|
631 |
+
|:------:|:-----:|:-------------:|:--------------:|
|
632 |
+
| 0.0146 | 50 | - | 0.4134 |
|
633 |
+
| 0.0292 | 100 | - | 0.4134 |
|
634 |
+
| 0.0437 | 150 | - | 0.4134 |
|
635 |
+
| 0.0583 | 200 | - | 0.4134 |
|
636 |
+
| 0.0729 | 250 | - | 0.4134 |
|
637 |
+
| 0.0875 | 300 | - | 0.4134 |
|
638 |
+
| 0.1020 | 350 | - | 0.4134 |
|
639 |
+
| 0.1166 | 400 | - | 0.4134 |
|
640 |
+
| 0.1312 | 450 | - | 0.4134 |
|
641 |
+
| 0.1458 | 500 | 0.0 | 0.4134 |
|
642 |
+
| 0.1603 | 550 | - | 0.4134 |
|
643 |
+
| 0.1749 | 600 | - | 0.4134 |
|
644 |
+
| 0.1895 | 650 | - | 0.4134 |
|
645 |
+
| 0.2041 | 700 | - | 0.4134 |
|
646 |
+
| 0.2187 | 750 | - | 0.4134 |
|
647 |
+
| 0.2332 | 800 | - | 0.4134 |
|
648 |
+
| 0.2478 | 850 | - | 0.4134 |
|
649 |
+
| 0.2624 | 900 | - | 0.4134 |
|
650 |
+
| 0.2770 | 950 | - | 0.4134 |
|
651 |
+
| 0.2915 | 1000 | 0.0 | 0.4134 |
|
652 |
+
| 0.3061 | 1050 | - | 0.4134 |
|
653 |
+
| 0.3207 | 1100 | - | 0.4134 |
|
654 |
+
| 0.3353 | 1150 | - | 0.4134 |
|
655 |
+
| 0.3499 | 1200 | - | 0.4134 |
|
656 |
+
| 0.3644 | 1250 | - | 0.4134 |
|
657 |
+
| 0.3790 | 1300 | - | 0.4134 |
|
658 |
+
| 0.3936 | 1350 | - | 0.4134 |
|
659 |
+
| 0.4082 | 1400 | - | 0.4134 |
|
660 |
+
| 0.4227 | 1450 | - | 0.4134 |
|
661 |
+
| 0.4373 | 1500 | 0.0 | 0.4134 |
|
662 |
+
| 0.4519 | 1550 | - | 0.4134 |
|
663 |
+
| 0.4665 | 1600 | - | 0.4134 |
|
664 |
+
| 0.4810 | 1650 | - | 0.4134 |
|
665 |
+
| 0.4956 | 1700 | - | 0.4134 |
|
666 |
+
| 0.5102 | 1750 | - | 0.4134 |
|
667 |
+
| 0.5248 | 1800 | - | 0.4134 |
|
668 |
+
| 0.5394 | 1850 | - | 0.4134 |
|
669 |
+
| 0.5539 | 1900 | - | 0.4134 |
|
670 |
+
| 0.5685 | 1950 | - | 0.4134 |
|
671 |
+
| 0.5831 | 2000 | 0.0 | 0.4135 |
|
672 |
+
| 0.5977 | 2050 | - | 0.4135 |
|
673 |
+
| 0.6122 | 2100 | - | 0.4135 |
|
674 |
+
| 0.6268 | 2150 | - | 0.4135 |
|
675 |
+
| 0.6414 | 2200 | - | 0.4135 |
|
676 |
+
| 0.6560 | 2250 | - | 0.4135 |
|
677 |
+
| 0.6706 | 2300 | - | 0.4135 |
|
678 |
+
| 0.6851 | 2350 | - | 0.4135 |
|
679 |
+
| 0.6997 | 2400 | - | 0.4135 |
|
680 |
+
| 0.7143 | 2450 | - | 0.4134 |
|
681 |
+
| 0.7289 | 2500 | 0.0 | 0.4134 |
|
682 |
+
| 0.7434 | 2550 | - | 0.4134 |
|
683 |
+
| 0.7580 | 2600 | - | 0.4134 |
|
684 |
+
| 0.7726 | 2650 | - | 0.4134 |
|
685 |
+
| 0.7872 | 2700 | - | 0.4134 |
|
686 |
+
| 0.8017 | 2750 | - | 0.4134 |
|
687 |
+
| 0.8163 | 2800 | - | 0.4134 |
|
688 |
+
| 0.8309 | 2850 | - | 0.4135 |
|
689 |
+
| 0.8455 | 2900 | - | 0.4135 |
|
690 |
+
| 0.8601 | 2950 | - | 0.4135 |
|
691 |
+
| 0.8746 | 3000 | 0.0 | 0.4135 |
|
692 |
+
| 0.8892 | 3050 | - | 0.4135 |
|
693 |
+
| 0.9038 | 3100 | - | 0.4135 |
|
694 |
+
| 0.9184 | 3150 | - | 0.4135 |
|
695 |
+
| 0.9329 | 3200 | - | 0.4135 |
|
696 |
+
| 0.9475 | 3250 | - | 0.4135 |
|
697 |
+
| 0.9621 | 3300 | - | 0.4135 |
|
698 |
+
| 0.9767 | 3350 | - | 0.4135 |
|
699 |
+
| 0.9913 | 3400 | - | 0.4135 |
|
700 |
+
| 1.0 | 3430 | - | 0.4135 |
|
701 |
+
| 1.0058 | 3450 | - | 0.4135 |
|
702 |
+
| 1.0204 | 3500 | 0.0 | 0.4135 |
|
703 |
+
| 1.0350 | 3550 | - | 0.4135 |
|
704 |
+
| 1.0496 | 3600 | - | 0.4135 |
|
705 |
+
| 1.0641 | 3650 | - | 0.4135 |
|
706 |
+
| 1.0787 | 3700 | - | 0.4135 |
|
707 |
+
| 1.0933 | 3750 | - | 0.4135 |
|
708 |
+
| 1.1079 | 3800 | - | 0.4135 |
|
709 |
+
| 1.1224 | 3850 | - | 0.4135 |
|
710 |
+
| 1.1370 | 3900 | - | 0.4179 |
|
711 |
+
| 1.1516 | 3950 | - | 0.4179 |
|
712 |
+
| 1.1662 | 4000 | 0.0 | 0.4179 |
|
713 |
+
| 1.1808 | 4050 | - | 0.4179 |
|
714 |
+
| 1.1953 | 4100 | - | 0.4179 |
|
715 |
+
| 1.2099 | 4150 | - | 0.4179 |
|
716 |
+
| 1.2245 | 4200 | - | 0.4179 |
|
717 |
+
| 1.2391 | 4250 | - | 0.4179 |
|
718 |
+
| 1.2536 | 4300 | - | 0.4179 |
|
719 |
+
| 1.2682 | 4350 | - | 0.4179 |
|
720 |
+
| 1.2828 | 4400 | - | 0.4179 |
|
721 |
+
| 1.2974 | 4450 | - | 0.4179 |
|
722 |
+
| 1.3120 | 4500 | 0.0 | 0.4179 |
|
723 |
+
| 1.3265 | 4550 | - | 0.4179 |
|
724 |
+
| 1.3411 | 4600 | - | 0.4179 |
|
725 |
+
| 1.3557 | 4650 | - | 0.4179 |
|
726 |
+
| 1.3703 | 4700 | - | 0.4179 |
|
727 |
+
| 1.3848 | 4750 | - | 0.4179 |
|
728 |
+
| 1.3994 | 4800 | - | 0.4179 |
|
729 |
+
| 1.4140 | 4850 | - | 0.4179 |
|
730 |
+
| 1.4286 | 4900 | - | 0.4179 |
|
731 |
+
| 1.4431 | 4950 | - | 0.4179 |
|
732 |
+
| 1.4577 | 5000 | 0.0 | 0.4179 |
|
733 |
+
| 1.4723 | 5050 | - | 0.4179 |
|
734 |
+
| 1.4869 | 5100 | - | 0.4179 |
|
735 |
+
| 1.5015 | 5150 | - | 0.4179 |
|
736 |
+
| 1.5160 | 5200 | - | 0.4179 |
|
737 |
+
| 1.5306 | 5250 | - | 0.4179 |
|
738 |
+
| 1.5452 | 5300 | - | 0.4179 |
|
739 |
+
| 1.5598 | 5350 | - | 0.4179 |
|
740 |
+
| 1.5743 | 5400 | - | 0.4179 |
|
741 |
+
| 1.5889 | 5450 | - | 0.4179 |
|
742 |
+
| 1.6035 | 5500 | 0.0 | 0.4179 |
|
743 |
+
| 1.6181 | 5550 | - | 0.4179 |
|
744 |
+
| 1.6327 | 5600 | - | 0.4179 |
|
745 |
+
| 1.6472 | 5650 | - | 0.4179 |
|
746 |
+
| 1.6618 | 5700 | - | 0.4179 |
|
747 |
+
| 1.6764 | 5750 | - | 0.4179 |
|
748 |
+
| 1.6910 | 5800 | - | 0.4179 |
|
749 |
+
| 1.7055 | 5850 | - | 0.4179 |
|
750 |
+
| 1.7201 | 5900 | - | 0.4179 |
|
751 |
+
| 1.7347 | 5950 | - | 0.4179 |
|
752 |
+
| 1.7493 | 6000 | 0.0 | 0.4179 |
|
753 |
+
| 1.7638 | 6050 | - | 0.4179 |
|
754 |
+
| 1.7784 | 6100 | - | 0.4179 |
|
755 |
+
| 1.7930 | 6150 | - | 0.4179 |
|
756 |
+
| 1.8076 | 6200 | - | 0.4179 |
|
757 |
+
| 1.8222 | 6250 | - | 0.4179 |
|
758 |
+
| 1.8367 | 6300 | - | 0.4179 |
|
759 |
+
| 1.8513 | 6350 | - | 0.4179 |
|
760 |
+
| 1.8659 | 6400 | - | 0.4179 |
|
761 |
+
| 1.8805 | 6450 | - | 0.4179 |
|
762 |
+
| 1.8950 | 6500 | 0.0 | 0.4179 |
|
763 |
+
| 1.9096 | 6550 | - | 0.4179 |
|
764 |
+
| 1.9242 | 6600 | - | 0.4179 |
|
765 |
+
| 1.9388 | 6650 | - | 0.4179 |
|
766 |
+
| 1.9534 | 6700 | - | 0.4179 |
|
767 |
+
| 1.9679 | 6750 | - | 0.4179 |
|
768 |
+
| 1.9825 | 6800 | - | 0.4179 |
|
769 |
+
| 1.9971 | 6850 | - | 0.4179 |
|
770 |
+
| 2.0 | 6860 | - | 0.4179 |
|
771 |
+
| 2.0117 | 6900 | - | 0.4179 |
|
772 |
+
| 2.0262 | 6950 | - | 0.4179 |
|
773 |
+
| 2.0408 | 7000 | 0.0 | 0.4179 |
|
774 |
+
| 2.0554 | 7050 | - | 0.4179 |
|
775 |
+
| 2.0700 | 7100 | - | 0.4179 |
|
776 |
+
| 2.0845 | 7150 | - | 0.4179 |
|
777 |
+
| 2.0991 | 7200 | - | 0.4179 |
|
778 |
+
| 2.1137 | 7250 | - | 0.4179 |
|
779 |
+
| 2.1283 | 7300 | - | 0.4179 |
|
780 |
+
| 2.1429 | 7350 | - | 0.4179 |
|
781 |
+
| 2.1574 | 7400 | - | 0.4179 |
|
782 |
+
| 2.1720 | 7450 | - | 0.4179 |
|
783 |
+
| 2.1866 | 7500 | 0.0 | 0.4179 |
|
784 |
+
| 2.2012 | 7550 | - | 0.4179 |
|
785 |
+
| 2.2157 | 7600 | - | 0.4179 |
|
786 |
+
| 2.2303 | 7650 | - | 0.4179 |
|
787 |
+
| 2.2449 | 7700 | - | 0.4179 |
|
788 |
+
| 2.2595 | 7750 | - | 0.4179 |
|
789 |
+
| 2.2741 | 7800 | - | 0.4179 |
|
790 |
+
| 2.2886 | 7850 | - | 0.4179 |
|
791 |
+
| 2.3032 | 7900 | - | 0.4179 |
|
792 |
+
| 2.3178 | 7950 | - | 0.4179 |
|
793 |
+
| 2.3324 | 8000 | 0.0 | 0.4179 |
|
794 |
+
| 2.3469 | 8050 | - | 0.4179 |
|
795 |
+
| 2.3615 | 8100 | - | 0.4179 |
|
796 |
+
| 2.3761 | 8150 | - | 0.4179 |
|
797 |
+
| 2.3907 | 8200 | - | 0.4179 |
|
798 |
+
| 2.4052 | 8250 | - | 0.4179 |
|
799 |
+
| 2.4198 | 8300 | - | 0.4179 |
|
800 |
+
| 2.4344 | 8350 | - | 0.4179 |
|
801 |
+
| 2.4490 | 8400 | - | 0.4179 |
|
802 |
+
| 2.4636 | 8450 | - | 0.4179 |
|
803 |
+
| 2.4781 | 8500 | 0.0 | 0.4179 |
|
804 |
+
| 2.4927 | 8550 | - | 0.4179 |
|
805 |
+
| 2.5073 | 8600 | - | 0.4179 |
|
806 |
+
| 2.5219 | 8650 | - | 0.4179 |
|
807 |
+
| 2.5364 | 8700 | - | 0.4179 |
|
808 |
+
| 2.5510 | 8750 | - | 0.4179 |
|
809 |
+
| 2.5656 | 8800 | - | 0.4179 |
|
810 |
+
| 2.5802 | 8850 | - | 0.4179 |
|
811 |
+
| 2.5948 | 8900 | - | 0.4179 |
|
812 |
+
| 2.6093 | 8950 | - | 0.4179 |
|
813 |
+
| 2.6239 | 9000 | 0.0 | 0.4179 |
|
814 |
+
| 2.6385 | 9050 | - | 0.4179 |
|
815 |
+
| 2.6531 | 9100 | - | 0.4179 |
|
816 |
+
| 2.6676 | 9150 | - | 0.4179 |
|
817 |
+
| 2.6822 | 9200 | - | 0.4179 |
|
818 |
+
| 2.6968 | 9250 | - | 0.4223 |
|
819 |
+
| 2.7114 | 9300 | - | 0.4223 |
|
820 |
+
| 2.7259 | 9350 | - | 0.4223 |
|
821 |
+
| 2.7405 | 9400 | - | 0.4223 |
|
822 |
+
| 2.7551 | 9450 | - | 0.4223 |
|
823 |
+
| 2.7697 | 9500 | 0.0 | 0.4223 |
|
824 |
+
| 2.7843 | 9550 | - | 0.4223 |
|
825 |
+
| 2.7988 | 9600 | - | 0.4223 |
|
826 |
+
| 2.8134 | 9650 | - | 0.4223 |
|
827 |
+
| 2.8280 | 9700 | - | 0.4223 |
|
828 |
+
| 2.8426 | 9750 | - | 0.4223 |
|
829 |
+
| 2.8571 | 9800 | - | 0.4223 |
|
830 |
+
| 2.8717 | 9850 | - | 0.4223 |
|
831 |
+
| 2.8863 | 9900 | - | 0.4223 |
|
832 |
+
| 2.9009 | 9950 | - | 0.4223 |
|
833 |
+
| 2.9155 | 10000 | 0.0 | 0.4223 |
|
834 |
+
| 2.9300 | 10050 | - | 0.4223 |
|
835 |
+
| 2.9446 | 10100 | - | 0.4223 |
|
836 |
+
| 2.9592 | 10150 | - | 0.4223 |
|
837 |
+
| 2.9738 | 10200 | - | 0.4223 |
|
838 |
+
| 2.9883 | 10250 | - | 0.4223 |
|
839 |
+
| 3.0 | 10290 | - | 0.4223 |
|
840 |
+
| 3.0029 | 10300 | - | 0.4223 |
|
841 |
+
| 3.0175 | 10350 | - | 0.4223 |
|
842 |
+
| 3.0321 | 10400 | - | 0.4223 |
|
843 |
+
| 3.0466 | 10450 | - | 0.4223 |
|
844 |
+
| 3.0612 | 10500 | 0.0 | 0.4223 |
|
845 |
+
| 3.0758 | 10550 | - | 0.4223 |
|
846 |
+
| 3.0904 | 10600 | - | 0.4223 |
|
847 |
+
| 3.1050 | 10650 | - | 0.4223 |
|
848 |
+
| 3.1195 | 10700 | - | 0.4223 |
|
849 |
+
| 3.1341 | 10750 | - | 0.4223 |
|
850 |
+
| 3.1487 | 10800 | - | 0.4223 |
|
851 |
+
| 3.1633 | 10850 | - | 0.4223 |
|
852 |
+
| 3.1778 | 10900 | - | 0.4223 |
|
853 |
+
| 3.1924 | 10950 | - | 0.4223 |
|
854 |
+
| 3.2070 | 11000 | 0.0 | 0.4223 |
|
855 |
+
| 3.2216 | 11050 | - | 0.4223 |
|
856 |
+
| 3.2362 | 11100 | - | 0.4223 |
|
857 |
+
| 3.2507 | 11150 | - | 0.4223 |
|
858 |
+
| 3.2653 | 11200 | - | 0.4223 |
|
859 |
+
| 3.2799 | 11250 | - | 0.4223 |
|
860 |
+
| 3.2945 | 11300 | - | 0.4223 |
|
861 |
+
| 3.3090 | 11350 | - | 0.4223 |
|
862 |
+
| 3.3236 | 11400 | - | 0.4223 |
|
863 |
+
| 3.3382 | 11450 | - | 0.4223 |
|
864 |
+
| 3.3528 | 11500 | 0.0 | 0.4223 |
|
865 |
+
| 3.3673 | 11550 | - | 0.4223 |
|
866 |
+
| 3.3819 | 11600 | - | 0.4223 |
|
867 |
+
| 3.3965 | 11650 | - | 0.4223 |
|
868 |
+
| 3.4111 | 11700 | - | 0.4223 |
|
869 |
+
| 3.4257 | 11750 | - | 0.4223 |
|
870 |
+
| 3.4402 | 11800 | - | 0.4223 |
|
871 |
+
| 3.4548 | 11850 | - | 0.4223 |
|
872 |
+
| 3.4694 | 11900 | - | 0.4223 |
|
873 |
+
| 3.4840 | 11950 | - | 0.4223 |
|
874 |
+
| 3.4985 | 12000 | 0.0 | 0.4223 |
|
875 |
+
| 3.5131 | 12050 | - | 0.4223 |
|
876 |
+
| 3.5277 | 12100 | - | 0.4223 |
|
877 |
+
| 3.5423 | 12150 | - | 0.4223 |
|
878 |
+
| 3.5569 | 12200 | - | 0.4223 |
|
879 |
+
| 3.5714 | 12250 | - | 0.4223 |
|
880 |
+
| 3.5860 | 12300 | - | 0.4223 |
|
881 |
+
| 3.6006 | 12350 | - | 0.4223 |
|
882 |
+
| 3.6152 | 12400 | - | 0.4223 |
|
883 |
+
| 3.6297 | 12450 | - | 0.4223 |
|
884 |
+
| 3.6443 | 12500 | 0.0 | 0.4223 |
|
885 |
+
| 3.6589 | 12550 | - | 0.4223 |
|
886 |
+
| 3.6735 | 12600 | - | 0.4223 |
|
887 |
+
| 3.6880 | 12650 | - | 0.4223 |
|
888 |
+
| 3.7026 | 12700 | - | 0.4223 |
|
889 |
+
| 3.7172 | 12750 | - | 0.4223 |
|
890 |
+
| 3.7318 | 12800 | - | 0.4223 |
|
891 |
+
| 3.7464 | 12850 | - | 0.4223 |
|
892 |
+
| 3.7609 | 12900 | - | 0.4223 |
|
893 |
+
| 3.7755 | 12950 | - | 0.4223 |
|
894 |
+
| 3.7901 | 13000 | 0.0 | 0.4223 |
|
895 |
+
| 3.8047 | 13050 | - | 0.4223 |
|
896 |
+
| 3.8192 | 13100 | - | 0.4226 |
|
897 |
+
| 3.8338 | 13150 | - | 0.4226 |
|
898 |
+
| 3.8484 | 13200 | - | 0.4226 |
|
899 |
+
| 3.8630 | 13250 | - | 0.4226 |
|
900 |
+
| 3.8776 | 13300 | - | 0.4226 |
|
901 |
+
| 3.8921 | 13350 | - | 0.4226 |
|
902 |
+
| 3.9067 | 13400 | - | 0.4226 |
|
903 |
+
| 3.9213 | 13450 | - | 0.4226 |
|
904 |
+
| 3.9359 | 13500 | 0.0 | 0.4226 |
|
905 |
+
| 3.9504 | 13550 | - | 0.4226 |
|
906 |
+
| 3.9650 | 13600 | - | 0.4226 |
|
907 |
+
| 3.9796 | 13650 | - | 0.4226 |
|
908 |
+
| 3.9942 | 13700 | - | 0.4226 |
|
909 |
+
| 4.0 | 13720 | - | 0.4226 |
|
910 |
+
| 4.0087 | 13750 | - | 0.4226 |
|
911 |
+
| 4.0233 | 13800 | - | 0.4226 |
|
912 |
+
| 4.0379 | 13850 | - | 0.4226 |
|
913 |
+
| 4.0525 | 13900 | - | 0.4226 |
|
914 |
+
| 4.0671 | 13950 | - | 0.4226 |
|
915 |
+
| 4.0816 | 14000 | 0.0 | 0.4226 |
|
916 |
+
| 4.0962 | 14050 | - | 0.4226 |
|
917 |
+
| 4.1108 | 14100 | - | 0.4226 |
|
918 |
+
| 4.1254 | 14150 | - | 0.4226 |
|
919 |
+
| 4.1399 | 14200 | - | 0.4226 |
|
920 |
+
| 4.1545 | 14250 | - | 0.4226 |
|
921 |
+
| 4.1691 | 14300 | - | 0.4226 |
|
922 |
+
| 4.1837 | 14350 | - | 0.4226 |
|
923 |
+
| 4.1983 | 14400 | - | 0.4226 |
|
924 |
+
| 4.2128 | 14450 | - | 0.4226 |
|
925 |
+
| 4.2274 | 14500 | 0.0 | 0.4226 |
|
926 |
+
| 4.2420 | 14550 | - | 0.4226 |
|
927 |
+
| 4.2566 | 14600 | - | 0.4226 |
|
928 |
+
| 4.2711 | 14650 | - | 0.4226 |
|
929 |
+
| 4.2857 | 14700 | - | 0.4226 |
|
930 |
+
| 4.3003 | 14750 | - | 0.4226 |
|
931 |
+
| 4.3149 | 14800 | - | 0.4226 |
|
932 |
+
| 4.3294 | 14850 | - | 0.4226 |
|
933 |
+
| 4.3440 | 14900 | - | 0.4226 |
|
934 |
+
| 4.3586 | 14950 | - | 0.4226 |
|
935 |
+
| 4.3732 | 15000 | 0.0 | 0.4226 |
|
936 |
+
| 4.3878 | 15050 | - | 0.4226 |
|
937 |
+
| 4.4023 | 15100 | - | 0.4226 |
|
938 |
+
| 4.4169 | 15150 | - | 0.4226 |
|
939 |
+
| 4.4315 | 15200 | - | 0.4226 |
|
940 |
+
| 4.4461 | 15250 | - | 0.4226 |
|
941 |
+
| 4.4606 | 15300 | - | 0.4226 |
|
942 |
+
| 4.4752 | 15350 | - | 0.4226 |
|
943 |
+
| 4.4898 | 15400 | - | 0.4226 |
|
944 |
+
| 4.5044 | 15450 | - | 0.4226 |
|
945 |
+
| 4.5190 | 15500 | 0.0 | 0.4226 |
|
946 |
+
| 4.5335 | 15550 | - | 0.4226 |
|
947 |
+
| 4.5481 | 15600 | - | 0.4226 |
|
948 |
+
| 4.5627 | 15650 | - | 0.4226 |
|
949 |
+
| 4.5773 | 15700 | - | 0.4226 |
|
950 |
+
| 4.5918 | 15750 | - | 0.4226 |
|
951 |
+
| 4.6064 | 15800 | - | 0.4226 |
|
952 |
+
| 4.6210 | 15850 | - | 0.4226 |
|
953 |
+
| 4.6356 | 15900 | - | 0.4226 |
|
954 |
+
| 4.6501 | 15950 | - | 0.4226 |
|
955 |
+
| 4.6647 | 16000 | 0.0 | 0.4226 |
|
956 |
+
| 4.6793 | 16050 | - | 0.4226 |
|
957 |
+
| 4.6939 | 16100 | - | 0.4226 |
|
958 |
+
| 4.7085 | 16150 | - | 0.4226 |
|
959 |
+
| 4.7230 | 16200 | - | 0.4226 |
|
960 |
+
| 4.7376 | 16250 | - | 0.4226 |
|
961 |
+
| 4.7522 | 16300 | - | 0.4226 |
|
962 |
+
| 4.7668 | 16350 | - | 0.4226 |
|
963 |
+
| 4.7813 | 16400 | - | 0.4226 |
|
964 |
+
| 4.7959 | 16450 | - | 0.4226 |
|
965 |
+
| 4.8105 | 16500 | 0.0 | 0.4226 |
|
966 |
+
| 4.8251 | 16550 | - | 0.4226 |
|
967 |
+
| 4.8397 | 16600 | - | 0.4226 |
|
968 |
+
| 4.8542 | 16650 | - | 0.4226 |
|
969 |
+
| 4.8688 | 16700 | - | 0.4226 |
|
970 |
+
| 4.8834 | 16750 | - | 0.4226 |
|
971 |
+
| 4.8980 | 16800 | - | 0.4226 |
|
972 |
+
| 4.9125 | 16850 | - | 0.4226 |
|
973 |
+
| 4.9271 | 16900 | - | 0.4226 |
|
974 |
+
| 4.9417 | 16950 | - | 0.4226 |
|
975 |
+
| 4.9563 | 17000 | 0.0 | 0.4226 |
|
976 |
+
| 4.9708 | 17050 | - | 0.4226 |
|
977 |
+
| 4.9854 | 17100 | - | 0.4226 |
|
978 |
+
| 5.0 | 17150 | - | 0.4226 |
|
979 |
+
| 0.0146 | 50 | - | 0.4226 |
|
980 |
+
| 0.0292 | 100 | - | 0.4226 |
|
981 |
+
| 0.0437 | 150 | - | 0.4226 |
|
982 |
+
| 0.0583 | 200 | - | 0.4226 |
|
983 |
+
| 0.0729 | 250 | - | 0.4226 |
|
984 |
+
| 0.0875 | 300 | - | 0.4226 |
|
985 |
+
| 0.1020 | 350 | - | 0.4226 |
|
986 |
+
| 0.1166 | 400 | - | 0.4226 |
|
987 |
+
| 0.1312 | 450 | - | 0.4226 |
|
988 |
+
| 0.1458 | 500 | 0.0 | 0.4226 |
|
989 |
+
| 0.1603 | 550 | - | 0.4226 |
|
990 |
+
| 0.1749 | 600 | - | 0.4226 |
|
991 |
+
| 0.1895 | 650 | - | 0.4226 |
|
992 |
+
| 0.2041 | 700 | - | 0.4226 |
|
993 |
+
| 0.2187 | 750 | - | 0.4226 |
|
994 |
+
| 0.2332 | 800 | - | 0.4226 |
|
995 |
+
| 0.2478 | 850 | - | 0.4226 |
|
996 |
+
| 0.2624 | 900 | - | 0.4226 |
|
997 |
+
| 0.2770 | 950 | - | 0.4226 |
|
998 |
+
| 0.2915 | 1000 | 0.0 | 0.4227 |
|
999 |
+
| 0.3061 | 1050 | - | 0.4227 |
|
1000 |
+
| 0.3207 | 1100 | - | 0.4227 |
|
1001 |
+
| 0.3353 | 1150 | - | 0.4227 |
|
1002 |
+
| 0.3499 | 1200 | - | 0.4227 |
|
1003 |
+
| 0.3644 | 1250 | - | 0.4227 |
|
1004 |
+
| 0.3790 | 1300 | - | 0.4227 |
|
1005 |
+
| 0.3936 | 1350 | - | 0.4227 |
|
1006 |
+
| 0.4082 | 1400 | - | 0.4227 |
|
1007 |
+
| 0.4227 | 1450 | - | 0.4227 |
|
1008 |
+
| 0.4373 | 1500 | 0.0 | 0.4227 |
|
1009 |
+
| 0.4519 | 1550 | - | 0.4227 |
|
1010 |
+
| 0.4665 | 1600 | - | 0.4227 |
|
1011 |
+
| 0.4810 | 1650 | - | 0.4227 |
|
1012 |
+
| 0.4956 | 1700 | - | 0.4227 |
|
1013 |
+
| 0.5102 | 1750 | - | 0.4227 |
|
1014 |
+
| 0.5248 | 1800 | - | 0.4227 |
|
1015 |
+
| 0.5394 | 1850 | - | 0.4227 |
|
1016 |
+
| 0.5539 | 1900 | - | 0.4227 |
|
1017 |
+
| 0.5685 | 1950 | - | 0.4227 |
|
1018 |
+
| 0.5831 | 2000 | 0.0 | 0.4227 |
|
1019 |
+
| 0.5977 | 2050 | - | 0.4227 |
|
1020 |
+
| 0.6122 | 2100 | - | 0.4227 |
|
1021 |
+
| 0.6268 | 2150 | - | 0.4227 |
|
1022 |
+
| 0.6414 | 2200 | - | 0.4227 |
|
1023 |
+
| 0.6560 | 2250 | - | 0.4227 |
|
1024 |
+
| 0.6706 | 2300 | - | 0.4227 |
|
1025 |
+
| 0.6851 | 2350 | - | 0.4227 |
|
1026 |
+
| 0.6997 | 2400 | - | 0.4227 |
|
1027 |
+
| 0.7143 | 2450 | - | 0.4227 |
|
1028 |
+
| 0.7289 | 2500 | 0.0 | 0.4227 |
|
1029 |
+
| 0.7434 | 2550 | - | 0.4227 |
|
1030 |
+
| 0.7580 | 2600 | - | 0.4227 |
|
1031 |
+
| 0.7726 | 2650 | - | 0.4227 |
|
1032 |
+
| 0.7872 | 2700 | - | 0.4227 |
|
1033 |
+
| 0.8017 | 2750 | - | 0.4227 |
|
1034 |
+
| 0.8163 | 2800 | - | 0.4227 |
|
1035 |
+
| 0.8309 | 2850 | - | 0.4227 |
|
1036 |
+
| 0.8455 | 2900 | - | 0.4227 |
|
1037 |
+
| 0.8601 | 2950 | - | 0.4227 |
|
1038 |
+
| 0.8746 | 3000 | 0.0 | 0.4227 |
|
1039 |
+
| 0.8892 | 3050 | - | 0.4227 |
|
1040 |
+
| 0.9038 | 3100 | - | 0.4227 |
|
1041 |
+
| 0.9184 | 3150 | - | 0.4227 |
|
1042 |
+
| 0.9329 | 3200 | - | 0.4227 |
|
1043 |
+
| 0.9475 | 3250 | - | 0.4227 |
|
1044 |
+
| 0.9621 | 3300 | - | 0.4227 |
|
1045 |
+
| 0.9767 | 3350 | - | 0.4227 |
|
1046 |
+
| 0.9913 | 3400 | - | 0.4227 |
|
1047 |
+
| 1.0 | 3430 | - | 0.4227 |
|
1048 |
+
| 1.0058 | 3450 | - | 0.4227 |
|
1049 |
+
| 1.0204 | 3500 | 0.0 | 0.4227 |
|
1050 |
+
| 1.0350 | 3550 | - | 0.4227 |
|
1051 |
+
| 1.0496 | 3600 | - | 0.4227 |
|
1052 |
+
| 1.0641 | 3650 | - | 0.4227 |
|
1053 |
+
| 1.0787 | 3700 | - | 0.4227 |
|
1054 |
+
| 1.0933 | 3750 | - | 0.4227 |
|
1055 |
+
| 1.1079 | 3800 | - | 0.4227 |
|
1056 |
+
| 1.1224 | 3850 | - | 0.4227 |
|
1057 |
+
| 1.1370 | 3900 | - | 0.4227 |
|
1058 |
+
| 1.1516 | 3950 | - | 0.4227 |
|
1059 |
+
| 1.1662 | 4000 | 0.0 | 0.4227 |
|
1060 |
+
| 1.1808 | 4050 | - | 0.4227 |
|
1061 |
+
| 1.1953 | 4100 | - | 0.4227 |
|
1062 |
+
| 1.2099 | 4150 | - | 0.4231 |
|
1063 |
+
| 1.2245 | 4200 | - | 0.4231 |
|
1064 |
+
| 1.2391 | 4250 | - | 0.4231 |
|
1065 |
+
| 1.2536 | 4300 | - | 0.4231 |
|
1066 |
+
| 1.2682 | 4350 | - | 0.4231 |
|
1067 |
+
| 1.2828 | 4400 | - | 0.4231 |
|
1068 |
+
| 1.2974 | 4450 | - | 0.4231 |
|
1069 |
+
| 1.3120 | 4500 | 0.0 | 0.4231 |
|
1070 |
+
| 1.3265 | 4550 | - | 0.4231 |
|
1071 |
+
| 1.3411 | 4600 | - | 0.4231 |
|
1072 |
+
| 1.3557 | 4650 | - | 0.4232 |
|
1073 |
+
| 1.3703 | 4700 | - | 0.4232 |
|
1074 |
+
| 1.3848 | 4750 | - | 0.4232 |
|
1075 |
+
| 1.3994 | 4800 | - | 0.4232 |
|
1076 |
+
| 1.4140 | 4850 | - | 0.4232 |
|
1077 |
+
| 1.4286 | 4900 | - | 0.4232 |
|
1078 |
+
| 1.4431 | 4950 | - | 0.4232 |
|
1079 |
+
| 1.4577 | 5000 | 0.0 | 0.4232 |
|
1080 |
+
| 1.4723 | 5050 | - | 0.4232 |
|
1081 |
+
| 1.4869 | 5100 | - | 0.4232 |
|
1082 |
+
| 1.5015 | 5150 | - | 0.4232 |
|
1083 |
+
| 1.5160 | 5200 | - | 0.4232 |
|
1084 |
+
| 1.5306 | 5250 | - | 0.4232 |
|
1085 |
+
| 1.5452 | 5300 | - | 0.4233 |
|
1086 |
+
| 1.5598 | 5350 | - | 0.4233 |
|
1087 |
+
| 1.5743 | 5400 | - | 0.4233 |
|
1088 |
+
| 1.5889 | 5450 | - | 0.4233 |
|
1089 |
+
| 1.6035 | 5500 | 0.0 | 0.4233 |
|
1090 |
+
| 1.6181 | 5550 | - | 0.4233 |
|
1091 |
+
| 1.6327 | 5600 | - | 0.4233 |
|
1092 |
+
| 1.6472 | 5650 | - | 0.4233 |
|
1093 |
+
| 1.6618 | 5700 | - | 0.4233 |
|
1094 |
+
| 1.6764 | 5750 | - | 0.4233 |
|
1095 |
+
| 1.6910 | 5800 | - | 0.4233 |
|
1096 |
+
| 1.7055 | 5850 | - | 0.4233 |
|
1097 |
+
| 1.7201 | 5900 | - | 0.4233 |
|
1098 |
+
| 1.7347 | 5950 | - | 0.4233 |
|
1099 |
+
| 1.7493 | 6000 | 0.0 | 0.4233 |
|
1100 |
+
| 1.7638 | 6050 | - | 0.4234 |
|
1101 |
+
| 1.7784 | 6100 | - | 0.4234 |
|
1102 |
+
| 1.7930 | 6150 | - | 0.4234 |
|
1103 |
+
| 1.8076 | 6200 | - | 0.4234 |
|
1104 |
+
| 1.8222 | 6250 | - | 0.4234 |
|
1105 |
+
| 1.8367 | 6300 | - | 0.4234 |
|
1106 |
+
| 1.8513 | 6350 | - | 0.4234 |
|
1107 |
+
| 1.8659 | 6400 | - | 0.4234 |
|
1108 |
+
| 1.8805 | 6450 | - | 0.4234 |
|
1109 |
+
| 1.8950 | 6500 | 0.0 | 0.4234 |
|
1110 |
+
| 1.9096 | 6550 | - | 0.4234 |
|
1111 |
+
| 1.9242 | 6600 | - | 0.4234 |
|
1112 |
+
| 1.9388 | 6650 | - | 0.4234 |
|
1113 |
+
| 1.9534 | 6700 | - | 0.4234 |
|
1114 |
+
| 1.9679 | 6750 | - | 0.4234 |
|
1115 |
+
| 1.9825 | 6800 | - | 0.4234 |
|
1116 |
+
| 1.9971 | 6850 | - | 0.4234 |
|
1117 |
+
| 2.0 | 6860 | - | 0.4234 |
|
1118 |
+
| 2.0117 | 6900 | - | 0.4234 |
|
1119 |
+
| 2.0262 | 6950 | - | 0.4234 |
|
1120 |
+
| 2.0408 | 7000 | 0.0 | 0.4234 |
|
1121 |
+
| 2.0554 | 7050 | - | 0.4234 |
|
1122 |
+
| 2.0700 | 7100 | - | 0.4234 |
|
1123 |
+
| 2.0845 | 7150 | - | 0.4234 |
|
1124 |
+
| 2.0991 | 7200 | - | 0.4234 |
|
1125 |
+
| 2.1137 | 7250 | - | 0.4234 |
|
1126 |
+
| 2.1283 | 7300 | - | 0.4234 |
|
1127 |
+
| 2.1429 | 7350 | - | 0.4234 |
|
1128 |
+
| 2.1574 | 7400 | - | 0.4234 |
|
1129 |
+
| 2.1720 | 7450 | - | 0.4234 |
|
1130 |
+
| 2.1866 | 7500 | 0.0 | 0.4234 |
|
1131 |
+
| 2.2012 | 7550 | - | 0.4234 |
|
1132 |
+
| 2.2157 | 7600 | - | 0.4234 |
|
1133 |
+
| 2.2303 | 7650 | - | 0.4234 |
|
1134 |
+
| 2.2449 | 7700 | - | 0.4234 |
|
1135 |
+
| 2.2595 | 7750 | - | 0.4234 |
|
1136 |
+
| 2.2741 | 7800 | - | 0.4234 |
|
1137 |
+
| 2.2886 | 7850 | - | 0.4234 |
|
1138 |
+
| 2.3032 | 7900 | - | 0.4234 |
|
1139 |
+
| 2.3178 | 7950 | - | 0.4234 |
|
1140 |
+
| 2.3324 | 8000 | 0.0 | 0.4234 |
|
1141 |
+
| 2.3469 | 8050 | - | 0.4234 |
|
1142 |
+
| 2.3615 | 8100 | - | 0.4234 |
|
1143 |
+
| 2.3761 | 8150 | - | 0.4234 |
|
1144 |
+
| 2.3907 | 8200 | - | 0.4234 |
|
1145 |
+
| 2.4052 | 8250 | - | 0.4234 |
|
1146 |
+
| 2.4198 | 8300 | - | 0.4234 |
|
1147 |
+
| 2.4344 | 8350 | - | 0.4234 |
|
1148 |
+
| 2.4490 | 8400 | - | 0.4234 |
|
1149 |
+
| 2.4636 | 8450 | - | 0.4234 |
|
1150 |
+
| 2.4781 | 8500 | 0.0 | 0.4234 |
|
1151 |
+
| 2.4927 | 8550 | - | 0.4234 |
|
1152 |
+
| 2.5073 | 8600 | - | 0.4234 |
|
1153 |
+
| 2.5219 | 8650 | - | 0.4234 |
|
1154 |
+
| 2.5364 | 8700 | - | 0.4234 |
|
1155 |
+
| 2.5510 | 8750 | - | 0.4234 |
|
1156 |
+
| 2.5656 | 8800 | - | 0.4234 |
|
1157 |
+
| 2.5802 | 8850 | - | 0.4234 |
|
1158 |
+
| 2.5948 | 8900 | - | 0.4234 |
|
1159 |
+
| 2.6093 | 8950 | - | 0.4234 |
|
1160 |
+
| 2.6239 | 9000 | 0.0 | 0.4234 |
|
1161 |
+
| 2.6385 | 9050 | - | 0.4234 |
|
1162 |
+
| 2.6531 | 9100 | - | 0.4234 |
|
1163 |
+
| 2.6676 | 9150 | - | 0.4234 |
|
1164 |
+
| 2.6822 | 9200 | - | 0.4234 |
|
1165 |
+
| 2.6968 | 9250 | - | 0.4234 |
|
1166 |
+
| 2.7114 | 9300 | - | 0.4234 |
|
1167 |
+
| 2.7259 | 9350 | - | 0.4234 |
|
1168 |
+
| 2.7405 | 9400 | - | 0.4234 |
|
1169 |
+
| 2.7551 | 9450 | - | 0.4234 |
|
1170 |
+
| 2.7697 | 9500 | 0.0 | 0.4234 |
|
1171 |
+
| 2.7843 | 9550 | - | 0.4234 |
|
1172 |
+
| 2.7988 | 9600 | - | 0.4234 |
|
1173 |
+
| 2.8134 | 9650 | - | 0.4234 |
|
1174 |
+
| 2.8280 | 9700 | - | 0.4234 |
|
1175 |
+
| 2.8426 | 9750 | - | 0.4234 |
|
1176 |
+
| 2.8571 | 9800 | - | 0.4234 |
|
1177 |
+
| 2.8717 | 9850 | - | 0.4234 |
|
1178 |
+
| 2.8863 | 9900 | - | 0.4234 |
|
1179 |
+
| 2.9009 | 9950 | - | 0.4234 |
|
1180 |
+
| 2.9155 | 10000 | 0.0 | 0.4234 |
|
1181 |
+
| 2.9300 | 10050 | - | 0.4234 |
|
1182 |
+
| 2.9446 | 10100 | - | 0.4234 |
|
1183 |
+
| 2.9592 | 10150 | - | 0.4234 |
|
1184 |
+
| 2.9738 | 10200 | - | 0.4234 |
|
1185 |
+
| 2.9883 | 10250 | - | 0.4234 |
|
1186 |
+
| 3.0 | 10290 | - | 0.4234 |
|
1187 |
+
| 3.0029 | 10300 | - | 0.4234 |
|
1188 |
+
| 3.0175 | 10350 | - | 0.4234 |
|
1189 |
+
| 3.0321 | 10400 | - | 0.4234 |
|
1190 |
+
| 3.0466 | 10450 | - | 0.4234 |
|
1191 |
+
| 3.0612 | 10500 | 0.0 | 0.4234 |
|
1192 |
+
| 3.0758 | 10550 | - | 0.4234 |
|
1193 |
+
| 3.0904 | 10600 | - | 0.4234 |
|
1194 |
+
| 3.1050 | 10650 | - | 0.4234 |
|
1195 |
+
| 3.1195 | 10700 | - | 0.4234 |
|
1196 |
+
| 3.1341 | 10750 | - | 0.4234 |
|
1197 |
+
| 3.1487 | 10800 | - | 0.4234 |
|
1198 |
+
| 3.1633 | 10850 | - | 0.4234 |
|
1199 |
+
| 3.1778 | 10900 | - | 0.4234 |
|
1200 |
+
| 3.1924 | 10950 | - | 0.4234 |
|
1201 |
+
| 3.2070 | 11000 | 0.0 | 0.4234 |
|
1202 |
+
| 3.2216 | 11050 | - | 0.4234 |
|
1203 |
+
| 3.2362 | 11100 | - | 0.4234 |
|
1204 |
+
| 3.2507 | 11150 | - | 0.4234 |
|
1205 |
+
| 3.2653 | 11200 | - | 0.4234 |
|
1206 |
+
| 3.2799 | 11250 | - | 0.4234 |
|
1207 |
+
| 3.2945 | 11300 | - | 0.4234 |
|
1208 |
+
| 3.3090 | 11350 | - | 0.4234 |
|
1209 |
+
| 3.3236 | 11400 | - | 0.4234 |
|
1210 |
+
| 3.3382 | 11450 | - | 0.4234 |
|
1211 |
+
| 3.3528 | 11500 | 0.0 | 0.4234 |
|
1212 |
+
| 3.3673 | 11550 | - | 0.4234 |
|
1213 |
+
| 3.3819 | 11600 | - | 0.4234 |
|
1214 |
+
| 3.3965 | 11650 | - | 0.4234 |
|
1215 |
+
| 3.4111 | 11700 | - | 0.4234 |
|
1216 |
+
| 3.4257 | 11750 | - | 0.4234 |
|
1217 |
+
| 3.4402 | 11800 | - | 0.4234 |
|
1218 |
+
| 3.4548 | 11850 | - | 0.4235 |
|
1219 |
+
| 3.4694 | 11900 | - | 0.4235 |
|
1220 |
+
| 3.4840 | 11950 | - | 0.4235 |
|
1221 |
+
| 3.4985 | 12000 | 0.0 | 0.4235 |
|
1222 |
+
| 3.5131 | 12050 | - | 0.4235 |
|
1223 |
+
| 3.5277 | 12100 | - | 0.4235 |
|
1224 |
+
| 3.5423 | 12150 | - | 0.4235 |
|
1225 |
+
| 3.5569 | 12200 | - | 0.4235 |
|
1226 |
+
| 3.5714 | 12250 | - | 0.4235 |
|
1227 |
+
| 3.5860 | 12300 | - | 0.4235 |
|
1228 |
+
| 3.6006 | 12350 | - | 0.4235 |
|
1229 |
+
| 3.6152 | 12400 | - | 0.4235 |
|
1230 |
+
| 3.6297 | 12450 | - | 0.4235 |
|
1231 |
+
| 3.6443 | 12500 | 0.0 | 0.4235 |
|
1232 |
+
| 3.6589 | 12550 | - | 0.4235 |
|
1233 |
+
| 3.6735 | 12600 | - | 0.4235 |
|
1234 |
+
| 3.6880 | 12650 | - | 0.4235 |
|
1235 |
+
| 3.7026 | 12700 | - | 0.4235 |
|
1236 |
+
| 3.7172 | 12750 | - | 0.4235 |
|
1237 |
+
| 3.7318 | 12800 | - | 0.4235 |
|
1238 |
+
| 3.7464 | 12850 | - | 0.4235 |
|
1239 |
+
| 3.7609 | 12900 | - | 0.4235 |
|
1240 |
+
| 3.7755 | 12950 | - | 0.4235 |
|
1241 |
+
| 3.7901 | 13000 | 0.0 | 0.4235 |
|
1242 |
+
| 3.8047 | 13050 | - | 0.4235 |
|
1243 |
+
| 3.8192 | 13100 | - | 0.4235 |
|
1244 |
+
| 3.8338 | 13150 | - | 0.4235 |
|
1245 |
+
| 3.8484 | 13200 | - | 0.4235 |
|
1246 |
+
| 3.8630 | 13250 | - | 0.4235 |
|
1247 |
+
| 3.8776 | 13300 | - | 0.4235 |
|
1248 |
+
| 3.8921 | 13350 | - | 0.4235 |
|
1249 |
+
| 3.9067 | 13400 | - | 0.4235 |
|
1250 |
+
| 3.9213 | 13450 | - | 0.4235 |
|
1251 |
+
| 3.9359 | 13500 | 0.0 | 0.4235 |
|
1252 |
+
| 3.9504 | 13550 | - | 0.4235 |
|
1253 |
+
| 3.9650 | 13600 | - | 0.4235 |
|
1254 |
+
| 3.9796 | 13650 | - | 0.4235 |
|
1255 |
+
| 3.9942 | 13700 | - | 0.4235 |
|
1256 |
+
| 4.0 | 13720 | - | 0.4235 |
|
1257 |
+
| 4.0087 | 13750 | - | 0.4235 |
|
1258 |
+
| 4.0233 | 13800 | - | 0.4235 |
|
1259 |
+
| 4.0379 | 13850 | - | 0.4235 |
|
1260 |
+
| 4.0525 | 13900 | - | 0.4235 |
|
1261 |
+
| 4.0671 | 13950 | - | 0.4235 |
|
1262 |
+
| 4.0816 | 14000 | 0.0 | 0.4236 |
|
1263 |
+
|
1264 |
+
</details>
|
1265 |
+
|
1266 |
+
### Framework Versions
|
1267 |
+
- Python: 3.10.12
|
1268 |
+
- Sentence Transformers: 3.1.1
|
1269 |
+
- Transformers: 4.44.2
|
1270 |
+
- PyTorch: 2.4.1+cu121
|
1271 |
+
- Accelerate: 0.34.2
|
1272 |
+
- Datasets: 2.14.4
|
1273 |
+
- Tokenizers: 0.19.1
|
1274 |
+
|
1275 |
+
## Citation
|
1276 |
+
|
1277 |
+
### BibTeX
|
1278 |
+
|
1279 |
+
#### Sentence Transformers
|
1280 |
+
```bibtex
|
1281 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1282 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1283 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1284 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1285 |
+
month = "11",
|
1286 |
+
year = "2019",
|
1287 |
+
publisher = "Association for Computational Linguistics",
|
1288 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1289 |
+
}
|
1290 |
+
```
|
1291 |
+
|
1292 |
+
#### MatryoshkaLoss
|
1293 |
+
```bibtex
|
1294 |
+
@misc{kusupati2024matryoshka,
|
1295 |
+
title={Matryoshka Representation Learning},
|
1296 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1297 |
+
year={2024},
|
1298 |
+
eprint={2205.13147},
|
1299 |
+
archivePrefix={arXiv},
|
1300 |
+
primaryClass={cs.LG}
|
1301 |
+
}
|
1302 |
+
```
|
1303 |
+
|
1304 |
+
#### MultipleNegativesRankingLoss
|
1305 |
+
```bibtex
|
1306 |
+
@misc{henderson2017efficient,
|
1307 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1308 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1309 |
+
year={2017},
|
1310 |
+
eprint={1705.00652},
|
1311 |
+
archivePrefix={arXiv},
|
1312 |
+
primaryClass={cs.CL}
|
1313 |
+
}
|
1314 |
+
```
|
1315 |
+
|
1316 |
+
<!--
|
1317 |
+
## Glossary
|
1318 |
+
|
1319 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1320 |
+
-->
|
1321 |
+
|
1322 |
+
<!--
|
1323 |
+
## Model Card Authors
|
1324 |
+
|
1325 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1326 |
+
-->
|
1327 |
+
|
1328 |
+
<!--
|
1329 |
+
## Model Card Contact
|
1330 |
+
|
1331 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1332 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "finetuned_arctic-embedd-l",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.44.2",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30522
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Represent this sentence for searching relevant passages: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": null
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04634c93e8d948d5e898dd8ef4abc1c3c4a9bb267b21137aca72d9f440414cb7
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|