jeevanions commited on
Commit
b2f3503
1 Parent(s): f8d3ef1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-l
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:3430
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What are some illustrative cases that show the implementation of
46
+ the AI Bill of Rights?
47
+ sentences:
48
+ - "SECTION TITLE\nAPPENDIX\nListening to the American People \nThe White House Office\
49
+ \ of Science and Technology Policy (OSTP) led a yearlong process to seek and distill\
50
+ \ \ninput from people across the country – from impacted communities to industry\
51
+ \ stakeholders to \ntechnology developers to other experts across fields and sectors,\
52
+ \ as well as policymakers across the Federal \ngovernment – on the issue of algorithmic\
53
+ \ and data-driven harms and potential remedies. Through panel \ndiscussions, public\
54
+ \ listening sessions, private meetings, a formal request for information, and\
55
+ \ input to a \npublicly accessible and widely-publicized email address, people\
56
+ \ across the United States spoke up about \nboth the promises and potential harms\
57
+ \ of these technologies, and played a central role in shaping the \nBlueprint\
58
+ \ for an AI Bill of Rights. \nPanel Discussions to Inform the Blueprint for An\
59
+ \ AI Bill of Rights \nOSTP co-hosted a series of six panel discussions in collaboration\
60
+ \ with the Center for American Progress,"
61
+ - "existing human performance considered as a performance baseline for the algorithm\
62
+ \ to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision\
63
+ \ possibilities resulting from performance testing \nshould include the possibility\
64
+ \ of not deploying the system. \nRisk identification and mitigation. Before deployment,\
65
+ \ and in a proactive and ongoing manner, poten­\ntial risks of the automated system\
66
+ \ should be identified and mitigated. Identified risks should focus on the \n\
67
+ potential for meaningful impact on people’s rights, opportunities, or access and\
68
+ \ include those to impacted \ncommunities that may not be direct users of the\
69
+ \ automated system, risks resulting from purposeful misuse of \nthe system, and\
70
+ \ other concerns identified via the consultation process. Assessment and, where\
71
+ \ possible, mea­\nsurement of the impact of risks should be included and balanced\
72
+ \ such that high impact risks receive attention"
73
+ - "confidence that their rights, opportunities, and access as well as their expectations\
74
+ \ about technologies are respected. \n3\nHOW THESE PRINCIPLES CAN MOVE INTO PRACTICE:\
75
+ \ \nThis section provides real-life examples of how these guiding principles can\
76
+ \ become reality, through laws, policies, and practices. \nIt describes practical\
77
+ \ technical and sociotechnical approaches to protecting rights, opportunities,\
78
+ \ and access. \nThe examples provided are not critiques or endorsements, but rather\
79
+ \ are offered as illustrative cases to help \nprovide a concrete vision for actualizing\
80
+ \ the Blueprint for an AI Bill of Rights. Effectively implementing these \nprocesses\
81
+ \ require the cooperation of and collaboration among industry, civil society,\
82
+ \ researchers, policymakers, \ntechnologists, and the public. \n14"
83
+ - source_sentence: What are the potential impacts of automated systems on data privacy?
84
+ sentences:
85
+ - "https://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or\
86
+ \ Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital\
87
+ \ Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388\
88
+ \ \nSoice, E. et al. (2023) Can large language models democratize access to dual-use\
89
+ \ biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809 \nSolaiman, I. et al.\
90
+ \ (2023) The Gradient of Generative AI Release: Methods and Considerations. arXiv.\
91
+ \ \nhttps://arxiv.org/abs/2302.04844 \nStaab, R. et al. (2023) Beyond Memorization:\
92
+ \ Violating Privacy via Inference With Large Language \nModels. arXiv. https://arxiv.org/pdf/2310.07298\
93
+ \ \nStanford, S. et al. (2023) Whose Opinions Do Language Models Reflect? arXiv.\
94
+ \ \nhttps://arxiv.org/pdf/2303.17548 \nStrubell, E. et al. (2019) Energy and Policy\
95
+ \ Considerations for Deep Learning in NLP. arXiv. \nhttps://arxiv.org/pdf/1906.02243\
96
+ \ \nThe White House (2016) Circular No. A-130, Managing Information as a Strategic\
97
+ \ Resource."
98
+ - "and data that are considered sensitive are understood to change over time based\
99
+ \ on societal norms and context. \n36"
100
+ - "yet foreseeable, uses or impacts of automated systems. You should be \nprotected\
101
+ \ from inappropriate or irrelevant data use in the design, de­\nvelopment, and\
102
+ \ deployment of automated systems, and from the \ncompounded harm of its reuse.\
103
+ \ Independent evaluation and report­\ning that confirms that the system is safe\
104
+ \ and effective, including re­\nporting of steps taken to mitigate potential harms,\
105
+ \ should be per­\nformed and the results made public whenever possible. \n15"
106
+ - source_sentence: What is the AI Bill of Rights?
107
+ sentences:
108
+ - "BLUEPRINT FOR AN \nAI BILL OF \nRIGHTS \nMAKING AUTOMATED \nSYSTEMS WORK FOR\
109
+ \ \nTHE AMERICAN PEOPLE \nOCTOBER 2022"
110
+ - "APPENDIX\n•\nJulia Simon-Mishel, Supervising Attorney, Philadelphia Legal Assistance\n\
111
+ •\nDr. Zachary Mahafza, Research & Data Analyst, Southern Poverty Law Center\n\
112
+ •\nJ. Khadijah Abdurahman, Tech Impact Network Research Fellow, AI Now Institute,\
113
+ \ UCLA C2I1, and\nUWA Law School\nPanelists separately described the increasing\
114
+ \ scope of technology use in providing for social welfare, including \nin fraud\
115
+ \ detection, digital ID systems, and other methods focused on improving efficiency\
116
+ \ and reducing cost. \nHowever, various panelists individually cautioned that\
117
+ \ these systems may reduce burden for government \nagencies by increasing the\
118
+ \ burden and agency of people using and interacting with these technologies. \n\
119
+ Additionally, these systems can produce feedback loops and compounded harm, collecting\
120
+ \ data from \ncommunities and using it to reinforce inequality. Various panelists\
121
+ \ suggested that these harms could be \nmitigated by ensuring community input\
122
+ \ at the beginning of the design process, providing ways to opt out of"
123
+ - "safe, secure, and resilient; (e) understandable; (f ) responsible and traceable;\
124
+ \ (g) regularly monitored; (h) transpar-\nent; and, (i) accountable. The Blueprint\
125
+ \ for an AI Bill of Rights is consistent with the Executive Order. \nAffected\
126
+ \ agencies across the federal government have released AI use case inventories13\
127
+ \ and are implementing \nplans to bring those AI systems into compliance with\
128
+ \ the Executive Order or retire them. \nThe law and policy landscape for motor\
129
+ \ vehicles shows that strong safety regulations—and \nmeasures to address harms\
130
+ \ when they occur—can enhance innovation in the context of com-\nplex technologies.\
131
+ \ Cars, like automated digital systems, comprise a complex collection of components.\
132
+ \ \nThe National Highway Traffic Safety Administration,14 through its rigorous\
133
+ \ standards and independent \nevaluation, helps make sure vehicles on our roads\
134
+ \ are safe without limiting manufacturers’ ability to \ninnovate.15 At the same\
135
+ \ time, rules of the road are implemented locally to impose contextually appropriate"
136
+ - source_sentence: What are the best practices for benchmarking AI system security
137
+ and resilience?
138
+ sentences:
139
+ - "NOTICE & \nEXPLANATION \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations\
140
+ \ for automated systems are meant to serve as a blueprint for the development\
141
+ \ of additional \ntechnical standards and practices that are tailored for particular\
142
+ \ sectors and contexts. \nAn automated system should provide demonstrably clear,\
143
+ \ timely, understandable, and accessible notice of use, and \nexplanations as\
144
+ \ to how and why a decision was made or an action was taken by the system. These\
145
+ \ expectations are \nexplained below. \nProvide clear, timely, understandable,\
146
+ \ and accessible notice of use and explanations ­\nGenerally accessible plain\
147
+ \ language documentation. The entity responsible for using the automated \nsystem\
148
+ \ should ensure that documentation describing the overall system (including any\
149
+ \ human components) is \npublic and easy to find. The documentation should describe,\
150
+ \ in plain language, how the system works and how"
151
+ - "content performance and impact, and work in collaboration with AI Actors \nexperienced\
152
+ \ in user research and experience. \nHuman-AI Configuration \nMG-4.1-004 Implement\
153
+ \ active learning techniques to identify instances where the model fails \nor\
154
+ \ produces unexpected outputs. \nConfabulation \nMG-4.1-005 \nShare transparency\
155
+ \ reports with internal and external stakeholders that detail \nsteps taken to\
156
+ \ update the GAI system to enhance transparency and \naccountability. \nHuman-AI\
157
+ \ Configuration; Harmful \nBias and Homogenization \nMG-4.1-006 \nTrack dataset\
158
+ \ modifications for provenance by monitoring data deletions, \nrectification requests,\
159
+ \ and other changes that may impact the verifiability of \ncontent origins. \n\
160
+ Information Integrity"
161
+ - "33 \nMEASURE 2.7: AI system security and resilience – as identified in the MAP\
162
+ \ function – are evaluated and documented. \nAction ID \nSuggested Action \nGAI\
163
+ \ Risks \nMS-2.7-001 \nApply established security measures to: Assess likelihood\
164
+ \ and magnitude of \nvulnerabilities and threats such as backdoors, compromised\
165
+ \ dependencies, data \nbreaches, eavesdropping, man-in-the-middle attacks, reverse\
166
+ \ engineering, \nautonomous agents, model theft or exposure of model weights,\
167
+ \ AI inference, \nbypass, extraction, and other baseline security concerns. \n\
168
+ Data Privacy; Information Integrity; \nInformation Security; Value Chain \nand\
169
+ \ Component Integration \nMS-2.7-002 \nBenchmark GAI system security and resilience\
170
+ \ related to content provenance \nagainst industry standards and best practices.\
171
+ \ Compare GAI system security \nfeatures and content provenance methods against\
172
+ \ industry state-of-the-art. \nInformation Integrity; Information \nSecurity \n\
173
+ MS-2.7-003 \nConduct user surveys to gather user satisfaction with the AI-generated\
174
+ \ content"
175
+ - source_sentence: How should risks or trustworthiness characteristics that cannot
176
+ be measured be documented?
177
+ sentences:
178
+ - "MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during\
179
+ \ the MAP function are selected for \nimplementation starting with the most significant\
180
+ \ AI risks. The risks or trustworthiness characteristics that will not – or cannot\
181
+ \ – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI\
182
+ \ Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital\
183
+ \ content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to\
184
+ \ analyze content provenance and detect data \nanomalies, verify the authenticity\
185
+ \ of digital signatures, and identify patterns \nassociated with misinformation\
186
+ \ or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation\
187
+ \ metrics by demographic factors to identify any \ndiscrepancies in how content\
188
+ \ provenance mechanisms work across diverse \npopulations. \nInformation Integrity;\
189
+ \ Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to\
190
+ \ evaluate structured public feedback exercises"
191
+ - "AI technology can produce varied outputs in multiple modalities and present many\
192
+ \ classes of user \ninterfaces. This leads to a broader set of AI Actors interacting\
193
+ \ with GAI systems for widely differing \napplications and contexts of use. These\
194
+ \ can include data labeling and preparation, development of GAI \nmodels, content\
195
+ \ moderation, code generation and review, text generation and editing, image and\
196
+ \ video \ngeneration, summarization, search, and chat. These activities can take\
197
+ \ place within organizational \nsettings or in the public domain. \nOrganizations\
198
+ \ can restrict AI applications that cause harm, exceed stated risk tolerances,\
199
+ \ or that conflict \nwith their tolerances or values. Governance tools and protocols\
200
+ \ that are applied to other types of AI \nsystems can be applied to GAI systems.\
201
+ \ These plans and actions include: \n• Accessibility and reasonable \naccommodations\
202
+ \ \n• AI actor credentials and qualifications \n• Alignment to organizational\
203
+ \ values \n• Auditing and assessment \n• Change-management controls"
204
+ - "existing human performance considered as a performance baseline for the algorithm\
205
+ \ to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision\
206
+ \ possibilities resulting from performance testing \nshould include the possibility\
207
+ \ of not deploying the system. \nRisk identification and mitigation. Before deployment,\
208
+ \ and in a proactive and ongoing manner, poten­\ntial risks of the automated system\
209
+ \ should be identified and mitigated. Identified risks should focus on the \n\
210
+ potential for meaningful impact on people’s rights, opportunities, or access and\
211
+ \ include those to impacted \ncommunities that may not be direct users of the\
212
+ \ automated system, risks resulting from purposeful misuse of \nthe system, and\
213
+ \ other concerns identified via the consultation process. Assessment and, where\
214
+ \ possible, mea­\nsurement of the impact of risks should be included and balanced\
215
+ \ such that high impact risks receive attention"
216
+ model-index:
217
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
218
+ results:
219
+ - task:
220
+ type: information-retrieval
221
+ name: Information Retrieval
222
+ dataset:
223
+ name: Unknown
224
+ type: unknown
225
+ metrics:
226
+ - type: cosine_accuracy@1
227
+ value: 0.2807017543859649
228
+ name: Cosine Accuracy@1
229
+ - type: cosine_accuracy@3
230
+ value: 0.4649122807017544
231
+ name: Cosine Accuracy@3
232
+ - type: cosine_accuracy@5
233
+ value: 0.5350877192982456
234
+ name: Cosine Accuracy@5
235
+ - type: cosine_accuracy@10
236
+ value: 0.7192982456140351
237
+ name: Cosine Accuracy@10
238
+ - type: cosine_precision@1
239
+ value: 0.2807017543859649
240
+ name: Cosine Precision@1
241
+ - type: cosine_precision@3
242
+ value: 0.15497076023391812
243
+ name: Cosine Precision@3
244
+ - type: cosine_precision@5
245
+ value: 0.10701754385964912
246
+ name: Cosine Precision@5
247
+ - type: cosine_precision@10
248
+ value: 0.0719298245614035
249
+ name: Cosine Precision@10
250
+ - type: cosine_recall@1
251
+ value: 0.2807017543859649
252
+ name: Cosine Recall@1
253
+ - type: cosine_recall@3
254
+ value: 0.4649122807017544
255
+ name: Cosine Recall@3
256
+ - type: cosine_recall@5
257
+ value: 0.5350877192982456
258
+ name: Cosine Recall@5
259
+ - type: cosine_recall@10
260
+ value: 0.7192982456140351
261
+ name: Cosine Recall@10
262
+ - type: cosine_ndcg@10
263
+ value: 0.4797086283187805
264
+ name: Cosine Ndcg@10
265
+ - type: cosine_mrr@10
266
+ value: 0.40644667223614606
267
+ name: Cosine Mrr@10
268
+ - type: cosine_map@100
269
+ value: 0.423567506926962
270
+ name: Cosine Map@100
271
+ - type: dot_accuracy@1
272
+ value: 0.2807017543859649
273
+ name: Dot Accuracy@1
274
+ - type: dot_accuracy@3
275
+ value: 0.4649122807017544
276
+ name: Dot Accuracy@3
277
+ - type: dot_accuracy@5
278
+ value: 0.5350877192982456
279
+ name: Dot Accuracy@5
280
+ - type: dot_accuracy@10
281
+ value: 0.7192982456140351
282
+ name: Dot Accuracy@10
283
+ - type: dot_precision@1
284
+ value: 0.2807017543859649
285
+ name: Dot Precision@1
286
+ - type: dot_precision@3
287
+ value: 0.15497076023391812
288
+ name: Dot Precision@3
289
+ - type: dot_precision@5
290
+ value: 0.10701754385964912
291
+ name: Dot Precision@5
292
+ - type: dot_precision@10
293
+ value: 0.0719298245614035
294
+ name: Dot Precision@10
295
+ - type: dot_recall@1
296
+ value: 0.2807017543859649
297
+ name: Dot Recall@1
298
+ - type: dot_recall@3
299
+ value: 0.4649122807017544
300
+ name: Dot Recall@3
301
+ - type: dot_recall@5
302
+ value: 0.5350877192982456
303
+ name: Dot Recall@5
304
+ - type: dot_recall@10
305
+ value: 0.7192982456140351
306
+ name: Dot Recall@10
307
+ - type: dot_ndcg@10
308
+ value: 0.4797086283187805
309
+ name: Dot Ndcg@10
310
+ - type: dot_mrr@10
311
+ value: 0.40644667223614606
312
+ name: Dot Mrr@10
313
+ - type: dot_map@100
314
+ value: 0.423567506926962
315
+ name: Dot Map@100
316
+ ---
317
+
318
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
319
+
320
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
321
+
322
+ ## Model Details
323
+
324
+ ### Model Description
325
+ - **Model Type:** Sentence Transformer
326
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision 9a9e5834d2e89cdd8bb72b64111dde496e4fe78c -->
327
+ - **Maximum Sequence Length:** 512 tokens
328
+ - **Output Dimensionality:** 1024 tokens
329
+ - **Similarity Function:** Cosine Similarity
330
+ <!-- - **Training Dataset:** Unknown -->
331
+ <!-- - **Language:** Unknown -->
332
+ <!-- - **License:** Unknown -->
333
+
334
+ ### Model Sources
335
+
336
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
337
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
338
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
339
+
340
+ ### Full Model Architecture
341
+
342
+ ```
343
+ SentenceTransformer(
344
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
345
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
346
+ (2): Normalize()
347
+ )
348
+ ```
349
+
350
+ ## Usage
351
+
352
+ ### Direct Usage (Sentence Transformers)
353
+
354
+ First install the Sentence Transformers library:
355
+
356
+ ```bash
357
+ pip install -U sentence-transformers
358
+ ```
359
+
360
+ Then you can load this model and run inference.
361
+ ```python
362
+ from sentence_transformers import SentenceTransformer
363
+
364
+ # Download from the 🤗 Hub
365
+ model = SentenceTransformer("jeevanions/finetuned_arctic-embedd-l")
366
+ # Run inference
367
+ sentences = [
368
+ 'How should risks or trustworthiness characteristics that cannot be measured be documented?',
369
+ 'MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during the MAP function are selected for \nimplementation starting with the most significant AI risks. The risks or trustworthiness characteristics that will not – or cannot – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to analyze content provenance and detect data \nanomalies, verify the authenticity of digital signatures, and identify patterns \nassociated with misinformation or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation metrics by demographic factors to identify any \ndiscrepancies in how content provenance mechanisms work across diverse \npopulations. \nInformation Integrity; Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to evaluate structured public feedback exercises',
370
+ 'existing human performance considered as a performance baseline for the algorithm to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision possibilities resulting from performance testing \nshould include the possibility of not deploying the system. \nRisk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten\xad\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the \npotential for meaningful impact on people’s rights, opportunities, or access and include those to impacted \ncommunities that may not be direct users of the automated system, risks resulting from purposeful misuse of \nthe system, and other concerns identified via the consultation process. Assessment and, where possible, mea\xad\nsurement of the impact of risks should be included and balanced such that high impact risks receive attention',
371
+ ]
372
+ embeddings = model.encode(sentences)
373
+ print(embeddings.shape)
374
+ # [3, 1024]
375
+
376
+ # Get the similarity scores for the embeddings
377
+ similarities = model.similarity(embeddings, embeddings)
378
+ print(similarities.shape)
379
+ # [3, 3]
380
+ ```
381
+
382
+ <!--
383
+ ### Direct Usage (Transformers)
384
+
385
+ <details><summary>Click to see the direct usage in Transformers</summary>
386
+
387
+ </details>
388
+ -->
389
+
390
+ <!--
391
+ ### Downstream Usage (Sentence Transformers)
392
+
393
+ You can finetune this model on your own dataset.
394
+
395
+ <details><summary>Click to expand</summary>
396
+
397
+ </details>
398
+ -->
399
+
400
+ <!--
401
+ ### Out-of-Scope Use
402
+
403
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
404
+ -->
405
+
406
+ ## Evaluation
407
+
408
+ ### Metrics
409
+
410
+ #### Information Retrieval
411
+
412
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
413
+
414
+ | Metric | Value |
415
+ |:--------------------|:-----------|
416
+ | cosine_accuracy@1 | 0.2807 |
417
+ | cosine_accuracy@3 | 0.4649 |
418
+ | cosine_accuracy@5 | 0.5351 |
419
+ | cosine_accuracy@10 | 0.7193 |
420
+ | cosine_precision@1 | 0.2807 |
421
+ | cosine_precision@3 | 0.155 |
422
+ | cosine_precision@5 | 0.107 |
423
+ | cosine_precision@10 | 0.0719 |
424
+ | cosine_recall@1 | 0.2807 |
425
+ | cosine_recall@3 | 0.4649 |
426
+ | cosine_recall@5 | 0.5351 |
427
+ | cosine_recall@10 | 0.7193 |
428
+ | cosine_ndcg@10 | 0.4797 |
429
+ | cosine_mrr@10 | 0.4064 |
430
+ | **cosine_map@100** | **0.4236** |
431
+ | dot_accuracy@1 | 0.2807 |
432
+ | dot_accuracy@3 | 0.4649 |
433
+ | dot_accuracy@5 | 0.5351 |
434
+ | dot_accuracy@10 | 0.7193 |
435
+ | dot_precision@1 | 0.2807 |
436
+ | dot_precision@3 | 0.155 |
437
+ | dot_precision@5 | 0.107 |
438
+ | dot_precision@10 | 0.0719 |
439
+ | dot_recall@1 | 0.2807 |
440
+ | dot_recall@3 | 0.4649 |
441
+ | dot_recall@5 | 0.5351 |
442
+ | dot_recall@10 | 0.7193 |
443
+ | dot_ndcg@10 | 0.4797 |
444
+ | dot_mrr@10 | 0.4064 |
445
+ | dot_map@100 | 0.4236 |
446
+
447
+ <!--
448
+ ## Bias, Risks and Limitations
449
+
450
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
451
+ -->
452
+
453
+ <!--
454
+ ### Recommendations
455
+
456
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
457
+ -->
458
+
459
+ ## Training Details
460
+
461
+ ### Training Dataset
462
+
463
+ #### Unnamed Dataset
464
+
465
+
466
+ * Size: 3,430 training samples
467
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
468
+ * Approximate statistics based on the first 1000 samples:
469
+ | | sentence_0 | sentence_1 |
470
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
471
+ | type | string | string |
472
+ | details | <ul><li>min: 8 tokens</li><li>mean: 17.71 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 172.72 tokens</li><li>max: 356 tokens</li></ul> |
473
+ * Samples:
474
+ | sentence_0 | sentence_1 |
475
+ |:-----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
476
+ | <code>What are the key steps to obtain input from stakeholder communities to identify unacceptable use in AI systems?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
477
+ | <code>How can organizations maintain an updated hierarchy of identified and expected GAI risks?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
478
+ | <code>What are some examples of unacceptable uses of AI as identified by stakeholder communities?</code> | <code>15 <br>GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in <br>accordance with activities in the AI RMF Map function. <br>CBRN Information or Capabilities; <br>Obscene, Degrading, and/or <br>Abusive Content; Harmful Bias <br>and Homogenization; Dangerous, <br>Violent, or Hateful Content <br>GV-1.3-005 <br>Maintain an updated hierarchy of identified and expected GAI risks connected to <br>contexts of GAI model advancement and use, potentially including specialized risk <br>levels for GAI systems that address issues such as model collapse and algorithmic <br>monoculture. <br>Harmful Bias and Homogenization <br>GV-1.3-006 <br>Reevaluate organizational risk tolerances to account for unacceptable negative risk <br>(such as where significant negative impacts are imminent, severe harms are <br>actually occurring, or large-scale risks could occur); and broad GAI negative risks, <br>including: Immature safety or risk cultures related to AI and GAI design, <br>development and deployment, public information integrity risks, including impacts</code> |
479
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
480
+ ```json
481
+ {
482
+ "loss": "MultipleNegativesRankingLoss",
483
+ "matryoshka_dims": [
484
+ 768,
485
+ 512,
486
+ 256,
487
+ 128,
488
+ 64
489
+ ],
490
+ "matryoshka_weights": [
491
+ 1,
492
+ 1,
493
+ 1,
494
+ 1,
495
+ 1
496
+ ],
497
+ "n_dims_per_step": -1
498
+ }
499
+ ```
500
+
501
+ ### Training Hyperparameters
502
+ #### Non-Default Hyperparameters
503
+
504
+ - `eval_strategy`: steps
505
+ - `per_device_train_batch_size`: 1
506
+ - `per_device_eval_batch_size`: 1
507
+ - `num_train_epochs`: 5
508
+ - `multi_dataset_batch_sampler`: round_robin
509
+
510
+ #### All Hyperparameters
511
+ <details><summary>Click to expand</summary>
512
+
513
+ - `overwrite_output_dir`: False
514
+ - `do_predict`: False
515
+ - `eval_strategy`: steps
516
+ - `prediction_loss_only`: True
517
+ - `per_device_train_batch_size`: 1
518
+ - `per_device_eval_batch_size`: 1
519
+ - `per_gpu_train_batch_size`: None
520
+ - `per_gpu_eval_batch_size`: None
521
+ - `gradient_accumulation_steps`: 1
522
+ - `eval_accumulation_steps`: None
523
+ - `torch_empty_cache_steps`: None
524
+ - `learning_rate`: 5e-05
525
+ - `weight_decay`: 0.0
526
+ - `adam_beta1`: 0.9
527
+ - `adam_beta2`: 0.999
528
+ - `adam_epsilon`: 1e-08
529
+ - `max_grad_norm`: 1
530
+ - `num_train_epochs`: 5
531
+ - `max_steps`: -1
532
+ - `lr_scheduler_type`: linear
533
+ - `lr_scheduler_kwargs`: {}
534
+ - `warmup_ratio`: 0.0
535
+ - `warmup_steps`: 0
536
+ - `log_level`: passive
537
+ - `log_level_replica`: warning
538
+ - `log_on_each_node`: True
539
+ - `logging_nan_inf_filter`: True
540
+ - `save_safetensors`: True
541
+ - `save_on_each_node`: False
542
+ - `save_only_model`: False
543
+ - `restore_callback_states_from_checkpoint`: False
544
+ - `no_cuda`: False
545
+ - `use_cpu`: False
546
+ - `use_mps_device`: False
547
+ - `seed`: 42
548
+ - `data_seed`: None
549
+ - `jit_mode_eval`: False
550
+ - `use_ipex`: False
551
+ - `bf16`: False
552
+ - `fp16`: False
553
+ - `fp16_opt_level`: O1
554
+ - `half_precision_backend`: auto
555
+ - `bf16_full_eval`: False
556
+ - `fp16_full_eval`: False
557
+ - `tf32`: None
558
+ - `local_rank`: 0
559
+ - `ddp_backend`: None
560
+ - `tpu_num_cores`: None
561
+ - `tpu_metrics_debug`: False
562
+ - `debug`: []
563
+ - `dataloader_drop_last`: False
564
+ - `dataloader_num_workers`: 0
565
+ - `dataloader_prefetch_factor`: None
566
+ - `past_index`: -1
567
+ - `disable_tqdm`: False
568
+ - `remove_unused_columns`: True
569
+ - `label_names`: None
570
+ - `load_best_model_at_end`: False
571
+ - `ignore_data_skip`: False
572
+ - `fsdp`: []
573
+ - `fsdp_min_num_params`: 0
574
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
575
+ - `fsdp_transformer_layer_cls_to_wrap`: None
576
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
577
+ - `deepspeed`: None
578
+ - `label_smoothing_factor`: 0.0
579
+ - `optim`: adamw_torch
580
+ - `optim_args`: None
581
+ - `adafactor`: False
582
+ - `group_by_length`: False
583
+ - `length_column_name`: length
584
+ - `ddp_find_unused_parameters`: None
585
+ - `ddp_bucket_cap_mb`: None
586
+ - `ddp_broadcast_buffers`: False
587
+ - `dataloader_pin_memory`: True
588
+ - `dataloader_persistent_workers`: False
589
+ - `skip_memory_metrics`: True
590
+ - `use_legacy_prediction_loop`: False
591
+ - `push_to_hub`: False
592
+ - `resume_from_checkpoint`: None
593
+ - `hub_model_id`: None
594
+ - `hub_strategy`: every_save
595
+ - `hub_private_repo`: False
596
+ - `hub_always_push`: False
597
+ - `gradient_checkpointing`: False
598
+ - `gradient_checkpointing_kwargs`: None
599
+ - `include_inputs_for_metrics`: False
600
+ - `eval_do_concat_batches`: True
601
+ - `fp16_backend`: auto
602
+ - `push_to_hub_model_id`: None
603
+ - `push_to_hub_organization`: None
604
+ - `mp_parameters`:
605
+ - `auto_find_batch_size`: False
606
+ - `full_determinism`: False
607
+ - `torchdynamo`: None
608
+ - `ray_scope`: last
609
+ - `ddp_timeout`: 1800
610
+ - `torch_compile`: False
611
+ - `torch_compile_backend`: None
612
+ - `torch_compile_mode`: None
613
+ - `dispatch_batches`: None
614
+ - `split_batches`: None
615
+ - `include_tokens_per_second`: False
616
+ - `include_num_input_tokens_seen`: False
617
+ - `neftune_noise_alpha`: None
618
+ - `optim_target_modules`: None
619
+ - `batch_eval_metrics`: False
620
+ - `eval_on_start`: False
621
+ - `eval_use_gather_object`: False
622
+ - `batch_sampler`: batch_sampler
623
+ - `multi_dataset_batch_sampler`: round_robin
624
+
625
+ </details>
626
+
627
+ ### Training Logs
628
+ <details><summary>Click to expand</summary>
629
+
630
+ | Epoch | Step | Training Loss | cosine_map@100 |
631
+ |:------:|:-----:|:-------------:|:--------------:|
632
+ | 0.0146 | 50 | - | 0.4134 |
633
+ | 0.0292 | 100 | - | 0.4134 |
634
+ | 0.0437 | 150 | - | 0.4134 |
635
+ | 0.0583 | 200 | - | 0.4134 |
636
+ | 0.0729 | 250 | - | 0.4134 |
637
+ | 0.0875 | 300 | - | 0.4134 |
638
+ | 0.1020 | 350 | - | 0.4134 |
639
+ | 0.1166 | 400 | - | 0.4134 |
640
+ | 0.1312 | 450 | - | 0.4134 |
641
+ | 0.1458 | 500 | 0.0 | 0.4134 |
642
+ | 0.1603 | 550 | - | 0.4134 |
643
+ | 0.1749 | 600 | - | 0.4134 |
644
+ | 0.1895 | 650 | - | 0.4134 |
645
+ | 0.2041 | 700 | - | 0.4134 |
646
+ | 0.2187 | 750 | - | 0.4134 |
647
+ | 0.2332 | 800 | - | 0.4134 |
648
+ | 0.2478 | 850 | - | 0.4134 |
649
+ | 0.2624 | 900 | - | 0.4134 |
650
+ | 0.2770 | 950 | - | 0.4134 |
651
+ | 0.2915 | 1000 | 0.0 | 0.4134 |
652
+ | 0.3061 | 1050 | - | 0.4134 |
653
+ | 0.3207 | 1100 | - | 0.4134 |
654
+ | 0.3353 | 1150 | - | 0.4134 |
655
+ | 0.3499 | 1200 | - | 0.4134 |
656
+ | 0.3644 | 1250 | - | 0.4134 |
657
+ | 0.3790 | 1300 | - | 0.4134 |
658
+ | 0.3936 | 1350 | - | 0.4134 |
659
+ | 0.4082 | 1400 | - | 0.4134 |
660
+ | 0.4227 | 1450 | - | 0.4134 |
661
+ | 0.4373 | 1500 | 0.0 | 0.4134 |
662
+ | 0.4519 | 1550 | - | 0.4134 |
663
+ | 0.4665 | 1600 | - | 0.4134 |
664
+ | 0.4810 | 1650 | - | 0.4134 |
665
+ | 0.4956 | 1700 | - | 0.4134 |
666
+ | 0.5102 | 1750 | - | 0.4134 |
667
+ | 0.5248 | 1800 | - | 0.4134 |
668
+ | 0.5394 | 1850 | - | 0.4134 |
669
+ | 0.5539 | 1900 | - | 0.4134 |
670
+ | 0.5685 | 1950 | - | 0.4134 |
671
+ | 0.5831 | 2000 | 0.0 | 0.4135 |
672
+ | 0.5977 | 2050 | - | 0.4135 |
673
+ | 0.6122 | 2100 | - | 0.4135 |
674
+ | 0.6268 | 2150 | - | 0.4135 |
675
+ | 0.6414 | 2200 | - | 0.4135 |
676
+ | 0.6560 | 2250 | - | 0.4135 |
677
+ | 0.6706 | 2300 | - | 0.4135 |
678
+ | 0.6851 | 2350 | - | 0.4135 |
679
+ | 0.6997 | 2400 | - | 0.4135 |
680
+ | 0.7143 | 2450 | - | 0.4134 |
681
+ | 0.7289 | 2500 | 0.0 | 0.4134 |
682
+ | 0.7434 | 2550 | - | 0.4134 |
683
+ | 0.7580 | 2600 | - | 0.4134 |
684
+ | 0.7726 | 2650 | - | 0.4134 |
685
+ | 0.7872 | 2700 | - | 0.4134 |
686
+ | 0.8017 | 2750 | - | 0.4134 |
687
+ | 0.8163 | 2800 | - | 0.4134 |
688
+ | 0.8309 | 2850 | - | 0.4135 |
689
+ | 0.8455 | 2900 | - | 0.4135 |
690
+ | 0.8601 | 2950 | - | 0.4135 |
691
+ | 0.8746 | 3000 | 0.0 | 0.4135 |
692
+ | 0.8892 | 3050 | - | 0.4135 |
693
+ | 0.9038 | 3100 | - | 0.4135 |
694
+ | 0.9184 | 3150 | - | 0.4135 |
695
+ | 0.9329 | 3200 | - | 0.4135 |
696
+ | 0.9475 | 3250 | - | 0.4135 |
697
+ | 0.9621 | 3300 | - | 0.4135 |
698
+ | 0.9767 | 3350 | - | 0.4135 |
699
+ | 0.9913 | 3400 | - | 0.4135 |
700
+ | 1.0 | 3430 | - | 0.4135 |
701
+ | 1.0058 | 3450 | - | 0.4135 |
702
+ | 1.0204 | 3500 | 0.0 | 0.4135 |
703
+ | 1.0350 | 3550 | - | 0.4135 |
704
+ | 1.0496 | 3600 | - | 0.4135 |
705
+ | 1.0641 | 3650 | - | 0.4135 |
706
+ | 1.0787 | 3700 | - | 0.4135 |
707
+ | 1.0933 | 3750 | - | 0.4135 |
708
+ | 1.1079 | 3800 | - | 0.4135 |
709
+ | 1.1224 | 3850 | - | 0.4135 |
710
+ | 1.1370 | 3900 | - | 0.4179 |
711
+ | 1.1516 | 3950 | - | 0.4179 |
712
+ | 1.1662 | 4000 | 0.0 | 0.4179 |
713
+ | 1.1808 | 4050 | - | 0.4179 |
714
+ | 1.1953 | 4100 | - | 0.4179 |
715
+ | 1.2099 | 4150 | - | 0.4179 |
716
+ | 1.2245 | 4200 | - | 0.4179 |
717
+ | 1.2391 | 4250 | - | 0.4179 |
718
+ | 1.2536 | 4300 | - | 0.4179 |
719
+ | 1.2682 | 4350 | - | 0.4179 |
720
+ | 1.2828 | 4400 | - | 0.4179 |
721
+ | 1.2974 | 4450 | - | 0.4179 |
722
+ | 1.3120 | 4500 | 0.0 | 0.4179 |
723
+ | 1.3265 | 4550 | - | 0.4179 |
724
+ | 1.3411 | 4600 | - | 0.4179 |
725
+ | 1.3557 | 4650 | - | 0.4179 |
726
+ | 1.3703 | 4700 | - | 0.4179 |
727
+ | 1.3848 | 4750 | - | 0.4179 |
728
+ | 1.3994 | 4800 | - | 0.4179 |
729
+ | 1.4140 | 4850 | - | 0.4179 |
730
+ | 1.4286 | 4900 | - | 0.4179 |
731
+ | 1.4431 | 4950 | - | 0.4179 |
732
+ | 1.4577 | 5000 | 0.0 | 0.4179 |
733
+ | 1.4723 | 5050 | - | 0.4179 |
734
+ | 1.4869 | 5100 | - | 0.4179 |
735
+ | 1.5015 | 5150 | - | 0.4179 |
736
+ | 1.5160 | 5200 | - | 0.4179 |
737
+ | 1.5306 | 5250 | - | 0.4179 |
738
+ | 1.5452 | 5300 | - | 0.4179 |
739
+ | 1.5598 | 5350 | - | 0.4179 |
740
+ | 1.5743 | 5400 | - | 0.4179 |
741
+ | 1.5889 | 5450 | - | 0.4179 |
742
+ | 1.6035 | 5500 | 0.0 | 0.4179 |
743
+ | 1.6181 | 5550 | - | 0.4179 |
744
+ | 1.6327 | 5600 | - | 0.4179 |
745
+ | 1.6472 | 5650 | - | 0.4179 |
746
+ | 1.6618 | 5700 | - | 0.4179 |
747
+ | 1.6764 | 5750 | - | 0.4179 |
748
+ | 1.6910 | 5800 | - | 0.4179 |
749
+ | 1.7055 | 5850 | - | 0.4179 |
750
+ | 1.7201 | 5900 | - | 0.4179 |
751
+ | 1.7347 | 5950 | - | 0.4179 |
752
+ | 1.7493 | 6000 | 0.0 | 0.4179 |
753
+ | 1.7638 | 6050 | - | 0.4179 |
754
+ | 1.7784 | 6100 | - | 0.4179 |
755
+ | 1.7930 | 6150 | - | 0.4179 |
756
+ | 1.8076 | 6200 | - | 0.4179 |
757
+ | 1.8222 | 6250 | - | 0.4179 |
758
+ | 1.8367 | 6300 | - | 0.4179 |
759
+ | 1.8513 | 6350 | - | 0.4179 |
760
+ | 1.8659 | 6400 | - | 0.4179 |
761
+ | 1.8805 | 6450 | - | 0.4179 |
762
+ | 1.8950 | 6500 | 0.0 | 0.4179 |
763
+ | 1.9096 | 6550 | - | 0.4179 |
764
+ | 1.9242 | 6600 | - | 0.4179 |
765
+ | 1.9388 | 6650 | - | 0.4179 |
766
+ | 1.9534 | 6700 | - | 0.4179 |
767
+ | 1.9679 | 6750 | - | 0.4179 |
768
+ | 1.9825 | 6800 | - | 0.4179 |
769
+ | 1.9971 | 6850 | - | 0.4179 |
770
+ | 2.0 | 6860 | - | 0.4179 |
771
+ | 2.0117 | 6900 | - | 0.4179 |
772
+ | 2.0262 | 6950 | - | 0.4179 |
773
+ | 2.0408 | 7000 | 0.0 | 0.4179 |
774
+ | 2.0554 | 7050 | - | 0.4179 |
775
+ | 2.0700 | 7100 | - | 0.4179 |
776
+ | 2.0845 | 7150 | - | 0.4179 |
777
+ | 2.0991 | 7200 | - | 0.4179 |
778
+ | 2.1137 | 7250 | - | 0.4179 |
779
+ | 2.1283 | 7300 | - | 0.4179 |
780
+ | 2.1429 | 7350 | - | 0.4179 |
781
+ | 2.1574 | 7400 | - | 0.4179 |
782
+ | 2.1720 | 7450 | - | 0.4179 |
783
+ | 2.1866 | 7500 | 0.0 | 0.4179 |
784
+ | 2.2012 | 7550 | - | 0.4179 |
785
+ | 2.2157 | 7600 | - | 0.4179 |
786
+ | 2.2303 | 7650 | - | 0.4179 |
787
+ | 2.2449 | 7700 | - | 0.4179 |
788
+ | 2.2595 | 7750 | - | 0.4179 |
789
+ | 2.2741 | 7800 | - | 0.4179 |
790
+ | 2.2886 | 7850 | - | 0.4179 |
791
+ | 2.3032 | 7900 | - | 0.4179 |
792
+ | 2.3178 | 7950 | - | 0.4179 |
793
+ | 2.3324 | 8000 | 0.0 | 0.4179 |
794
+ | 2.3469 | 8050 | - | 0.4179 |
795
+ | 2.3615 | 8100 | - | 0.4179 |
796
+ | 2.3761 | 8150 | - | 0.4179 |
797
+ | 2.3907 | 8200 | - | 0.4179 |
798
+ | 2.4052 | 8250 | - | 0.4179 |
799
+ | 2.4198 | 8300 | - | 0.4179 |
800
+ | 2.4344 | 8350 | - | 0.4179 |
801
+ | 2.4490 | 8400 | - | 0.4179 |
802
+ | 2.4636 | 8450 | - | 0.4179 |
803
+ | 2.4781 | 8500 | 0.0 | 0.4179 |
804
+ | 2.4927 | 8550 | - | 0.4179 |
805
+ | 2.5073 | 8600 | - | 0.4179 |
806
+ | 2.5219 | 8650 | - | 0.4179 |
807
+ | 2.5364 | 8700 | - | 0.4179 |
808
+ | 2.5510 | 8750 | - | 0.4179 |
809
+ | 2.5656 | 8800 | - | 0.4179 |
810
+ | 2.5802 | 8850 | - | 0.4179 |
811
+ | 2.5948 | 8900 | - | 0.4179 |
812
+ | 2.6093 | 8950 | - | 0.4179 |
813
+ | 2.6239 | 9000 | 0.0 | 0.4179 |
814
+ | 2.6385 | 9050 | - | 0.4179 |
815
+ | 2.6531 | 9100 | - | 0.4179 |
816
+ | 2.6676 | 9150 | - | 0.4179 |
817
+ | 2.6822 | 9200 | - | 0.4179 |
818
+ | 2.6968 | 9250 | - | 0.4223 |
819
+ | 2.7114 | 9300 | - | 0.4223 |
820
+ | 2.7259 | 9350 | - | 0.4223 |
821
+ | 2.7405 | 9400 | - | 0.4223 |
822
+ | 2.7551 | 9450 | - | 0.4223 |
823
+ | 2.7697 | 9500 | 0.0 | 0.4223 |
824
+ | 2.7843 | 9550 | - | 0.4223 |
825
+ | 2.7988 | 9600 | - | 0.4223 |
826
+ | 2.8134 | 9650 | - | 0.4223 |
827
+ | 2.8280 | 9700 | - | 0.4223 |
828
+ | 2.8426 | 9750 | - | 0.4223 |
829
+ | 2.8571 | 9800 | - | 0.4223 |
830
+ | 2.8717 | 9850 | - | 0.4223 |
831
+ | 2.8863 | 9900 | - | 0.4223 |
832
+ | 2.9009 | 9950 | - | 0.4223 |
833
+ | 2.9155 | 10000 | 0.0 | 0.4223 |
834
+ | 2.9300 | 10050 | - | 0.4223 |
835
+ | 2.9446 | 10100 | - | 0.4223 |
836
+ | 2.9592 | 10150 | - | 0.4223 |
837
+ | 2.9738 | 10200 | - | 0.4223 |
838
+ | 2.9883 | 10250 | - | 0.4223 |
839
+ | 3.0 | 10290 | - | 0.4223 |
840
+ | 3.0029 | 10300 | - | 0.4223 |
841
+ | 3.0175 | 10350 | - | 0.4223 |
842
+ | 3.0321 | 10400 | - | 0.4223 |
843
+ | 3.0466 | 10450 | - | 0.4223 |
844
+ | 3.0612 | 10500 | 0.0 | 0.4223 |
845
+ | 3.0758 | 10550 | - | 0.4223 |
846
+ | 3.0904 | 10600 | - | 0.4223 |
847
+ | 3.1050 | 10650 | - | 0.4223 |
848
+ | 3.1195 | 10700 | - | 0.4223 |
849
+ | 3.1341 | 10750 | - | 0.4223 |
850
+ | 3.1487 | 10800 | - | 0.4223 |
851
+ | 3.1633 | 10850 | - | 0.4223 |
852
+ | 3.1778 | 10900 | - | 0.4223 |
853
+ | 3.1924 | 10950 | - | 0.4223 |
854
+ | 3.2070 | 11000 | 0.0 | 0.4223 |
855
+ | 3.2216 | 11050 | - | 0.4223 |
856
+ | 3.2362 | 11100 | - | 0.4223 |
857
+ | 3.2507 | 11150 | - | 0.4223 |
858
+ | 3.2653 | 11200 | - | 0.4223 |
859
+ | 3.2799 | 11250 | - | 0.4223 |
860
+ | 3.2945 | 11300 | - | 0.4223 |
861
+ | 3.3090 | 11350 | - | 0.4223 |
862
+ | 3.3236 | 11400 | - | 0.4223 |
863
+ | 3.3382 | 11450 | - | 0.4223 |
864
+ | 3.3528 | 11500 | 0.0 | 0.4223 |
865
+ | 3.3673 | 11550 | - | 0.4223 |
866
+ | 3.3819 | 11600 | - | 0.4223 |
867
+ | 3.3965 | 11650 | - | 0.4223 |
868
+ | 3.4111 | 11700 | - | 0.4223 |
869
+ | 3.4257 | 11750 | - | 0.4223 |
870
+ | 3.4402 | 11800 | - | 0.4223 |
871
+ | 3.4548 | 11850 | - | 0.4223 |
872
+ | 3.4694 | 11900 | - | 0.4223 |
873
+ | 3.4840 | 11950 | - | 0.4223 |
874
+ | 3.4985 | 12000 | 0.0 | 0.4223 |
875
+ | 3.5131 | 12050 | - | 0.4223 |
876
+ | 3.5277 | 12100 | - | 0.4223 |
877
+ | 3.5423 | 12150 | - | 0.4223 |
878
+ | 3.5569 | 12200 | - | 0.4223 |
879
+ | 3.5714 | 12250 | - | 0.4223 |
880
+ | 3.5860 | 12300 | - | 0.4223 |
881
+ | 3.6006 | 12350 | - | 0.4223 |
882
+ | 3.6152 | 12400 | - | 0.4223 |
883
+ | 3.6297 | 12450 | - | 0.4223 |
884
+ | 3.6443 | 12500 | 0.0 | 0.4223 |
885
+ | 3.6589 | 12550 | - | 0.4223 |
886
+ | 3.6735 | 12600 | - | 0.4223 |
887
+ | 3.6880 | 12650 | - | 0.4223 |
888
+ | 3.7026 | 12700 | - | 0.4223 |
889
+ | 3.7172 | 12750 | - | 0.4223 |
890
+ | 3.7318 | 12800 | - | 0.4223 |
891
+ | 3.7464 | 12850 | - | 0.4223 |
892
+ | 3.7609 | 12900 | - | 0.4223 |
893
+ | 3.7755 | 12950 | - | 0.4223 |
894
+ | 3.7901 | 13000 | 0.0 | 0.4223 |
895
+ | 3.8047 | 13050 | - | 0.4223 |
896
+ | 3.8192 | 13100 | - | 0.4226 |
897
+ | 3.8338 | 13150 | - | 0.4226 |
898
+ | 3.8484 | 13200 | - | 0.4226 |
899
+ | 3.8630 | 13250 | - | 0.4226 |
900
+ | 3.8776 | 13300 | - | 0.4226 |
901
+ | 3.8921 | 13350 | - | 0.4226 |
902
+ | 3.9067 | 13400 | - | 0.4226 |
903
+ | 3.9213 | 13450 | - | 0.4226 |
904
+ | 3.9359 | 13500 | 0.0 | 0.4226 |
905
+ | 3.9504 | 13550 | - | 0.4226 |
906
+ | 3.9650 | 13600 | - | 0.4226 |
907
+ | 3.9796 | 13650 | - | 0.4226 |
908
+ | 3.9942 | 13700 | - | 0.4226 |
909
+ | 4.0 | 13720 | - | 0.4226 |
910
+ | 4.0087 | 13750 | - | 0.4226 |
911
+ | 4.0233 | 13800 | - | 0.4226 |
912
+ | 4.0379 | 13850 | - | 0.4226 |
913
+ | 4.0525 | 13900 | - | 0.4226 |
914
+ | 4.0671 | 13950 | - | 0.4226 |
915
+ | 4.0816 | 14000 | 0.0 | 0.4226 |
916
+ | 4.0962 | 14050 | - | 0.4226 |
917
+ | 4.1108 | 14100 | - | 0.4226 |
918
+ | 4.1254 | 14150 | - | 0.4226 |
919
+ | 4.1399 | 14200 | - | 0.4226 |
920
+ | 4.1545 | 14250 | - | 0.4226 |
921
+ | 4.1691 | 14300 | - | 0.4226 |
922
+ | 4.1837 | 14350 | - | 0.4226 |
923
+ | 4.1983 | 14400 | - | 0.4226 |
924
+ | 4.2128 | 14450 | - | 0.4226 |
925
+ | 4.2274 | 14500 | 0.0 | 0.4226 |
926
+ | 4.2420 | 14550 | - | 0.4226 |
927
+ | 4.2566 | 14600 | - | 0.4226 |
928
+ | 4.2711 | 14650 | - | 0.4226 |
929
+ | 4.2857 | 14700 | - | 0.4226 |
930
+ | 4.3003 | 14750 | - | 0.4226 |
931
+ | 4.3149 | 14800 | - | 0.4226 |
932
+ | 4.3294 | 14850 | - | 0.4226 |
933
+ | 4.3440 | 14900 | - | 0.4226 |
934
+ | 4.3586 | 14950 | - | 0.4226 |
935
+ | 4.3732 | 15000 | 0.0 | 0.4226 |
936
+ | 4.3878 | 15050 | - | 0.4226 |
937
+ | 4.4023 | 15100 | - | 0.4226 |
938
+ | 4.4169 | 15150 | - | 0.4226 |
939
+ | 4.4315 | 15200 | - | 0.4226 |
940
+ | 4.4461 | 15250 | - | 0.4226 |
941
+ | 4.4606 | 15300 | - | 0.4226 |
942
+ | 4.4752 | 15350 | - | 0.4226 |
943
+ | 4.4898 | 15400 | - | 0.4226 |
944
+ | 4.5044 | 15450 | - | 0.4226 |
945
+ | 4.5190 | 15500 | 0.0 | 0.4226 |
946
+ | 4.5335 | 15550 | - | 0.4226 |
947
+ | 4.5481 | 15600 | - | 0.4226 |
948
+ | 4.5627 | 15650 | - | 0.4226 |
949
+ | 4.5773 | 15700 | - | 0.4226 |
950
+ | 4.5918 | 15750 | - | 0.4226 |
951
+ | 4.6064 | 15800 | - | 0.4226 |
952
+ | 4.6210 | 15850 | - | 0.4226 |
953
+ | 4.6356 | 15900 | - | 0.4226 |
954
+ | 4.6501 | 15950 | - | 0.4226 |
955
+ | 4.6647 | 16000 | 0.0 | 0.4226 |
956
+ | 4.6793 | 16050 | - | 0.4226 |
957
+ | 4.6939 | 16100 | - | 0.4226 |
958
+ | 4.7085 | 16150 | - | 0.4226 |
959
+ | 4.7230 | 16200 | - | 0.4226 |
960
+ | 4.7376 | 16250 | - | 0.4226 |
961
+ | 4.7522 | 16300 | - | 0.4226 |
962
+ | 4.7668 | 16350 | - | 0.4226 |
963
+ | 4.7813 | 16400 | - | 0.4226 |
964
+ | 4.7959 | 16450 | - | 0.4226 |
965
+ | 4.8105 | 16500 | 0.0 | 0.4226 |
966
+ | 4.8251 | 16550 | - | 0.4226 |
967
+ | 4.8397 | 16600 | - | 0.4226 |
968
+ | 4.8542 | 16650 | - | 0.4226 |
969
+ | 4.8688 | 16700 | - | 0.4226 |
970
+ | 4.8834 | 16750 | - | 0.4226 |
971
+ | 4.8980 | 16800 | - | 0.4226 |
972
+ | 4.9125 | 16850 | - | 0.4226 |
973
+ | 4.9271 | 16900 | - | 0.4226 |
974
+ | 4.9417 | 16950 | - | 0.4226 |
975
+ | 4.9563 | 17000 | 0.0 | 0.4226 |
976
+ | 4.9708 | 17050 | - | 0.4226 |
977
+ | 4.9854 | 17100 | - | 0.4226 |
978
+ | 5.0 | 17150 | - | 0.4226 |
979
+ | 0.0146 | 50 | - | 0.4226 |
980
+ | 0.0292 | 100 | - | 0.4226 |
981
+ | 0.0437 | 150 | - | 0.4226 |
982
+ | 0.0583 | 200 | - | 0.4226 |
983
+ | 0.0729 | 250 | - | 0.4226 |
984
+ | 0.0875 | 300 | - | 0.4226 |
985
+ | 0.1020 | 350 | - | 0.4226 |
986
+ | 0.1166 | 400 | - | 0.4226 |
987
+ | 0.1312 | 450 | - | 0.4226 |
988
+ | 0.1458 | 500 | 0.0 | 0.4226 |
989
+ | 0.1603 | 550 | - | 0.4226 |
990
+ | 0.1749 | 600 | - | 0.4226 |
991
+ | 0.1895 | 650 | - | 0.4226 |
992
+ | 0.2041 | 700 | - | 0.4226 |
993
+ | 0.2187 | 750 | - | 0.4226 |
994
+ | 0.2332 | 800 | - | 0.4226 |
995
+ | 0.2478 | 850 | - | 0.4226 |
996
+ | 0.2624 | 900 | - | 0.4226 |
997
+ | 0.2770 | 950 | - | 0.4226 |
998
+ | 0.2915 | 1000 | 0.0 | 0.4227 |
999
+ | 0.3061 | 1050 | - | 0.4227 |
1000
+ | 0.3207 | 1100 | - | 0.4227 |
1001
+ | 0.3353 | 1150 | - | 0.4227 |
1002
+ | 0.3499 | 1200 | - | 0.4227 |
1003
+ | 0.3644 | 1250 | - | 0.4227 |
1004
+ | 0.3790 | 1300 | - | 0.4227 |
1005
+ | 0.3936 | 1350 | - | 0.4227 |
1006
+ | 0.4082 | 1400 | - | 0.4227 |
1007
+ | 0.4227 | 1450 | - | 0.4227 |
1008
+ | 0.4373 | 1500 | 0.0 | 0.4227 |
1009
+ | 0.4519 | 1550 | - | 0.4227 |
1010
+ | 0.4665 | 1600 | - | 0.4227 |
1011
+ | 0.4810 | 1650 | - | 0.4227 |
1012
+ | 0.4956 | 1700 | - | 0.4227 |
1013
+ | 0.5102 | 1750 | - | 0.4227 |
1014
+ | 0.5248 | 1800 | - | 0.4227 |
1015
+ | 0.5394 | 1850 | - | 0.4227 |
1016
+ | 0.5539 | 1900 | - | 0.4227 |
1017
+ | 0.5685 | 1950 | - | 0.4227 |
1018
+ | 0.5831 | 2000 | 0.0 | 0.4227 |
1019
+ | 0.5977 | 2050 | - | 0.4227 |
1020
+ | 0.6122 | 2100 | - | 0.4227 |
1021
+ | 0.6268 | 2150 | - | 0.4227 |
1022
+ | 0.6414 | 2200 | - | 0.4227 |
1023
+ | 0.6560 | 2250 | - | 0.4227 |
1024
+ | 0.6706 | 2300 | - | 0.4227 |
1025
+ | 0.6851 | 2350 | - | 0.4227 |
1026
+ | 0.6997 | 2400 | - | 0.4227 |
1027
+ | 0.7143 | 2450 | - | 0.4227 |
1028
+ | 0.7289 | 2500 | 0.0 | 0.4227 |
1029
+ | 0.7434 | 2550 | - | 0.4227 |
1030
+ | 0.7580 | 2600 | - | 0.4227 |
1031
+ | 0.7726 | 2650 | - | 0.4227 |
1032
+ | 0.7872 | 2700 | - | 0.4227 |
1033
+ | 0.8017 | 2750 | - | 0.4227 |
1034
+ | 0.8163 | 2800 | - | 0.4227 |
1035
+ | 0.8309 | 2850 | - | 0.4227 |
1036
+ | 0.8455 | 2900 | - | 0.4227 |
1037
+ | 0.8601 | 2950 | - | 0.4227 |
1038
+ | 0.8746 | 3000 | 0.0 | 0.4227 |
1039
+ | 0.8892 | 3050 | - | 0.4227 |
1040
+ | 0.9038 | 3100 | - | 0.4227 |
1041
+ | 0.9184 | 3150 | - | 0.4227 |
1042
+ | 0.9329 | 3200 | - | 0.4227 |
1043
+ | 0.9475 | 3250 | - | 0.4227 |
1044
+ | 0.9621 | 3300 | - | 0.4227 |
1045
+ | 0.9767 | 3350 | - | 0.4227 |
1046
+ | 0.9913 | 3400 | - | 0.4227 |
1047
+ | 1.0 | 3430 | - | 0.4227 |
1048
+ | 1.0058 | 3450 | - | 0.4227 |
1049
+ | 1.0204 | 3500 | 0.0 | 0.4227 |
1050
+ | 1.0350 | 3550 | - | 0.4227 |
1051
+ | 1.0496 | 3600 | - | 0.4227 |
1052
+ | 1.0641 | 3650 | - | 0.4227 |
1053
+ | 1.0787 | 3700 | - | 0.4227 |
1054
+ | 1.0933 | 3750 | - | 0.4227 |
1055
+ | 1.1079 | 3800 | - | 0.4227 |
1056
+ | 1.1224 | 3850 | - | 0.4227 |
1057
+ | 1.1370 | 3900 | - | 0.4227 |
1058
+ | 1.1516 | 3950 | - | 0.4227 |
1059
+ | 1.1662 | 4000 | 0.0 | 0.4227 |
1060
+ | 1.1808 | 4050 | - | 0.4227 |
1061
+ | 1.1953 | 4100 | - | 0.4227 |
1062
+ | 1.2099 | 4150 | - | 0.4231 |
1063
+ | 1.2245 | 4200 | - | 0.4231 |
1064
+ | 1.2391 | 4250 | - | 0.4231 |
1065
+ | 1.2536 | 4300 | - | 0.4231 |
1066
+ | 1.2682 | 4350 | - | 0.4231 |
1067
+ | 1.2828 | 4400 | - | 0.4231 |
1068
+ | 1.2974 | 4450 | - | 0.4231 |
1069
+ | 1.3120 | 4500 | 0.0 | 0.4231 |
1070
+ | 1.3265 | 4550 | - | 0.4231 |
1071
+ | 1.3411 | 4600 | - | 0.4231 |
1072
+ | 1.3557 | 4650 | - | 0.4232 |
1073
+ | 1.3703 | 4700 | - | 0.4232 |
1074
+ | 1.3848 | 4750 | - | 0.4232 |
1075
+ | 1.3994 | 4800 | - | 0.4232 |
1076
+ | 1.4140 | 4850 | - | 0.4232 |
1077
+ | 1.4286 | 4900 | - | 0.4232 |
1078
+ | 1.4431 | 4950 | - | 0.4232 |
1079
+ | 1.4577 | 5000 | 0.0 | 0.4232 |
1080
+ | 1.4723 | 5050 | - | 0.4232 |
1081
+ | 1.4869 | 5100 | - | 0.4232 |
1082
+ | 1.5015 | 5150 | - | 0.4232 |
1083
+ | 1.5160 | 5200 | - | 0.4232 |
1084
+ | 1.5306 | 5250 | - | 0.4232 |
1085
+ | 1.5452 | 5300 | - | 0.4233 |
1086
+ | 1.5598 | 5350 | - | 0.4233 |
1087
+ | 1.5743 | 5400 | - | 0.4233 |
1088
+ | 1.5889 | 5450 | - | 0.4233 |
1089
+ | 1.6035 | 5500 | 0.0 | 0.4233 |
1090
+ | 1.6181 | 5550 | - | 0.4233 |
1091
+ | 1.6327 | 5600 | - | 0.4233 |
1092
+ | 1.6472 | 5650 | - | 0.4233 |
1093
+ | 1.6618 | 5700 | - | 0.4233 |
1094
+ | 1.6764 | 5750 | - | 0.4233 |
1095
+ | 1.6910 | 5800 | - | 0.4233 |
1096
+ | 1.7055 | 5850 | - | 0.4233 |
1097
+ | 1.7201 | 5900 | - | 0.4233 |
1098
+ | 1.7347 | 5950 | - | 0.4233 |
1099
+ | 1.7493 | 6000 | 0.0 | 0.4233 |
1100
+ | 1.7638 | 6050 | - | 0.4234 |
1101
+ | 1.7784 | 6100 | - | 0.4234 |
1102
+ | 1.7930 | 6150 | - | 0.4234 |
1103
+ | 1.8076 | 6200 | - | 0.4234 |
1104
+ | 1.8222 | 6250 | - | 0.4234 |
1105
+ | 1.8367 | 6300 | - | 0.4234 |
1106
+ | 1.8513 | 6350 | - | 0.4234 |
1107
+ | 1.8659 | 6400 | - | 0.4234 |
1108
+ | 1.8805 | 6450 | - | 0.4234 |
1109
+ | 1.8950 | 6500 | 0.0 | 0.4234 |
1110
+ | 1.9096 | 6550 | - | 0.4234 |
1111
+ | 1.9242 | 6600 | - | 0.4234 |
1112
+ | 1.9388 | 6650 | - | 0.4234 |
1113
+ | 1.9534 | 6700 | - | 0.4234 |
1114
+ | 1.9679 | 6750 | - | 0.4234 |
1115
+ | 1.9825 | 6800 | - | 0.4234 |
1116
+ | 1.9971 | 6850 | - | 0.4234 |
1117
+ | 2.0 | 6860 | - | 0.4234 |
1118
+ | 2.0117 | 6900 | - | 0.4234 |
1119
+ | 2.0262 | 6950 | - | 0.4234 |
1120
+ | 2.0408 | 7000 | 0.0 | 0.4234 |
1121
+ | 2.0554 | 7050 | - | 0.4234 |
1122
+ | 2.0700 | 7100 | - | 0.4234 |
1123
+ | 2.0845 | 7150 | - | 0.4234 |
1124
+ | 2.0991 | 7200 | - | 0.4234 |
1125
+ | 2.1137 | 7250 | - | 0.4234 |
1126
+ | 2.1283 | 7300 | - | 0.4234 |
1127
+ | 2.1429 | 7350 | - | 0.4234 |
1128
+ | 2.1574 | 7400 | - | 0.4234 |
1129
+ | 2.1720 | 7450 | - | 0.4234 |
1130
+ | 2.1866 | 7500 | 0.0 | 0.4234 |
1131
+ | 2.2012 | 7550 | - | 0.4234 |
1132
+ | 2.2157 | 7600 | - | 0.4234 |
1133
+ | 2.2303 | 7650 | - | 0.4234 |
1134
+ | 2.2449 | 7700 | - | 0.4234 |
1135
+ | 2.2595 | 7750 | - | 0.4234 |
1136
+ | 2.2741 | 7800 | - | 0.4234 |
1137
+ | 2.2886 | 7850 | - | 0.4234 |
1138
+ | 2.3032 | 7900 | - | 0.4234 |
1139
+ | 2.3178 | 7950 | - | 0.4234 |
1140
+ | 2.3324 | 8000 | 0.0 | 0.4234 |
1141
+ | 2.3469 | 8050 | - | 0.4234 |
1142
+ | 2.3615 | 8100 | - | 0.4234 |
1143
+ | 2.3761 | 8150 | - | 0.4234 |
1144
+ | 2.3907 | 8200 | - | 0.4234 |
1145
+ | 2.4052 | 8250 | - | 0.4234 |
1146
+ | 2.4198 | 8300 | - | 0.4234 |
1147
+ | 2.4344 | 8350 | - | 0.4234 |
1148
+ | 2.4490 | 8400 | - | 0.4234 |
1149
+ | 2.4636 | 8450 | - | 0.4234 |
1150
+ | 2.4781 | 8500 | 0.0 | 0.4234 |
1151
+ | 2.4927 | 8550 | - | 0.4234 |
1152
+ | 2.5073 | 8600 | - | 0.4234 |
1153
+ | 2.5219 | 8650 | - | 0.4234 |
1154
+ | 2.5364 | 8700 | - | 0.4234 |
1155
+ | 2.5510 | 8750 | - | 0.4234 |
1156
+ | 2.5656 | 8800 | - | 0.4234 |
1157
+ | 2.5802 | 8850 | - | 0.4234 |
1158
+ | 2.5948 | 8900 | - | 0.4234 |
1159
+ | 2.6093 | 8950 | - | 0.4234 |
1160
+ | 2.6239 | 9000 | 0.0 | 0.4234 |
1161
+ | 2.6385 | 9050 | - | 0.4234 |
1162
+ | 2.6531 | 9100 | - | 0.4234 |
1163
+ | 2.6676 | 9150 | - | 0.4234 |
1164
+ | 2.6822 | 9200 | - | 0.4234 |
1165
+ | 2.6968 | 9250 | - | 0.4234 |
1166
+ | 2.7114 | 9300 | - | 0.4234 |
1167
+ | 2.7259 | 9350 | - | 0.4234 |
1168
+ | 2.7405 | 9400 | - | 0.4234 |
1169
+ | 2.7551 | 9450 | - | 0.4234 |
1170
+ | 2.7697 | 9500 | 0.0 | 0.4234 |
1171
+ | 2.7843 | 9550 | - | 0.4234 |
1172
+ | 2.7988 | 9600 | - | 0.4234 |
1173
+ | 2.8134 | 9650 | - | 0.4234 |
1174
+ | 2.8280 | 9700 | - | 0.4234 |
1175
+ | 2.8426 | 9750 | - | 0.4234 |
1176
+ | 2.8571 | 9800 | - | 0.4234 |
1177
+ | 2.8717 | 9850 | - | 0.4234 |
1178
+ | 2.8863 | 9900 | - | 0.4234 |
1179
+ | 2.9009 | 9950 | - | 0.4234 |
1180
+ | 2.9155 | 10000 | 0.0 | 0.4234 |
1181
+ | 2.9300 | 10050 | - | 0.4234 |
1182
+ | 2.9446 | 10100 | - | 0.4234 |
1183
+ | 2.9592 | 10150 | - | 0.4234 |
1184
+ | 2.9738 | 10200 | - | 0.4234 |
1185
+ | 2.9883 | 10250 | - | 0.4234 |
1186
+ | 3.0 | 10290 | - | 0.4234 |
1187
+ | 3.0029 | 10300 | - | 0.4234 |
1188
+ | 3.0175 | 10350 | - | 0.4234 |
1189
+ | 3.0321 | 10400 | - | 0.4234 |
1190
+ | 3.0466 | 10450 | - | 0.4234 |
1191
+ | 3.0612 | 10500 | 0.0 | 0.4234 |
1192
+ | 3.0758 | 10550 | - | 0.4234 |
1193
+ | 3.0904 | 10600 | - | 0.4234 |
1194
+ | 3.1050 | 10650 | - | 0.4234 |
1195
+ | 3.1195 | 10700 | - | 0.4234 |
1196
+ | 3.1341 | 10750 | - | 0.4234 |
1197
+ | 3.1487 | 10800 | - | 0.4234 |
1198
+ | 3.1633 | 10850 | - | 0.4234 |
1199
+ | 3.1778 | 10900 | - | 0.4234 |
1200
+ | 3.1924 | 10950 | - | 0.4234 |
1201
+ | 3.2070 | 11000 | 0.0 | 0.4234 |
1202
+ | 3.2216 | 11050 | - | 0.4234 |
1203
+ | 3.2362 | 11100 | - | 0.4234 |
1204
+ | 3.2507 | 11150 | - | 0.4234 |
1205
+ | 3.2653 | 11200 | - | 0.4234 |
1206
+ | 3.2799 | 11250 | - | 0.4234 |
1207
+ | 3.2945 | 11300 | - | 0.4234 |
1208
+ | 3.3090 | 11350 | - | 0.4234 |
1209
+ | 3.3236 | 11400 | - | 0.4234 |
1210
+ | 3.3382 | 11450 | - | 0.4234 |
1211
+ | 3.3528 | 11500 | 0.0 | 0.4234 |
1212
+ | 3.3673 | 11550 | - | 0.4234 |
1213
+ | 3.3819 | 11600 | - | 0.4234 |
1214
+ | 3.3965 | 11650 | - | 0.4234 |
1215
+ | 3.4111 | 11700 | - | 0.4234 |
1216
+ | 3.4257 | 11750 | - | 0.4234 |
1217
+ | 3.4402 | 11800 | - | 0.4234 |
1218
+ | 3.4548 | 11850 | - | 0.4235 |
1219
+ | 3.4694 | 11900 | - | 0.4235 |
1220
+ | 3.4840 | 11950 | - | 0.4235 |
1221
+ | 3.4985 | 12000 | 0.0 | 0.4235 |
1222
+ | 3.5131 | 12050 | - | 0.4235 |
1223
+ | 3.5277 | 12100 | - | 0.4235 |
1224
+ | 3.5423 | 12150 | - | 0.4235 |
1225
+ | 3.5569 | 12200 | - | 0.4235 |
1226
+ | 3.5714 | 12250 | - | 0.4235 |
1227
+ | 3.5860 | 12300 | - | 0.4235 |
1228
+ | 3.6006 | 12350 | - | 0.4235 |
1229
+ | 3.6152 | 12400 | - | 0.4235 |
1230
+ | 3.6297 | 12450 | - | 0.4235 |
1231
+ | 3.6443 | 12500 | 0.0 | 0.4235 |
1232
+ | 3.6589 | 12550 | - | 0.4235 |
1233
+ | 3.6735 | 12600 | - | 0.4235 |
1234
+ | 3.6880 | 12650 | - | 0.4235 |
1235
+ | 3.7026 | 12700 | - | 0.4235 |
1236
+ | 3.7172 | 12750 | - | 0.4235 |
1237
+ | 3.7318 | 12800 | - | 0.4235 |
1238
+ | 3.7464 | 12850 | - | 0.4235 |
1239
+ | 3.7609 | 12900 | - | 0.4235 |
1240
+ | 3.7755 | 12950 | - | 0.4235 |
1241
+ | 3.7901 | 13000 | 0.0 | 0.4235 |
1242
+ | 3.8047 | 13050 | - | 0.4235 |
1243
+ | 3.8192 | 13100 | - | 0.4235 |
1244
+ | 3.8338 | 13150 | - | 0.4235 |
1245
+ | 3.8484 | 13200 | - | 0.4235 |
1246
+ | 3.8630 | 13250 | - | 0.4235 |
1247
+ | 3.8776 | 13300 | - | 0.4235 |
1248
+ | 3.8921 | 13350 | - | 0.4235 |
1249
+ | 3.9067 | 13400 | - | 0.4235 |
1250
+ | 3.9213 | 13450 | - | 0.4235 |
1251
+ | 3.9359 | 13500 | 0.0 | 0.4235 |
1252
+ | 3.9504 | 13550 | - | 0.4235 |
1253
+ | 3.9650 | 13600 | - | 0.4235 |
1254
+ | 3.9796 | 13650 | - | 0.4235 |
1255
+ | 3.9942 | 13700 | - | 0.4235 |
1256
+ | 4.0 | 13720 | - | 0.4235 |
1257
+ | 4.0087 | 13750 | - | 0.4235 |
1258
+ | 4.0233 | 13800 | - | 0.4235 |
1259
+ | 4.0379 | 13850 | - | 0.4235 |
1260
+ | 4.0525 | 13900 | - | 0.4235 |
1261
+ | 4.0671 | 13950 | - | 0.4235 |
1262
+ | 4.0816 | 14000 | 0.0 | 0.4236 |
1263
+
1264
+ </details>
1265
+
1266
+ ### Framework Versions
1267
+ - Python: 3.10.12
1268
+ - Sentence Transformers: 3.1.1
1269
+ - Transformers: 4.44.2
1270
+ - PyTorch: 2.4.1+cu121
1271
+ - Accelerate: 0.34.2
1272
+ - Datasets: 2.14.4
1273
+ - Tokenizers: 0.19.1
1274
+
1275
+ ## Citation
1276
+
1277
+ ### BibTeX
1278
+
1279
+ #### Sentence Transformers
1280
+ ```bibtex
1281
+ @inproceedings{reimers-2019-sentence-bert,
1282
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1283
+ author = "Reimers, Nils and Gurevych, Iryna",
1284
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1285
+ month = "11",
1286
+ year = "2019",
1287
+ publisher = "Association for Computational Linguistics",
1288
+ url = "https://arxiv.org/abs/1908.10084",
1289
+ }
1290
+ ```
1291
+
1292
+ #### MatryoshkaLoss
1293
+ ```bibtex
1294
+ @misc{kusupati2024matryoshka,
1295
+ title={Matryoshka Representation Learning},
1296
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1297
+ year={2024},
1298
+ eprint={2205.13147},
1299
+ archivePrefix={arXiv},
1300
+ primaryClass={cs.LG}
1301
+ }
1302
+ ```
1303
+
1304
+ #### MultipleNegativesRankingLoss
1305
+ ```bibtex
1306
+ @misc{henderson2017efficient,
1307
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1308
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1309
+ year={2017},
1310
+ eprint={1705.00652},
1311
+ archivePrefix={arXiv},
1312
+ primaryClass={cs.CL}
1313
+ }
1314
+ ```
1315
+
1316
+ <!--
1317
+ ## Glossary
1318
+
1319
+ *Clearly define terms in order to be accessible across audiences.*
1320
+ -->
1321
+
1322
+ <!--
1323
+ ## Model Card Authors
1324
+
1325
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1326
+ -->
1327
+
1328
+ <!--
1329
+ ## Model Card Contact
1330
+
1331
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1332
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "finetuned_arctic-embedd-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.44.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04634c93e8d948d5e898dd8ef4abc1c3c4a9bb267b21137aca72d9f440414cb7
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff