jeevansai93 commited on
Commit
82ef89a
1 Parent(s): 9874892

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:1K<n<10K
9
+ - loss:CosineSimilarityLoss
10
+ base_model: distilbert/distilroberta-base
11
+ widget:
12
+ - source_sentence: 'Herb Butter ["2 Tbsp. dried herbs: equal parts of parsley, tarragon,
13
+ chives and/or basil", "1/2 c. margarine"] ["Blend all together and chill overnight."]'
14
+ sentences:
15
+ - Salad Dressing ["2 Tbsp. lemon juice or wine vinegar", "1 Tbsp. honey", "1 clove
16
+ garlic, diced", "1 Tbsp. rosemary", "2 Tbsp. water", "1 small diced onion", "1
17
+ Tbsp. flax seed", "1 tsp. parsley"] ["Place in blender until smooth."]
18
+ - Fried Sweet Potato Strips ["1 large sweet potato, peeled and grated into long
19
+ strips", "1 c. vegetable oil"] ["Fry potato in hot oil in a small skillet until
20
+ lightly browned (watch carefully, they brown quickly).", "Remove with a slotted
21
+ spoon and drain on paper towels.", "(Strips will be crisp when cooled.)", "Yield:",
22
+ "about 1 cup."]
23
+ - Chocolate Chip Pecan Pie ["1/2 c. semi-sweet chocolate chips", "4 eggs", "1/3
24
+ c. granulated sugar", "1 1/4 c. Karo syrup (lite or dark)", "3 Tbsp. melted butter",
25
+ "1 1/2 tsp. vanilla", "3/4 c. chopped pecans"] ["Beat eggs; add sugar, corn syrup
26
+ and vanilla.", "Mix well.", "Stir in nuts and chips.", "Pour into 9-inch unbaked
27
+ pie shell. Bake at 325\u00b0 to 350\u00b0", "for 25 minutes.", "Yields 1 pie."]
28
+ - source_sentence: Snicker Bars ["1 c. milk chocolate chips", "1/4 c. butterscotch
29
+ chips", "1/4 c. peanut butter"] ["Melt together; pour into 9 x 13-inch greased
30
+ pan and cool."]
31
+ sentences:
32
+ - Reeses Cups(Candy) ["1 c. peanut butter", "3/4 c. graham cracker crumbs", "1
33
+ c. melted butter", "1 lb. (3 1/2 c.) powdered sugar", "1 large pkg. chocolate
34
+ chips"] ["Combine first four ingredients and press in 13 x 9-inch ungreased pan.",
35
+ "Melt chocolate chips and spread over mixture. Refrigerate for about 20 minutes
36
+ and cut into pieces before chocolate gets hard.", "Keep in refrigerator."]
37
+ - Heavenly Potatoes ["1 (24 oz.) pkg. frozen hash browns, thaw to use", "1 3/4 c.
38
+ grated Cheddar cheese", "1 can cream of chicken soup", "8 oz. carton sour cream",
39
+ "1 stick melted butter or margarine", "1 tsp. salt", "1 medium onion, chopped"]
40
+ ["Mix all together and place in a casserole dish.", "Bake 45 minutes to 1 hour
41
+ at 350\u00b0.", "Serves 12."]
42
+ - Summer Spaghetti ["1 lb. very thin spaghetti", "1/2 bottle McCormick Salad Supreme
43
+ (seasoning)", "1 bottle Zesty Italian dressing"] ["Prepare spaghetti per package.",
44
+ "Drain.", "Melt a little butter through it.", "Marinate overnight in Salad Supreme
45
+ and Zesty Italian dressing.", "Just before serving, add cucumbers, tomatoes, green
46
+ peppers, mushrooms, olives or whatever your taste may want."]
47
+ - source_sentence: Foil Packs ["boneless pork chops (or other meat)", "potatoes, quartered",
48
+ "carrots, quartered", "onions, quartered"] ["You will also need 1 large piece
49
+ of aluminum foil."]
50
+ sentences:
51
+ - Pork Sausage ["12 lb. pork meat, cut in pieces, ready for grinding", "5 Tbsp.
52
+ salt", "3 Tbsp. black pepper", "2 Tbsp. pulverized sage leaves"] ["Sprinkle meat
53
+ well with the remaining ingredients.", "Grind all together and it will need no
54
+ further mixing."]
55
+ - Shepherd'S Pie ["1 lb. hamburg", "1/4 c. chopped onion", "1/4 tsp. salt", "1/8
56
+ tsp. pepper", "1 c. mashed potatoes"] ["Fry hamburg and onion until brown.", "Drain
57
+ off liquid.", "Add salt and pepper.", "Spoon into 1-quart casserole and place
58
+ potatoes on top.", "Put butter and paprika over potatoes.", "Bake in a 425\u00b0
59
+ oven for 15 minutes."]
60
+ - Homemade Vanilla Ice Cream ["4 eggs", "2 c. sugar", "4 c. milk", "1 can Eagle
61
+ Brand milk", "2 Tbsp. vanilla", "1/2 tsp. salt"] ["Mix milk, Eagle Brand, vanilla
62
+ and salt in small mixing bowl. In large mixing bowl, beat eggs until light; add
63
+ sugar gradually beating constantly.", "Beat in mixture from small bowl.", "Pour
64
+ into freezer and freeze according to freezer directions."]
65
+ - source_sentence: Orange Julius ["couple of oranges", "2 Tbsp. honey"] ["Put in blender.",
66
+ "Add crushed ice until desired thickness.", "Add enough milk to fill blender,
67
+ approximately 1 cup."]
68
+ sentences:
69
+ - Ambrosia ["8 to 10 juicy oranges, peeled and diced", "1 c. moist coconut", "1/2
70
+ c. pecans, chopped", "1/2 c. cherries, halved", "1/4 c. sugar", "1 c. orange juice"]
71
+ ["Combine all ingredients. Chill overnight.", "Yields 4 to 6 servings."]
72
+ - Toffee Refrigerator Dessert ["1 1/2 c. graham cracker crumbs, finely crushed",
73
+ "1/2 c. soda cracker crumbs", "1/2 c. oleo, melted", "2 pkg. vanilla instant pudding",
74
+ "2 c. milk", "1 qt. vanilla ice cream, softened", "1 (4 1/2 oz.) tub Cool Whip",
75
+ "2 Butterfinger candy bars, crushed"] ["Mix the first 3 ingredients and pat into
76
+ a 9 x 13-inch dish."]
77
+ - Mediterranean Orzo ["1 1/2 c. orzo pasta", "1 Tbsp. olive oil", "3 Tbsp. sun-dried
78
+ tomato paste", "1 Tbsp. white balsamic vinegar"] ["Cook orzo according to directions.
79
+ Drain. Add remaining ingredients."]
80
+ - source_sentence: Sour Cream Coconut Cake ["2 c. sugar", "2 (8 oz.) carton sour cream",
81
+ "2 pkg. frozen coconut", "1 (3-layer) cake, baked"] ["Bake cake; split the 3 layers
82
+ into 6 layers."]
83
+ sentences:
84
+ - Milk Chocolate Bar Cake ["1 (18 oz.) pkg. Swiss chocolate cake mix", "1 (8 oz.)
85
+ pkg. cream cheese, softened", "1 c. powdered sugar", "1/2 c. granulated sugar",
86
+ "10 (15 oz.) milk chocolate candy bars with almonds, divided", "1 (12 oz.) carton
87
+ thawed Cool Whip"] ["Prepare cake batter according to directions on box.", "Pour
88
+ into 2 greased and floured 8-inch round cake pans.", "Bake at 325\u00b0 for 20
89
+ to 25 minutes.", "Cool and divide to make 4 layers."]
90
+ - Chili Sauce ["12 ripe tomatoes", "4 onions", "2 green peppers", "1 red pepper",
91
+ "4 Tbsp. sugar", "2 Tbsp. salt", "2 tsp. cinnamon", "2 tsp. cloves", "2 tsp. allspice",
92
+ "1 tsp. ginger", "1 qt. vinegar"] ["Peel onions and tomatoes, seed peppers and
93
+ chop all fine, add the spices and put over the fire. Boil steadily for two hours;
94
+ cool, bottle and seal."]
95
+ - Creamed Onions(Makes 8 Servings) ["4 c. small white onions, peeled (1 1/2 lb.)",
96
+ "2 Tbsp. plus 2 tsp. reduced calorie margarine", "1 1/2 Tbsp. all-purpose flour",
97
+ "1 c. skim milk", "1/2 tsp. thyme", "1/4 tsp. salt", "pinch of nutmeg", "pinch
98
+ of ground white pepper"] ["In a medium saucepan of boiling water, cook onion for
99
+ 15 to 20 minutes, until tender.", "Drain."]
100
+ pipeline_tag: sentence-similarity
101
+ ---
102
+
103
+ # SentenceTransformer based on distilbert/distilroberta-base
104
+
105
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
106
+
107
+ ## Model Details
108
+
109
+ ### Model Description
110
+ - **Model Type:** Sentence Transformer
111
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
112
+ - **Maximum Sequence Length:** 512 tokens
113
+ - **Output Dimensionality:** 768 tokens
114
+ - **Similarity Function:** Cosine Similarity
115
+ <!-- - **Training Dataset:** Unknown -->
116
+ <!-- - **Language:** Unknown -->
117
+ <!-- - **License:** Unknown -->
118
+
119
+ ### Model Sources
120
+
121
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
122
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
123
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
124
+
125
+ ### Full Model Architecture
126
+
127
+ ```
128
+ SentenceTransformer(
129
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
130
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
131
+ )
132
+ ```
133
+
134
+ ## Usage
135
+
136
+ ### Direct Usage (Sentence Transformers)
137
+
138
+ First install the Sentence Transformers library:
139
+
140
+ ```bash
141
+ pip install -U sentence-transformers
142
+ ```
143
+
144
+ Then you can load this model and run inference.
145
+ ```python
146
+ from sentence_transformers import SentenceTransformer
147
+
148
+ # Download from the 🤗 Hub
149
+ model = SentenceTransformer("jeevansai93/Jeevan_cv_run2_roberta_5_epoc")
150
+ # Run inference
151
+ sentences = [
152
+ 'Sour Cream Coconut Cake ["2 c. sugar", "2 (8 oz.) carton sour cream", "2 pkg. frozen coconut", "1 (3-layer) cake, baked"] ["Bake cake; split the 3 layers into 6 layers."]',
153
+ 'Milk Chocolate Bar Cake ["1 (18 oz.) pkg. Swiss chocolate cake mix", "1 (8 oz.) pkg. cream cheese, softened", "1 c. powdered sugar", "1/2 c. granulated sugar", "10 (15 oz.) milk chocolate candy bars with almonds, divided", "1 (12 oz.) carton thawed Cool Whip"] ["Prepare cake batter according to directions on box.", "Pour into 2 greased and floured 8-inch round cake pans.", "Bake at 325\\u00b0 for 20 to 25 minutes.", "Cool and divide to make 4 layers."]',
154
+ 'Chili Sauce ["12 ripe tomatoes", "4 onions", "2 green peppers", "1 red pepper", "4 Tbsp. sugar", "2 Tbsp. salt", "2 tsp. cinnamon", "2 tsp. cloves", "2 tsp. allspice", "1 tsp. ginger", "1 qt. vinegar"] ["Peel onions and tomatoes, seed peppers and chop all fine, add the spices and put over the fire. Boil steadily for two hours; cool, bottle and seal."]',
155
+ ]
156
+ embeddings = model.encode(sentences)
157
+ print(embeddings.shape)
158
+ # [3, 768]
159
+
160
+ # Get the similarity scores for the embeddings
161
+ similarities = model.similarity(embeddings, embeddings)
162
+ print(similarities.shape)
163
+ # [3, 3]
164
+ ```
165
+
166
+ <!--
167
+ ### Direct Usage (Transformers)
168
+
169
+ <details><summary>Click to see the direct usage in Transformers</summary>
170
+
171
+ </details>
172
+ -->
173
+
174
+ <!--
175
+ ### Downstream Usage (Sentence Transformers)
176
+
177
+ You can finetune this model on your own dataset.
178
+
179
+ <details><summary>Click to expand</summary>
180
+
181
+ </details>
182
+ -->
183
+
184
+ <!--
185
+ ### Out-of-Scope Use
186
+
187
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
188
+ -->
189
+
190
+ <!--
191
+ ## Bias, Risks and Limitations
192
+
193
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
194
+ -->
195
+
196
+ <!--
197
+ ### Recommendations
198
+
199
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
200
+ -->
201
+
202
+ ## Training Details
203
+
204
+ ### Training Dataset
205
+
206
+ #### Unnamed Dataset
207
+
208
+
209
+ * Size: 4,149 training samples
210
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
211
+ * Approximate statistics based on the first 1000 samples:
212
+ | | sentence_0 | sentence_1 | label |
213
+ |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
214
+ | type | string | string | float |
215
+ | details | <ul><li>min: 42 tokens</li><li>mean: 136.35 tokens</li><li>max: 326 tokens</li></ul> | <ul><li>min: 34 tokens</li><li>mean: 137.99 tokens</li><li>max: 358 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 1.0</li></ul> |
216
+ * Samples:
217
+ | sentence_0 | sentence_1 | label |
218
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
219
+ | <code>Quick Barbecue Wings ["chicken wings (as many as you need for dinner)", "flour", "barbecue sauce (your choice)"] ["Clean wings.", "Flour and fry until done.", "Place fried chicken wings in microwave bowl.", "Stir in barbecue sauce.", "Microwave on High (stir once) for 4 minutes."]</code> | <code>Spaghetti Sauce To Can ["1/2 bushel tomatoes", "1 c. oil", "1/4 c. minced garlic", "6 cans tomato paste", "3 peppers (2 sweet and 1 hot)", "1 1/2 c. sugar", "1/2 c. salt", "1 Tbsp. sweet basil", "2 Tbsp. oregano", "1 tsp. Italian seasoning"] ["Cook ground or chopped peppers and onions in oil for 1/2 hour. Cook tomatoes and garlic as for juice.", "Put through the mill.", "(I use a food processor and do my tomatoes uncooked.", "I then add the garlic right to the juice.)", "Add peppers and onions to juice and remainder of ingredients.", "Cook approximately 1 hour.", "Put in jars and seal.", "Yields 7 quarts."]</code> | <code>0.15000000000000002</code> |
220
+ | <code>Grandma Mary'S Butter Cookies ["1 c. sweet butter", "1 c. granulated sugar", "3 egg yolks", "2 1/2 c. sifted flour", "1 tsp. vanilla"] ["Cream butter.", "Beat into sugar.", "Add egg yolks and vanilla. Beat well after adding each yolk.", "Add flour and beat after each 1/2 cup is added.", "Chill about 1 hour."]</code> | <code>Magic Cookie Bars ["1/2 c. butter", "1 1/2 c. graham cracker crumbs", "1 (14 oz.) can Eagle Brand milk", "6 oz. semi-sweet chocolate chips", "1 (3 1/2 oz.) can flaked coconut (1 1/2 c.)", "1 c. chopped nuts"] ["Preheat oven to 350\u00b0 (325\u00b0 for glass dish).", "In 13 x 9-inch pan, melt butter in oven.", "Sprinkle with crumbs.", "Top with Eagle Brand milk evenly.", "Top with remaining ingredients.", "Press down. Bake 25 to 30 minutes until lightly brown.", "Cool or chill.", "Cut into bars; store, loosely covered, at room temperature."]</code> | <code>0.65</code> |
221
+ | <code>Angel Biscuits ["5 c. flour", "3 Tbsp. sugar", "4 tsp. baking powder", "1 1/2 pkg. dry yeast", "2 c. buttermilk", "1 tsp. soda", "1 1/2 sticks margarine", "1/2 c. warm water"] ["Mix flour, sugar, baking powder, soda and salt together.", "Cut in margarine, dissolve yeast in warm water.", "Stir into buttermilk and add to dry mixture.", "Cover and chill."]</code> | <code>Mexican Cookie Rings ["1 1/2 c. sifted flour", "1/2 tsp. baking powder", "1/2 tsp. salt", "1/2 c. butter", "2/3 c. sugar", "3 egg yolks", "1 tsp. vanilla", "multi-colored candies"] ["Sift flour, baking powder and salt together.", "Cream together butter and sugar.", "Add egg yolks and vanilla.", "Beat until light and fluffy.", "Mix in sifted dry ingredients.", "Shape into 1-inch balls.", "Push wooden spoon handle through center (twist).", "Shape into rings.", "Dip each cookie into candies.", "Place on lightly greased baking sheets.", "Bake in 375\u00b0 oven for 10 to 12 minutes or until golden brown.", "Cool on racks.", "Serves 2 dozen."]</code> | <code>0.1</code> |
222
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
223
+ ```json
224
+ {
225
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
226
+ }
227
+ ```
228
+
229
+ ### Training Hyperparameters
230
+ #### Non-Default Hyperparameters
231
+
232
+ - `per_device_train_batch_size`: 16
233
+ - `per_device_eval_batch_size`: 16
234
+ - `num_train_epochs`: 1
235
+ - `multi_dataset_batch_sampler`: round_robin
236
+
237
+ #### All Hyperparameters
238
+ <details><summary>Click to expand</summary>
239
+
240
+ - `overwrite_output_dir`: False
241
+ - `do_predict`: False
242
+ - `eval_strategy`: no
243
+ - `prediction_loss_only`: True
244
+ - `per_device_train_batch_size`: 16
245
+ - `per_device_eval_batch_size`: 16
246
+ - `per_gpu_train_batch_size`: None
247
+ - `per_gpu_eval_batch_size`: None
248
+ - `gradient_accumulation_steps`: 1
249
+ - `eval_accumulation_steps`: None
250
+ - `learning_rate`: 5e-05
251
+ - `weight_decay`: 0.0
252
+ - `adam_beta1`: 0.9
253
+ - `adam_beta2`: 0.999
254
+ - `adam_epsilon`: 1e-08
255
+ - `max_grad_norm`: 1
256
+ - `num_train_epochs`: 1
257
+ - `max_steps`: -1
258
+ - `lr_scheduler_type`: linear
259
+ - `lr_scheduler_kwargs`: {}
260
+ - `warmup_ratio`: 0.0
261
+ - `warmup_steps`: 0
262
+ - `log_level`: passive
263
+ - `log_level_replica`: warning
264
+ - `log_on_each_node`: True
265
+ - `logging_nan_inf_filter`: True
266
+ - `save_safetensors`: True
267
+ - `save_on_each_node`: False
268
+ - `save_only_model`: False
269
+ - `restore_callback_states_from_checkpoint`: False
270
+ - `no_cuda`: False
271
+ - `use_cpu`: False
272
+ - `use_mps_device`: False
273
+ - `seed`: 42
274
+ - `data_seed`: None
275
+ - `jit_mode_eval`: False
276
+ - `use_ipex`: False
277
+ - `bf16`: False
278
+ - `fp16`: False
279
+ - `fp16_opt_level`: O1
280
+ - `half_precision_backend`: auto
281
+ - `bf16_full_eval`: False
282
+ - `fp16_full_eval`: False
283
+ - `tf32`: None
284
+ - `local_rank`: 0
285
+ - `ddp_backend`: None
286
+ - `tpu_num_cores`: None
287
+ - `tpu_metrics_debug`: False
288
+ - `debug`: []
289
+ - `dataloader_drop_last`: False
290
+ - `dataloader_num_workers`: 0
291
+ - `dataloader_prefetch_factor`: None
292
+ - `past_index`: -1
293
+ - `disable_tqdm`: False
294
+ - `remove_unused_columns`: True
295
+ - `label_names`: None
296
+ - `load_best_model_at_end`: False
297
+ - `ignore_data_skip`: False
298
+ - `fsdp`: []
299
+ - `fsdp_min_num_params`: 0
300
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
301
+ - `fsdp_transformer_layer_cls_to_wrap`: None
302
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
303
+ - `deepspeed`: None
304
+ - `label_smoothing_factor`: 0.0
305
+ - `optim`: adamw_torch
306
+ - `optim_args`: None
307
+ - `adafactor`: False
308
+ - `group_by_length`: False
309
+ - `length_column_name`: length
310
+ - `ddp_find_unused_parameters`: None
311
+ - `ddp_bucket_cap_mb`: None
312
+ - `ddp_broadcast_buffers`: False
313
+ - `dataloader_pin_memory`: True
314
+ - `dataloader_persistent_workers`: False
315
+ - `skip_memory_metrics`: True
316
+ - `use_legacy_prediction_loop`: False
317
+ - `push_to_hub`: False
318
+ - `resume_from_checkpoint`: None
319
+ - `hub_model_id`: None
320
+ - `hub_strategy`: every_save
321
+ - `hub_private_repo`: False
322
+ - `hub_always_push`: False
323
+ - `gradient_checkpointing`: False
324
+ - `gradient_checkpointing_kwargs`: None
325
+ - `include_inputs_for_metrics`: False
326
+ - `eval_do_concat_batches`: True
327
+ - `fp16_backend`: auto
328
+ - `push_to_hub_model_id`: None
329
+ - `push_to_hub_organization`: None
330
+ - `mp_parameters`:
331
+ - `auto_find_batch_size`: False
332
+ - `full_determinism`: False
333
+ - `torchdynamo`: None
334
+ - `ray_scope`: last
335
+ - `ddp_timeout`: 1800
336
+ - `torch_compile`: False
337
+ - `torch_compile_backend`: None
338
+ - `torch_compile_mode`: None
339
+ - `dispatch_batches`: None
340
+ - `split_batches`: None
341
+ - `include_tokens_per_second`: False
342
+ - `include_num_input_tokens_seen`: False
343
+ - `neftune_noise_alpha`: None
344
+ - `optim_target_modules`: None
345
+ - `batch_eval_metrics`: False
346
+ - `batch_sampler`: batch_sampler
347
+ - `multi_dataset_batch_sampler`: round_robin
348
+
349
+ </details>
350
+
351
+ ### Framework Versions
352
+ - Python: 3.10.12
353
+ - Sentence Transformers: 3.0.0
354
+ - Transformers: 4.41.1
355
+ - PyTorch: 2.3.0+cu121
356
+ - Accelerate: 0.30.0
357
+ - Datasets: 2.19.1
358
+ - Tokenizers: 0.19.1
359
+
360
+ ## Citation
361
+
362
+ ### BibTeX
363
+
364
+ #### Sentence Transformers
365
+ ```bibtex
366
+ @inproceedings{reimers-2019-sentence-bert,
367
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
368
+ author = "Reimers, Nils and Gurevych, Iryna",
369
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
370
+ month = "11",
371
+ year = "2019",
372
+ publisher = "Association for Computational Linguistics",
373
+ url = "https://arxiv.org/abs/1908.10084",
374
+ }
375
+ ```
376
+
377
+ <!--
378
+ ## Glossary
379
+
380
+ *Clearly define terms in order to be accessible across audiences.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Authors
385
+
386
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Contact
391
+
392
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
393
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert/distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.1",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27742f95dbdbd43cea2014e87c62d36cf6ccb06089cc59c7afcd3e2920d00704
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff