|
from typing import Any, Dict |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration |
|
import io |
|
from PIL import Image |
|
import base64 |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.processor = Blip2Processor.from_pretrained(path) |
|
self.model = Blip2ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16) |
|
self.device = "cuda" |
|
|
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
|
|
data = data.pop("inputs", data) |
|
text = data.pop("text", data) |
|
|
|
image_string = base64.b64decode(data["image"]) |
|
image = Image.open(io.BytesIO(image_string)) |
|
|
|
inputs = self.processor(images=image, text=text, return_tensors="pt").to(self.device, torch.float16) |
|
generated_ids = self.model.generate(**inputs) |
|
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
return [{"answer": generated_text}] |