jefsnacker
commited on
Commit
•
afb22f5
1
Parent(s):
d44e9e7
first!
Browse files- .gitattributes +1 -0
- PPO-MlpPolicy-LunarLander-v2.zip +3 -0
- PPO-MlpPolicy-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-MlpPolicy-LunarLander-v2/data +94 -0
- PPO-MlpPolicy-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-MlpPolicy-LunarLander-v2/policy.pth +3 -0
- PPO-MlpPolicy-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-MlpPolicy-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-MlpPolicy-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f758bfc480bcc84eb7f0a8614efc9818b4b533a2fb952a6d5913cbe79b8f162
|
3 |
+
size 144057
|
PPO-MlpPolicy-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-MlpPolicy-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6110570e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe611057170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe611057200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe611057290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe611057320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe6110573b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe611057440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe6110574d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe611057560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6110575f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe611057680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe611092e10>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651901324.7724934,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "runs/2yx4puzp",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAzUz4yWZ8/WkvPPpkRyb7khDc+aj1CvQAAAAAAAAAAKwWBvh+Q6Twq7H49QOcivl6pEjzPirM8AAAAAAAAAABm6UO+rrv1O6Z3FTv6tNC4nuGNvY6ZNLoAAIA/AACAPxNzUz4DXmq8oB32OivF97iH28a9nwkTugAAgD8AAIA/U9kTvh89xzr6+jo7U27juNSTiLxdYsU5AACAPwAAgD/m+F09XFNkus1cmzX66wwxPB7ouXsmr7QAAIA/AACAP7u8vb7x4FM8w3aduvFzlzjpgdW9qq3KOQAAgD8AAIA/AEG1PCjbsj9G/9g+RiIyvtpsAbySg009AAAAAAAAAABmZsc+ilMePG5OZrvOhAs5F7AfvdFVnToAAIA/AACAP8Xxw760IMi8C4Kfuo+DIbjArUk9Shy/OQAAgD8AAIA/k/fqPj0+qb02OTY7/Hi0uASxg70KVYS6AACAPwAAgD/oOc++j6gwPeYB2rtwxcg5JzujvSQGtToAAIA/AACAP8ZVPj4KO4c/zpKFPjWHpb6luBs+PveGvQAAAAAAAAAAILIHvq7PgTleiz48QrRluc7mBzrGZUk6AACAPwAAgD/Qdac+G8KGvHgEVL1Z/oK9qcavvU10cr4AAIA/AACAP6avmD1c5zO631mHObwUd7N/bQu7vnqduAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoBXUCUhpRSlIwBbJRN6AOMAXSUR0CWegMV1wHadX2UKGgGaAloD0MIvd9oxw0mXUCUhpRSlGgVTegDaBZHQJali57PY4B1fZQoaAZoCWgPQwj+ne3RG5BeQJSGlFKUaBVN6ANoFkdAlqWN4zJp4HV9lChoBmgJaA9DCEYL0LaafUnAlIaUUpRoFU0JAWgWR0CWqHXrt3OfdX2UKGgGaAloD0MIdopVg7AoYkCUhpRSlGgVTegDaBZHQJaor8rI5o51fZQoaAZoCWgPQwjtEWqGVEdhQJSGlFKUaBVN6ANoFkdAlqoCIYWLxnV9lChoBmgJaA9DCEt4Qq+/YWNAlIaUUpRoFU3oA2gWR0CWrcuWKMvRdX2UKGgGaAloD0MIdsQhG8iWakCUhpRSlGgVTV0BaBZHQJaxDcTJyQx1fZQoaAZoCWgPQwjZXgt6bxxcQJSGlFKUaBVN6ANoFkdAlrW/W+XZ5HV9lChoBmgJaA9DCJ8cBYiCHW5AlIaUUpRoFU08AWgWR0CWvUmZmZmadX2UKGgGaAloD0MITGvT2F4Ya0CUhpRSlGgVTVkBaBZHQJa/bzOHFgl1fZQoaAZoCWgPQwijO4idKR5fQJSGlFKUaBVN6ANoFkdAlsLsHB1s+HV9lChoBmgJaA9DCANBgAwdbWJAlIaUUpRoFU3oA2gWR0CWxmk0Jng6dX2UKGgGaAloD0MITRB1HwChYECUhpRSlGgVTegDaBZHQJbHZrrPdEd1fZQoaAZoCWgPQwi53jZTIQJiQJSGlFKUaBVNAwJoFkdAltPdbC79RHV9lChoBmgJaA9DCC8X8Z2Yul9AlIaUUpRoFU3oA2gWR0CW1dtf5ULldX2UKGgGaAloD0MItY0/UdlGYECUhpRSlGgVTegDaBZHQJbaMhje9Bd1fZQoaAZoCWgPQwgbguMy7jpgQJSGlFKUaBVN6ANoFkdAltqdGus90XV9lChoBmgJaA9DCAQ4vYt3R21AlIaUUpRoFU1LAWgWR0CW2z4YrJ8wdX2UKGgGaAloD0MIgehJmVSuaECUhpRSlGgVTYMBaBZHQJbb9sfq5b11fZQoaAZoCWgPQwi+wRcmU+JfQJSGlFKUaBVN6ANoFkdAluERllK9PHV9lChoBmgJaA9DCJfiqrLv7ltAlIaUUpRoFU3oA2gWR0CW5uw6QvHtdX2UKGgGaAloD0MI1o7iHHVcKUCUhpRSlGgVS+5oFkdAlusS6tknTnV9lChoBmgJaA9DCAlP6PWnKGxAlIaUUpRoFU1MAWgWR0CW7Jv1UVBVdX2UKGgGaAloD0MIYHe688Rzur+UhpRSlGgVTRsBaBZHQJbu+6e5Fw11fZQoaAZoCWgPQwhpw2Fp4MVdQJSGlFKUaBVN6ANoFkdAlvB2P5pJw3V9lChoBmgJaA9DCO+P96qVlWFAlIaUUpRoFU3oA2gWR0CW8KWldkaudX2UKGgGaAloD0MIExCTcKHlbECUhpRSlGgVTaABaBZHQJbwqjL0SRN1fZQoaAZoCWgPQwgXSFD8mExqQJSGlFKUaBVNVQFoFkdAlvEpOafBe3V9lChoBmgJaA9DCO5Cc51GS2FAlIaUUpRoFU3oA2gWR0CW8aDQqqffdX2UKGgGaAloD0MIS8tIvSfkYkCUhpRSlGgVTegDaBZHQJb2omqo60Z1fZQoaAZoCWgPQwiYh0z5EOZpQJSGlFKUaBVNWwFoFkdAlvcctPHktHV9lChoBmgJaA9DCAR1yqMb1TXAlIaUUpRoFUvuaBZHQJb5J1q33Ht1fZQoaAZoCWgPQwg7Gof6XRdcQJSGlFKUaBVN6ANoFkdAlvoQoCuEEnV9lChoBmgJaA9DCAaAKm5c9WlAlIaUUpRoFU1cAWgWR0CW+/c0Ltu2dX2UKGgGaAloD0MIZTVdT3SaYUCUhpRSlGgVTegDaBZHQJcAADnvDxd1fZQoaAZoCWgPQwh+kGXBROppQJSGlFKUaBVNWgFoFkdAlwTrh3qzJXV9lChoBmgJaA9DCBQgCmZMUTdAlIaUUpRoFU0GAWgWR0CXBlm65Gz9dX2UKGgGaAloD0MI3CqIgS4tYECUhpRSlGgVTegDaBZHQJcH7zoUzsR1fZQoaAZoCWgPQwj+17lpM35cQJSGlFKUaBVN6ANoFkdAlwjOTV2A5XV9lChoBmgJaA9DCGzRArQti2pAlIaUUpRoFU3zAmgWR0CXCerYXfqHdX2UKGgGaAloD0MIZ7RVSeT6a0CUhpRSlGgVTWgBaBZHQJcQCejEehh1fZQoaAZoCWgPQwi/1TpxuZBjQJSGlFKUaBVNvAFoFkdAlxmKTW5H3HV9lChoBmgJaA9DCIup9BPOxkPAlIaUUpRoFU0nAWgWR0CXGr4FzMibdX2UKGgGaAloD0MIFHtoHytBbECUhpRSlGgVTTYBaBZHQJcemMju8bt1fZQoaAZoCWgPQwjLorCLotRgQJSGlFKUaBVN6ANoFkdAly90ZeiSJXV9lChoBmgJaA9DCIzzN6EQlFtAlIaUUpRoFU3oA2gWR0CXMm9bX6IndX2UKGgGaAloD0MISOLl6VzoXECUhpRSlGgVTegDaBZHQJcz9JOFg2J1fZQoaAZoCWgPQwgRABx79rBcQJSGlFKUaBVN6ANoFkdAlzQqk/KQrHV9lChoBmgJaA9DCOUK73IREl1AlIaUUpRoFU3oA2gWR0CXNDCb+cYqdX2UKGgGaAloD0MI/WoOEMzUXECUhpRSlGgVTegDaBZHQJduTGecx0x1fZQoaAZoCWgPQwguWRXhpnVgQJSGlFKUaBVN6ANoFkdAl62WZNO/L3V9lChoBmgJaA9DCEpCIm1j7mJAlIaUUpRoFU3oA2gWR0CX0Aghr30xdX2UKGgGaAloD0MIDHkEN1KgX0CUhpRSlGgVTegDaBZHQJfr3Eehf0F1fZQoaAZoCWgPQwgcKPBOPtdsQJSGlFKUaBVNMgFoFkdAl+yRVIZqEnV9lChoBmgJaA9DCOvkDMWdEGxAlIaUUpRoFU1zAWgWR0CX7L6RyOrAdX2UKGgGaAloD0MIkQn4NZKLakCUhpRSlGgVTUABaBZHQJfs1rnDBM11fZQoaAZoCWgPQwhss7ESc1ZqQJSGlFKUaBVNswNoFkdAl+2CdJ8OTnV9lChoBmgJaA9DCCGx3T1AAF1AlIaUUpRoFU3oA2gWR0CX7cKP4mCzdX2UKGgGaAloD0MIucFQh5VoZ0CUhpRSlGgVTX0BaBZHQJfu8H3UQTV1fZQoaAZoCWgPQwgDCB9KtFlsQJSGlFKUaBVN5QJoFkdAl+9CprDZUXV9lChoBmgJaA9DCBX+DG/WCWBAlIaUUpRoFU3oA2gWR0CX78moBJZodX2UKGgGaAloD0MInPpA8s6obkCUhpRSlGgVTdgDaBZHQJfyUxzq8lJ1fZQoaAZoCWgPQwhZox6i0Uk+QJSGlFKUaBVL8GgWR0CX8uz9CNS7dX2UKGgGaAloD0MIsRngguyaaECUhpRSlGgVTTABaBZHQJf3Wk1uR9x1fZQoaAZoCWgPQwjwUX+9wldgQJSGlFKUaBVN6ANoFkdAl/kXFtKqXHV9lChoBmgJaA9DCBZod0hxt3BAlIaUUpRoFU0lAWgWR0CX+xhmoR7JdX2UKGgGaAloD0MIIeS8/49VX0CUhpRSlGgVTegDaBZHQJf8q0Y0l7d1fZQoaAZoCWgPQwiwOJz51YVpQJSGlFKUaBVNbQJoFkdAmAFpDNQj2XV9lChoBmgJaA9DCFlsk4pGdmdAlIaUUpRoFU2CAWgWR0CYAWyHmA9WdX2UKGgGaAloD0MIVRLZB1laaUCUhpRSlGgVTaIBaBZHQJgEfM9r4351fZQoaAZoCWgPQwhp44i1eF1tQJSGlFKUaBVNIAFoFkdAmAg3nuAqeHV9lChoBmgJaA9DCBoxs89jK15AlIaUUpRoFU3oA2gWR0CYDOU8FINFdX2UKGgGaAloD0MIrP2d7VF9cECUhpRSlGgVTXoCaBZHQJgNG+M6zVt1fZQoaAZoCWgPQwiSBUzg1i1dQJSGlFKUaBVN6ANoFkdAmA5y53C9AXV9lChoBmgJaA9DCAK7mjxlL0FAlIaUUpRoFUvxaBZHQJgREHeJpFl1fZQoaAZoCWgPQwj2XRH873NiQJSGlFKUaBVN6ANoFkdAmBcYGY8dP3V9lChoBmgJaA9DCJSl1vsNHGtAlIaUUpRoFU13AmgWR0CYGPL8aXKKdX2UKGgGaAloD0MI1cvvNJlvbECUhpRSlGgVTZoBaBZHQJggqSkj5bh1fZQoaAZoCWgPQwjzVfKxuxFqQJSGlFKUaBVNNgFoFkdAmCMgl8gIQnV9lChoBmgJaA9DCM/ZAkLrjmtAlIaUUpRoFU2wA2gWR0CYI9N8E3bVdX2UKGgGaAloD0MIwaikTkAbWkCUhpRSlGgVTegDaBZHQJgkXL0SRKZ1fZQoaAZoCWgPQwigpMACmP9qQJSGlFKUaBVNcQJoFkdAmCUceGO+7HV9lChoBmgJaA9DCDVG66hq5mFAlIaUUpRoFU3oA2gWR0CYJR6sQumKdX2UKGgGaAloD0MIHXIz3IDMbECUhpRSlGgVTWABaBZHQJgpoXUH6dl1fZQoaAZoCWgPQwgXZwxzgjYJQJSGlFKUaBVNCAFoFkdAmCr2nsLORnV9lChoBmgJaA9DCBLcSNmiH2lAlIaUUpRoFU1UAWgWR0CYLfktmL9/dX2UKGgGaAloD0MIJy8yAb/pW0CUhpRSlGgVTegDaBZHQJgwflhgE2Z1fZQoaAZoCWgPQwi7KHrg42lrQJSGlFKUaBVNbwJoFkdAmDH/+bVjJHV9lChoBmgJaA9DCFuwVBfwa29AlIaUUpRoFU0wAmgWR0CYMn5avA45dX2UKGgGaAloD0MIxCKGHcbUM8CUhpRSlGgVTQUBaBZHQJgztFw1ivx1fZQoaAZoCWgPQwiXVG03QQljQJSGlFKUaBVN6ANoFkdAmDmGEkB0ZHV9lChoBmgJaA9DCNTX8zVL2WJAlIaUUpRoFU3oA2gWR0CYPpicG1QZdX2UKGgGaAloD0MIUkZcAJpfakCUhpRSlGgVTTYBaBZHQJg+q8pTdcl1fZQoaAZoCWgPQwiNYOP6dz33P5SGlFKUaBVL3mgWR0CYQUd7fHghdX2UKGgGaAloD0MIAruaPGUTakCUhpRSlGgVTYcBaBZHQJhC6dwvQF91fZQoaAZoCWgPQwiXGqGfqX5iQJSGlFKUaBVN6ANoFkdAmEQE/OdGzHV9lChoBmgJaA9DCJxvRPesPWJAlIaUUpRoFU3oA2gWR0CYUrXCTEBKdX2UKGgGaAloD0MI93MK8rP9OkCUhpRSlGgVTSEBaBZHQJhTjoZAIIF1fZQoaAZoCWgPQwgjTbwDvJloQJSGlFKUaBVNRwFoFkdAmFZzhtLteHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-MlpPolicy-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20350562d747819451cf138ba7907a5237c4262c5052bc2471d3e954a8b38338
|
3 |
+
size 84829
|
PPO-MlpPolicy-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d622a9a8098ea00c6090724c4ffb82e7ee77c3285ed658f197ffab4dd2dca7cc
|
3 |
+
size 43201
|
PPO-MlpPolicy-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-MlpPolicy-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 184.07 +/- 69.58
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6110570e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe611057170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe611057200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe611057290>", "_build": "<function ActorCriticPolicy._build at 0x7fe611057320>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6110573b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe611057440>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6110574d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe611057560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6110575f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe611057680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe611092e10>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651901324.7724934, "learning_rate": 0.0003, "tensorboard_log": "runs/2yx4puzp", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAzUz4yWZ8/WkvPPpkRyb7khDc+aj1CvQAAAAAAAAAAKwWBvh+Q6Twq7H49QOcivl6pEjzPirM8AAAAAAAAAABm6UO+rrv1O6Z3FTv6tNC4nuGNvY6ZNLoAAIA/AACAPxNzUz4DXmq8oB32OivF97iH28a9nwkTugAAgD8AAIA/U9kTvh89xzr6+jo7U27juNSTiLxdYsU5AACAPwAAgD/m+F09XFNkus1cmzX66wwxPB7ouXsmr7QAAIA/AACAP7u8vb7x4FM8w3aduvFzlzjpgdW9qq3KOQAAgD8AAIA/AEG1PCjbsj9G/9g+RiIyvtpsAbySg009AAAAAAAAAABmZsc+ilMePG5OZrvOhAs5F7AfvdFVnToAAIA/AACAP8Xxw760IMi8C4Kfuo+DIbjArUk9Shy/OQAAgD8AAIA/k/fqPj0+qb02OTY7/Hi0uASxg70KVYS6AACAPwAAgD/oOc++j6gwPeYB2rtwxcg5JzujvSQGtToAAIA/AACAP8ZVPj4KO4c/zpKFPjWHpb6luBs+PveGvQAAAAAAAAAAILIHvq7PgTleiz48QrRluc7mBzrGZUk6AACAPwAAgD/Qdac+G8KGvHgEVL1Z/oK9qcavvU10cr4AAIA/AACAP6avmD1c5zO631mHObwUd7N/bQu7vnqduAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoBXUCUhpRSlIwBbJRN6AOMAXSUR0CWegMV1wHadX2UKGgGaAloD0MIvd9oxw0mXUCUhpRSlGgVTegDaBZHQJali57PY4B1fZQoaAZoCWgPQwj+ne3RG5BeQJSGlFKUaBVN6ANoFkdAlqWN4zJp4HV9lChoBmgJaA9DCEYL0LaafUnAlIaUUpRoFU0JAWgWR0CWqHXrt3OfdX2UKGgGaAloD0MIdopVg7AoYkCUhpRSlGgVTegDaBZHQJaor8rI5o51fZQoaAZoCWgPQwjtEWqGVEdhQJSGlFKUaBVN6ANoFkdAlqoCIYWLxnV9lChoBmgJaA9DCEt4Qq+/YWNAlIaUUpRoFU3oA2gWR0CWrcuWKMvRdX2UKGgGaAloD0MIdsQhG8iWakCUhpRSlGgVTV0BaBZHQJaxDcTJyQx1fZQoaAZoCWgPQwjZXgt6bxxcQJSGlFKUaBVN6ANoFkdAlrW/W+XZ5HV9lChoBmgJaA9DCJ8cBYiCHW5AlIaUUpRoFU08AWgWR0CWvUmZmZmadX2UKGgGaAloD0MITGvT2F4Ya0CUhpRSlGgVTVkBaBZHQJa/bzOHFgl1fZQoaAZoCWgPQwijO4idKR5fQJSGlFKUaBVN6ANoFkdAlsLsHB1s+HV9lChoBmgJaA9DCANBgAwdbWJAlIaUUpRoFU3oA2gWR0CWxmk0Jng6dX2UKGgGaAloD0MITRB1HwChYECUhpRSlGgVTegDaBZHQJbHZrrPdEd1fZQoaAZoCWgPQwi53jZTIQJiQJSGlFKUaBVNAwJoFkdAltPdbC79RHV9lChoBmgJaA9DCC8X8Z2Yul9AlIaUUpRoFU3oA2gWR0CW1dtf5ULldX2UKGgGaAloD0MItY0/UdlGYECUhpRSlGgVTegDaBZHQJbaMhje9Bd1fZQoaAZoCWgPQwgbguMy7jpgQJSGlFKUaBVN6ANoFkdAltqdGus90XV9lChoBmgJaA9DCAQ4vYt3R21AlIaUUpRoFU1LAWgWR0CW2z4YrJ8wdX2UKGgGaAloD0MIgehJmVSuaECUhpRSlGgVTYMBaBZHQJbb9sfq5b11fZQoaAZoCWgPQwi+wRcmU+JfQJSGlFKUaBVN6ANoFkdAluERllK9PHV9lChoBmgJaA9DCJfiqrLv7ltAlIaUUpRoFU3oA2gWR0CW5uw6QvHtdX2UKGgGaAloD0MI1o7iHHVcKUCUhpRSlGgVS+5oFkdAlusS6tknTnV9lChoBmgJaA9DCAlP6PWnKGxAlIaUUpRoFU1MAWgWR0CW7Jv1UVBVdX2UKGgGaAloD0MIYHe688Rzur+UhpRSlGgVTRsBaBZHQJbu+6e5Fw11fZQoaAZoCWgPQwhpw2Fp4MVdQJSGlFKUaBVN6ANoFkdAlvB2P5pJw3V9lChoBmgJaA9DCO+P96qVlWFAlIaUUpRoFU3oA2gWR0CW8KWldkaudX2UKGgGaAloD0MIExCTcKHlbECUhpRSlGgVTaABaBZHQJbwqjL0SRN1fZQoaAZoCWgPQwgXSFD8mExqQJSGlFKUaBVNVQFoFkdAlvEpOafBe3V9lChoBmgJaA9DCO5Cc51GS2FAlIaUUpRoFU3oA2gWR0CW8aDQqqffdX2UKGgGaAloD0MIS8tIvSfkYkCUhpRSlGgVTegDaBZHQJb2omqo60Z1fZQoaAZoCWgPQwiYh0z5EOZpQJSGlFKUaBVNWwFoFkdAlvcctPHktHV9lChoBmgJaA9DCAR1yqMb1TXAlIaUUpRoFUvuaBZHQJb5J1q33Ht1fZQoaAZoCWgPQwg7Gof6XRdcQJSGlFKUaBVN6ANoFkdAlvoQoCuEEnV9lChoBmgJaA9DCAaAKm5c9WlAlIaUUpRoFU1cAWgWR0CW+/c0Ltu2dX2UKGgGaAloD0MIZTVdT3SaYUCUhpRSlGgVTegDaBZHQJcAADnvDxd1fZQoaAZoCWgPQwh+kGXBROppQJSGlFKUaBVNWgFoFkdAlwTrh3qzJXV9lChoBmgJaA9DCBQgCmZMUTdAlIaUUpRoFU0GAWgWR0CXBlm65Gz9dX2UKGgGaAloD0MI3CqIgS4tYECUhpRSlGgVTegDaBZHQJcH7zoUzsR1fZQoaAZoCWgPQwj+17lpM35cQJSGlFKUaBVN6ANoFkdAlwjOTV2A5XV9lChoBmgJaA9DCGzRArQti2pAlIaUUpRoFU3zAmgWR0CXCerYXfqHdX2UKGgGaAloD0MIZ7RVSeT6a0CUhpRSlGgVTWgBaBZHQJcQCejEehh1fZQoaAZoCWgPQwi/1TpxuZBjQJSGlFKUaBVNvAFoFkdAlxmKTW5H3HV9lChoBmgJaA9DCIup9BPOxkPAlIaUUpRoFU0nAWgWR0CXGr4FzMibdX2UKGgGaAloD0MIFHtoHytBbECUhpRSlGgVTTYBaBZHQJcemMju8bt1fZQoaAZoCWgPQwjLorCLotRgQJSGlFKUaBVN6ANoFkdAly90ZeiSJXV9lChoBmgJaA9DCIzzN6EQlFtAlIaUUpRoFU3oA2gWR0CXMm9bX6IndX2UKGgGaAloD0MISOLl6VzoXECUhpRSlGgVTegDaBZHQJcz9JOFg2J1fZQoaAZoCWgPQwgRABx79rBcQJSGlFKUaBVN6ANoFkdAlzQqk/KQrHV9lChoBmgJaA9DCOUK73IREl1AlIaUUpRoFU3oA2gWR0CXNDCb+cYqdX2UKGgGaAloD0MI/WoOEMzUXECUhpRSlGgVTegDaBZHQJduTGecx0x1fZQoaAZoCWgPQwguWRXhpnVgQJSGlFKUaBVN6ANoFkdAl62WZNO/L3V9lChoBmgJaA9DCEpCIm1j7mJAlIaUUpRoFU3oA2gWR0CX0Aghr30xdX2UKGgGaAloD0MIDHkEN1KgX0CUhpRSlGgVTegDaBZHQJfr3Eehf0F1fZQoaAZoCWgPQwgcKPBOPtdsQJSGlFKUaBVNMgFoFkdAl+yRVIZqEnV9lChoBmgJaA9DCOvkDMWdEGxAlIaUUpRoFU1zAWgWR0CX7L6RyOrAdX2UKGgGaAloD0MIkQn4NZKLakCUhpRSlGgVTUABaBZHQJfs1rnDBM11fZQoaAZoCWgPQwhss7ESc1ZqQJSGlFKUaBVNswNoFkdAl+2CdJ8OTnV9lChoBmgJaA9DCCGx3T1AAF1AlIaUUpRoFU3oA2gWR0CX7cKP4mCzdX2UKGgGaAloD0MIucFQh5VoZ0CUhpRSlGgVTX0BaBZHQJfu8H3UQTV1fZQoaAZoCWgPQwgDCB9KtFlsQJSGlFKUaBVN5QJoFkdAl+9CprDZUXV9lChoBmgJaA9DCBX+DG/WCWBAlIaUUpRoFU3oA2gWR0CX78moBJZodX2UKGgGaAloD0MInPpA8s6obkCUhpRSlGgVTdgDaBZHQJfyUxzq8lJ1fZQoaAZoCWgPQwhZox6i0Uk+QJSGlFKUaBVL8GgWR0CX8uz9CNS7dX2UKGgGaAloD0MIsRngguyaaECUhpRSlGgVTTABaBZHQJf3Wk1uR9x1fZQoaAZoCWgPQwjwUX+9wldgQJSGlFKUaBVN6ANoFkdAl/kXFtKqXHV9lChoBmgJaA9DCBZod0hxt3BAlIaUUpRoFU0lAWgWR0CX+xhmoR7JdX2UKGgGaAloD0MIIeS8/49VX0CUhpRSlGgVTegDaBZHQJf8q0Y0l7d1fZQoaAZoCWgPQwiwOJz51YVpQJSGlFKUaBVNbQJoFkdAmAFpDNQj2XV9lChoBmgJaA9DCFlsk4pGdmdAlIaUUpRoFU2CAWgWR0CYAWyHmA9WdX2UKGgGaAloD0MIVRLZB1laaUCUhpRSlGgVTaIBaBZHQJgEfM9r4351fZQoaAZoCWgPQwhp44i1eF1tQJSGlFKUaBVNIAFoFkdAmAg3nuAqeHV9lChoBmgJaA9DCBoxs89jK15AlIaUUpRoFU3oA2gWR0CYDOU8FINFdX2UKGgGaAloD0MIrP2d7VF9cECUhpRSlGgVTXoCaBZHQJgNG+M6zVt1fZQoaAZoCWgPQwiSBUzg1i1dQJSGlFKUaBVN6ANoFkdAmA5y53C9AXV9lChoBmgJaA9DCAK7mjxlL0FAlIaUUpRoFUvxaBZHQJgREHeJpFl1fZQoaAZoCWgPQwj2XRH873NiQJSGlFKUaBVN6ANoFkdAmBcYGY8dP3V9lChoBmgJaA9DCJSl1vsNHGtAlIaUUpRoFU13AmgWR0CYGPL8aXKKdX2UKGgGaAloD0MI1cvvNJlvbECUhpRSlGgVTZoBaBZHQJggqSkj5bh1fZQoaAZoCWgPQwjzVfKxuxFqQJSGlFKUaBVNNgFoFkdAmCMgl8gIQnV9lChoBmgJaA9DCM/ZAkLrjmtAlIaUUpRoFU2wA2gWR0CYI9N8E3bVdX2UKGgGaAloD0MIwaikTkAbWkCUhpRSlGgVTegDaBZHQJgkXL0SRKZ1fZQoaAZoCWgPQwigpMACmP9qQJSGlFKUaBVNcQJoFkdAmCUceGO+7HV9lChoBmgJaA9DCDVG66hq5mFAlIaUUpRoFU3oA2gWR0CYJR6sQumKdX2UKGgGaAloD0MIHXIz3IDMbECUhpRSlGgVTWABaBZHQJgpoXUH6dl1fZQoaAZoCWgPQwgXZwxzgjYJQJSGlFKUaBVNCAFoFkdAmCr2nsLORnV9lChoBmgJaA9DCBLcSNmiH2lAlIaUUpRoFU1UAWgWR0CYLfktmL9/dX2UKGgGaAloD0MIJy8yAb/pW0CUhpRSlGgVTegDaBZHQJgwflhgE2Z1fZQoaAZoCWgPQwi7KHrg42lrQJSGlFKUaBVNbwJoFkdAmDH/+bVjJHV9lChoBmgJaA9DCFuwVBfwa29AlIaUUpRoFU0wAmgWR0CYMn5avA45dX2UKGgGaAloD0MIxCKGHcbUM8CUhpRSlGgVTQUBaBZHQJgztFw1ivx1fZQoaAZoCWgPQwiXVG03QQljQJSGlFKUaBVN6ANoFkdAmDmGEkB0ZHV9lChoBmgJaA9DCNTX8zVL2WJAlIaUUpRoFU3oA2gWR0CYPpicG1QZdX2UKGgGaAloD0MIUkZcAJpfakCUhpRSlGgVTTYBaBZHQJg+q8pTdcl1fZQoaAZoCWgPQwiNYOP6dz33P5SGlFKUaBVL3mgWR0CYQUd7fHghdX2UKGgGaAloD0MIAruaPGUTakCUhpRSlGgVTYcBaBZHQJhC6dwvQF91fZQoaAZoCWgPQwiXGqGfqX5iQJSGlFKUaBVN6ANoFkdAmEQE/OdGzHV9lChoBmgJaA9DCJxvRPesPWJAlIaUUpRoFU3oA2gWR0CYUrXCTEBKdX2UKGgGaAloD0MI93MK8rP9OkCUhpRSlGgVTSEBaBZHQJhTjoZAIIF1fZQoaAZoCWgPQwgjTbwDvJloQJSGlFKUaBVNRwFoFkdAmFZzhtLteHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf188343b1713273210ff6befd57a32619cf938c5857852a514e9f514380411b
|
3 |
+
size 205246
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 184.07008777008232, "std_reward": 69.57750614098263, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T06:03:31.905974"}
|