jefsnacker commited on
Commit
afb22f5
1 Parent(s): d44e9e7
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO-MlpPolicy-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f758bfc480bcc84eb7f0a8614efc9818b4b533a2fb952a6d5913cbe79b8f162
3
+ size 144057
PPO-MlpPolicy-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO-MlpPolicy-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6110570e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe611057170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe611057200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe611057290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe611057320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe6110573b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe611057440>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe6110574d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe611057560>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6110575f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe611057680>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe611092e10>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651901324.7724934,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": "runs/2yx4puzp",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAzUz4yWZ8/WkvPPpkRyb7khDc+aj1CvQAAAAAAAAAAKwWBvh+Q6Twq7H49QOcivl6pEjzPirM8AAAAAAAAAABm6UO+rrv1O6Z3FTv6tNC4nuGNvY6ZNLoAAIA/AACAPxNzUz4DXmq8oB32OivF97iH28a9nwkTugAAgD8AAIA/U9kTvh89xzr6+jo7U27juNSTiLxdYsU5AACAPwAAgD/m+F09XFNkus1cmzX66wwxPB7ouXsmr7QAAIA/AACAP7u8vb7x4FM8w3aduvFzlzjpgdW9qq3KOQAAgD8AAIA/AEG1PCjbsj9G/9g+RiIyvtpsAbySg009AAAAAAAAAABmZsc+ilMePG5OZrvOhAs5F7AfvdFVnToAAIA/AACAP8Xxw760IMi8C4Kfuo+DIbjArUk9Shy/OQAAgD8AAIA/k/fqPj0+qb02OTY7/Hi0uASxg70KVYS6AACAPwAAgD/oOc++j6gwPeYB2rtwxcg5JzujvSQGtToAAIA/AACAP8ZVPj4KO4c/zpKFPjWHpb6luBs+PveGvQAAAAAAAAAAILIHvq7PgTleiz48QrRluc7mBzrGZUk6AACAPwAAgD/Qdac+G8KGvHgEVL1Z/oK9qcavvU10cr4AAIA/AACAP6avmD1c5zO631mHObwUd7N/bQu7vnqduAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoBXUCUhpRSlIwBbJRN6AOMAXSUR0CWegMV1wHadX2UKGgGaAloD0MIvd9oxw0mXUCUhpRSlGgVTegDaBZHQJali57PY4B1fZQoaAZoCWgPQwj+ne3RG5BeQJSGlFKUaBVN6ANoFkdAlqWN4zJp4HV9lChoBmgJaA9DCEYL0LaafUnAlIaUUpRoFU0JAWgWR0CWqHXrt3OfdX2UKGgGaAloD0MIdopVg7AoYkCUhpRSlGgVTegDaBZHQJaor8rI5o51fZQoaAZoCWgPQwjtEWqGVEdhQJSGlFKUaBVN6ANoFkdAlqoCIYWLxnV9lChoBmgJaA9DCEt4Qq+/YWNAlIaUUpRoFU3oA2gWR0CWrcuWKMvRdX2UKGgGaAloD0MIdsQhG8iWakCUhpRSlGgVTV0BaBZHQJaxDcTJyQx1fZQoaAZoCWgPQwjZXgt6bxxcQJSGlFKUaBVN6ANoFkdAlrW/W+XZ5HV9lChoBmgJaA9DCJ8cBYiCHW5AlIaUUpRoFU08AWgWR0CWvUmZmZmadX2UKGgGaAloD0MITGvT2F4Ya0CUhpRSlGgVTVkBaBZHQJa/bzOHFgl1fZQoaAZoCWgPQwijO4idKR5fQJSGlFKUaBVN6ANoFkdAlsLsHB1s+HV9lChoBmgJaA9DCANBgAwdbWJAlIaUUpRoFU3oA2gWR0CWxmk0Jng6dX2UKGgGaAloD0MITRB1HwChYECUhpRSlGgVTegDaBZHQJbHZrrPdEd1fZQoaAZoCWgPQwi53jZTIQJiQJSGlFKUaBVNAwJoFkdAltPdbC79RHV9lChoBmgJaA9DCC8X8Z2Yul9AlIaUUpRoFU3oA2gWR0CW1dtf5ULldX2UKGgGaAloD0MItY0/UdlGYECUhpRSlGgVTegDaBZHQJbaMhje9Bd1fZQoaAZoCWgPQwgbguMy7jpgQJSGlFKUaBVN6ANoFkdAltqdGus90XV9lChoBmgJaA9DCAQ4vYt3R21AlIaUUpRoFU1LAWgWR0CW2z4YrJ8wdX2UKGgGaAloD0MIgehJmVSuaECUhpRSlGgVTYMBaBZHQJbb9sfq5b11fZQoaAZoCWgPQwi+wRcmU+JfQJSGlFKUaBVN6ANoFkdAluERllK9PHV9lChoBmgJaA9DCJfiqrLv7ltAlIaUUpRoFU3oA2gWR0CW5uw6QvHtdX2UKGgGaAloD0MI1o7iHHVcKUCUhpRSlGgVS+5oFkdAlusS6tknTnV9lChoBmgJaA9DCAlP6PWnKGxAlIaUUpRoFU1MAWgWR0CW7Jv1UVBVdX2UKGgGaAloD0MIYHe688Rzur+UhpRSlGgVTRsBaBZHQJbu+6e5Fw11fZQoaAZoCWgPQwhpw2Fp4MVdQJSGlFKUaBVN6ANoFkdAlvB2P5pJw3V9lChoBmgJaA9DCO+P96qVlWFAlIaUUpRoFU3oA2gWR0CW8KWldkaudX2UKGgGaAloD0MIExCTcKHlbECUhpRSlGgVTaABaBZHQJbwqjL0SRN1fZQoaAZoCWgPQwgXSFD8mExqQJSGlFKUaBVNVQFoFkdAlvEpOafBe3V9lChoBmgJaA9DCO5Cc51GS2FAlIaUUpRoFU3oA2gWR0CW8aDQqqffdX2UKGgGaAloD0MIS8tIvSfkYkCUhpRSlGgVTegDaBZHQJb2omqo60Z1fZQoaAZoCWgPQwiYh0z5EOZpQJSGlFKUaBVNWwFoFkdAlvcctPHktHV9lChoBmgJaA9DCAR1yqMb1TXAlIaUUpRoFUvuaBZHQJb5J1q33Ht1fZQoaAZoCWgPQwg7Gof6XRdcQJSGlFKUaBVN6ANoFkdAlvoQoCuEEnV9lChoBmgJaA9DCAaAKm5c9WlAlIaUUpRoFU1cAWgWR0CW+/c0Ltu2dX2UKGgGaAloD0MIZTVdT3SaYUCUhpRSlGgVTegDaBZHQJcAADnvDxd1fZQoaAZoCWgPQwh+kGXBROppQJSGlFKUaBVNWgFoFkdAlwTrh3qzJXV9lChoBmgJaA9DCBQgCmZMUTdAlIaUUpRoFU0GAWgWR0CXBlm65Gz9dX2UKGgGaAloD0MI3CqIgS4tYECUhpRSlGgVTegDaBZHQJcH7zoUzsR1fZQoaAZoCWgPQwj+17lpM35cQJSGlFKUaBVN6ANoFkdAlwjOTV2A5XV9lChoBmgJaA9DCGzRArQti2pAlIaUUpRoFU3zAmgWR0CXCerYXfqHdX2UKGgGaAloD0MIZ7RVSeT6a0CUhpRSlGgVTWgBaBZHQJcQCejEehh1fZQoaAZoCWgPQwi/1TpxuZBjQJSGlFKUaBVNvAFoFkdAlxmKTW5H3HV9lChoBmgJaA9DCIup9BPOxkPAlIaUUpRoFU0nAWgWR0CXGr4FzMibdX2UKGgGaAloD0MIFHtoHytBbECUhpRSlGgVTTYBaBZHQJcemMju8bt1fZQoaAZoCWgPQwjLorCLotRgQJSGlFKUaBVN6ANoFkdAly90ZeiSJXV9lChoBmgJaA9DCIzzN6EQlFtAlIaUUpRoFU3oA2gWR0CXMm9bX6IndX2UKGgGaAloD0MISOLl6VzoXECUhpRSlGgVTegDaBZHQJcz9JOFg2J1fZQoaAZoCWgPQwgRABx79rBcQJSGlFKUaBVN6ANoFkdAlzQqk/KQrHV9lChoBmgJaA9DCOUK73IREl1AlIaUUpRoFU3oA2gWR0CXNDCb+cYqdX2UKGgGaAloD0MI/WoOEMzUXECUhpRSlGgVTegDaBZHQJduTGecx0x1fZQoaAZoCWgPQwguWRXhpnVgQJSGlFKUaBVN6ANoFkdAl62WZNO/L3V9lChoBmgJaA9DCEpCIm1j7mJAlIaUUpRoFU3oA2gWR0CX0Aghr30xdX2UKGgGaAloD0MIDHkEN1KgX0CUhpRSlGgVTegDaBZHQJfr3Eehf0F1fZQoaAZoCWgPQwgcKPBOPtdsQJSGlFKUaBVNMgFoFkdAl+yRVIZqEnV9lChoBmgJaA9DCOvkDMWdEGxAlIaUUpRoFU1zAWgWR0CX7L6RyOrAdX2UKGgGaAloD0MIkQn4NZKLakCUhpRSlGgVTUABaBZHQJfs1rnDBM11fZQoaAZoCWgPQwhss7ESc1ZqQJSGlFKUaBVNswNoFkdAl+2CdJ8OTnV9lChoBmgJaA9DCCGx3T1AAF1AlIaUUpRoFU3oA2gWR0CX7cKP4mCzdX2UKGgGaAloD0MIucFQh5VoZ0CUhpRSlGgVTX0BaBZHQJfu8H3UQTV1fZQoaAZoCWgPQwgDCB9KtFlsQJSGlFKUaBVN5QJoFkdAl+9CprDZUXV9lChoBmgJaA9DCBX+DG/WCWBAlIaUUpRoFU3oA2gWR0CX78moBJZodX2UKGgGaAloD0MInPpA8s6obkCUhpRSlGgVTdgDaBZHQJfyUxzq8lJ1fZQoaAZoCWgPQwhZox6i0Uk+QJSGlFKUaBVL8GgWR0CX8uz9CNS7dX2UKGgGaAloD0MIsRngguyaaECUhpRSlGgVTTABaBZHQJf3Wk1uR9x1fZQoaAZoCWgPQwjwUX+9wldgQJSGlFKUaBVN6ANoFkdAl/kXFtKqXHV9lChoBmgJaA9DCBZod0hxt3BAlIaUUpRoFU0lAWgWR0CX+xhmoR7JdX2UKGgGaAloD0MIIeS8/49VX0CUhpRSlGgVTegDaBZHQJf8q0Y0l7d1fZQoaAZoCWgPQwiwOJz51YVpQJSGlFKUaBVNbQJoFkdAmAFpDNQj2XV9lChoBmgJaA9DCFlsk4pGdmdAlIaUUpRoFU2CAWgWR0CYAWyHmA9WdX2UKGgGaAloD0MIVRLZB1laaUCUhpRSlGgVTaIBaBZHQJgEfM9r4351fZQoaAZoCWgPQwhp44i1eF1tQJSGlFKUaBVNIAFoFkdAmAg3nuAqeHV9lChoBmgJaA9DCBoxs89jK15AlIaUUpRoFU3oA2gWR0CYDOU8FINFdX2UKGgGaAloD0MIrP2d7VF9cECUhpRSlGgVTXoCaBZHQJgNG+M6zVt1fZQoaAZoCWgPQwiSBUzg1i1dQJSGlFKUaBVN6ANoFkdAmA5y53C9AXV9lChoBmgJaA9DCAK7mjxlL0FAlIaUUpRoFUvxaBZHQJgREHeJpFl1fZQoaAZoCWgPQwj2XRH873NiQJSGlFKUaBVN6ANoFkdAmBcYGY8dP3V9lChoBmgJaA9DCJSl1vsNHGtAlIaUUpRoFU13AmgWR0CYGPL8aXKKdX2UKGgGaAloD0MI1cvvNJlvbECUhpRSlGgVTZoBaBZHQJggqSkj5bh1fZQoaAZoCWgPQwjzVfKxuxFqQJSGlFKUaBVNNgFoFkdAmCMgl8gIQnV9lChoBmgJaA9DCM/ZAkLrjmtAlIaUUpRoFU2wA2gWR0CYI9N8E3bVdX2UKGgGaAloD0MIwaikTkAbWkCUhpRSlGgVTegDaBZHQJgkXL0SRKZ1fZQoaAZoCWgPQwigpMACmP9qQJSGlFKUaBVNcQJoFkdAmCUceGO+7HV9lChoBmgJaA9DCDVG66hq5mFAlIaUUpRoFU3oA2gWR0CYJR6sQumKdX2UKGgGaAloD0MIHXIz3IDMbECUhpRSlGgVTWABaBZHQJgpoXUH6dl1fZQoaAZoCWgPQwgXZwxzgjYJQJSGlFKUaBVNCAFoFkdAmCr2nsLORnV9lChoBmgJaA9DCBLcSNmiH2lAlIaUUpRoFU1UAWgWR0CYLfktmL9/dX2UKGgGaAloD0MIJy8yAb/pW0CUhpRSlGgVTegDaBZHQJgwflhgE2Z1fZQoaAZoCWgPQwi7KHrg42lrQJSGlFKUaBVNbwJoFkdAmDH/+bVjJHV9lChoBmgJaA9DCFuwVBfwa29AlIaUUpRoFU0wAmgWR0CYMn5avA45dX2UKGgGaAloD0MIxCKGHcbUM8CUhpRSlGgVTQUBaBZHQJgztFw1ivx1fZQoaAZoCWgPQwiXVG03QQljQJSGlFKUaBVN6ANoFkdAmDmGEkB0ZHV9lChoBmgJaA9DCNTX8zVL2WJAlIaUUpRoFU3oA2gWR0CYPpicG1QZdX2UKGgGaAloD0MIUkZcAJpfakCUhpRSlGgVTTYBaBZHQJg+q8pTdcl1fZQoaAZoCWgPQwiNYOP6dz33P5SGlFKUaBVL3mgWR0CYQUd7fHghdX2UKGgGaAloD0MIAruaPGUTakCUhpRSlGgVTYcBaBZHQJhC6dwvQF91fZQoaAZoCWgPQwiXGqGfqX5iQJSGlFKUaBVN6ANoFkdAmEQE/OdGzHV9lChoBmgJaA9DCJxvRPesPWJAlIaUUpRoFU3oA2gWR0CYUrXCTEBKdX2UKGgGaAloD0MI93MK8rP9OkCUhpRSlGgVTSEBaBZHQJhTjoZAIIF1fZQoaAZoCWgPQwgjTbwDvJloQJSGlFKUaBVNRwFoFkdAmFZzhtLteHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 256,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-MlpPolicy-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20350562d747819451cf138ba7907a5237c4262c5052bc2471d3e954a8b38338
3
+ size 84829
PPO-MlpPolicy-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d622a9a8098ea00c6090724c4ffb82e7ee77c3285ed658f197ffab4dd2dca7cc
3
+ size 43201
PPO-MlpPolicy-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-MlpPolicy-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 184.07 +/- 69.58
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6110570e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe611057170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe611057200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe611057290>", "_build": "<function ActorCriticPolicy._build at 0x7fe611057320>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6110573b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe611057440>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6110574d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe611057560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6110575f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe611057680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe611092e10>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651901324.7724934, "learning_rate": 0.0003, "tensorboard_log": "runs/2yx4puzp", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAzUz4yWZ8/WkvPPpkRyb7khDc+aj1CvQAAAAAAAAAAKwWBvh+Q6Twq7H49QOcivl6pEjzPirM8AAAAAAAAAABm6UO+rrv1O6Z3FTv6tNC4nuGNvY6ZNLoAAIA/AACAPxNzUz4DXmq8oB32OivF97iH28a9nwkTugAAgD8AAIA/U9kTvh89xzr6+jo7U27juNSTiLxdYsU5AACAPwAAgD/m+F09XFNkus1cmzX66wwxPB7ouXsmr7QAAIA/AACAP7u8vb7x4FM8w3aduvFzlzjpgdW9qq3KOQAAgD8AAIA/AEG1PCjbsj9G/9g+RiIyvtpsAbySg009AAAAAAAAAABmZsc+ilMePG5OZrvOhAs5F7AfvdFVnToAAIA/AACAP8Xxw760IMi8C4Kfuo+DIbjArUk9Shy/OQAAgD8AAIA/k/fqPj0+qb02OTY7/Hi0uASxg70KVYS6AACAPwAAgD/oOc++j6gwPeYB2rtwxcg5JzujvSQGtToAAIA/AACAP8ZVPj4KO4c/zpKFPjWHpb6luBs+PveGvQAAAAAAAAAAILIHvq7PgTleiz48QrRluc7mBzrGZUk6AACAPwAAgD/Qdac+G8KGvHgEVL1Z/oK9qcavvU10cr4AAIA/AACAP6avmD1c5zO631mHObwUd7N/bQu7vnqduAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoBXUCUhpRSlIwBbJRN6AOMAXSUR0CWegMV1wHadX2UKGgGaAloD0MIvd9oxw0mXUCUhpRSlGgVTegDaBZHQJali57PY4B1fZQoaAZoCWgPQwj+ne3RG5BeQJSGlFKUaBVN6ANoFkdAlqWN4zJp4HV9lChoBmgJaA9DCEYL0LaafUnAlIaUUpRoFU0JAWgWR0CWqHXrt3OfdX2UKGgGaAloD0MIdopVg7AoYkCUhpRSlGgVTegDaBZHQJaor8rI5o51fZQoaAZoCWgPQwjtEWqGVEdhQJSGlFKUaBVN6ANoFkdAlqoCIYWLxnV9lChoBmgJaA9DCEt4Qq+/YWNAlIaUUpRoFU3oA2gWR0CWrcuWKMvRdX2UKGgGaAloD0MIdsQhG8iWakCUhpRSlGgVTV0BaBZHQJaxDcTJyQx1fZQoaAZoCWgPQwjZXgt6bxxcQJSGlFKUaBVN6ANoFkdAlrW/W+XZ5HV9lChoBmgJaA9DCJ8cBYiCHW5AlIaUUpRoFU08AWgWR0CWvUmZmZmadX2UKGgGaAloD0MITGvT2F4Ya0CUhpRSlGgVTVkBaBZHQJa/bzOHFgl1fZQoaAZoCWgPQwijO4idKR5fQJSGlFKUaBVN6ANoFkdAlsLsHB1s+HV9lChoBmgJaA9DCANBgAwdbWJAlIaUUpRoFU3oA2gWR0CWxmk0Jng6dX2UKGgGaAloD0MITRB1HwChYECUhpRSlGgVTegDaBZHQJbHZrrPdEd1fZQoaAZoCWgPQwi53jZTIQJiQJSGlFKUaBVNAwJoFkdAltPdbC79RHV9lChoBmgJaA9DCC8X8Z2Yul9AlIaUUpRoFU3oA2gWR0CW1dtf5ULldX2UKGgGaAloD0MItY0/UdlGYECUhpRSlGgVTegDaBZHQJbaMhje9Bd1fZQoaAZoCWgPQwgbguMy7jpgQJSGlFKUaBVN6ANoFkdAltqdGus90XV9lChoBmgJaA9DCAQ4vYt3R21AlIaUUpRoFU1LAWgWR0CW2z4YrJ8wdX2UKGgGaAloD0MIgehJmVSuaECUhpRSlGgVTYMBaBZHQJbb9sfq5b11fZQoaAZoCWgPQwi+wRcmU+JfQJSGlFKUaBVN6ANoFkdAluERllK9PHV9lChoBmgJaA9DCJfiqrLv7ltAlIaUUpRoFU3oA2gWR0CW5uw6QvHtdX2UKGgGaAloD0MI1o7iHHVcKUCUhpRSlGgVS+5oFkdAlusS6tknTnV9lChoBmgJaA9DCAlP6PWnKGxAlIaUUpRoFU1MAWgWR0CW7Jv1UVBVdX2UKGgGaAloD0MIYHe688Rzur+UhpRSlGgVTRsBaBZHQJbu+6e5Fw11fZQoaAZoCWgPQwhpw2Fp4MVdQJSGlFKUaBVN6ANoFkdAlvB2P5pJw3V9lChoBmgJaA9DCO+P96qVlWFAlIaUUpRoFU3oA2gWR0CW8KWldkaudX2UKGgGaAloD0MIExCTcKHlbECUhpRSlGgVTaABaBZHQJbwqjL0SRN1fZQoaAZoCWgPQwgXSFD8mExqQJSGlFKUaBVNVQFoFkdAlvEpOafBe3V9lChoBmgJaA9DCO5Cc51GS2FAlIaUUpRoFU3oA2gWR0CW8aDQqqffdX2UKGgGaAloD0MIS8tIvSfkYkCUhpRSlGgVTegDaBZHQJb2omqo60Z1fZQoaAZoCWgPQwiYh0z5EOZpQJSGlFKUaBVNWwFoFkdAlvcctPHktHV9lChoBmgJaA9DCAR1yqMb1TXAlIaUUpRoFUvuaBZHQJb5J1q33Ht1fZQoaAZoCWgPQwg7Gof6XRdcQJSGlFKUaBVN6ANoFkdAlvoQoCuEEnV9lChoBmgJaA9DCAaAKm5c9WlAlIaUUpRoFU1cAWgWR0CW+/c0Ltu2dX2UKGgGaAloD0MIZTVdT3SaYUCUhpRSlGgVTegDaBZHQJcAADnvDxd1fZQoaAZoCWgPQwh+kGXBROppQJSGlFKUaBVNWgFoFkdAlwTrh3qzJXV9lChoBmgJaA9DCBQgCmZMUTdAlIaUUpRoFU0GAWgWR0CXBlm65Gz9dX2UKGgGaAloD0MI3CqIgS4tYECUhpRSlGgVTegDaBZHQJcH7zoUzsR1fZQoaAZoCWgPQwj+17lpM35cQJSGlFKUaBVN6ANoFkdAlwjOTV2A5XV9lChoBmgJaA9DCGzRArQti2pAlIaUUpRoFU3zAmgWR0CXCerYXfqHdX2UKGgGaAloD0MIZ7RVSeT6a0CUhpRSlGgVTWgBaBZHQJcQCejEehh1fZQoaAZoCWgPQwi/1TpxuZBjQJSGlFKUaBVNvAFoFkdAlxmKTW5H3HV9lChoBmgJaA9DCIup9BPOxkPAlIaUUpRoFU0nAWgWR0CXGr4FzMibdX2UKGgGaAloD0MIFHtoHytBbECUhpRSlGgVTTYBaBZHQJcemMju8bt1fZQoaAZoCWgPQwjLorCLotRgQJSGlFKUaBVN6ANoFkdAly90ZeiSJXV9lChoBmgJaA9DCIzzN6EQlFtAlIaUUpRoFU3oA2gWR0CXMm9bX6IndX2UKGgGaAloD0MISOLl6VzoXECUhpRSlGgVTegDaBZHQJcz9JOFg2J1fZQoaAZoCWgPQwgRABx79rBcQJSGlFKUaBVN6ANoFkdAlzQqk/KQrHV9lChoBmgJaA9DCOUK73IREl1AlIaUUpRoFU3oA2gWR0CXNDCb+cYqdX2UKGgGaAloD0MI/WoOEMzUXECUhpRSlGgVTegDaBZHQJduTGecx0x1fZQoaAZoCWgPQwguWRXhpnVgQJSGlFKUaBVN6ANoFkdAl62WZNO/L3V9lChoBmgJaA9DCEpCIm1j7mJAlIaUUpRoFU3oA2gWR0CX0Aghr30xdX2UKGgGaAloD0MIDHkEN1KgX0CUhpRSlGgVTegDaBZHQJfr3Eehf0F1fZQoaAZoCWgPQwgcKPBOPtdsQJSGlFKUaBVNMgFoFkdAl+yRVIZqEnV9lChoBmgJaA9DCOvkDMWdEGxAlIaUUpRoFU1zAWgWR0CX7L6RyOrAdX2UKGgGaAloD0MIkQn4NZKLakCUhpRSlGgVTUABaBZHQJfs1rnDBM11fZQoaAZoCWgPQwhss7ESc1ZqQJSGlFKUaBVNswNoFkdAl+2CdJ8OTnV9lChoBmgJaA9DCCGx3T1AAF1AlIaUUpRoFU3oA2gWR0CX7cKP4mCzdX2UKGgGaAloD0MIucFQh5VoZ0CUhpRSlGgVTX0BaBZHQJfu8H3UQTV1fZQoaAZoCWgPQwgDCB9KtFlsQJSGlFKUaBVN5QJoFkdAl+9CprDZUXV9lChoBmgJaA9DCBX+DG/WCWBAlIaUUpRoFU3oA2gWR0CX78moBJZodX2UKGgGaAloD0MInPpA8s6obkCUhpRSlGgVTdgDaBZHQJfyUxzq8lJ1fZQoaAZoCWgPQwhZox6i0Uk+QJSGlFKUaBVL8GgWR0CX8uz9CNS7dX2UKGgGaAloD0MIsRngguyaaECUhpRSlGgVTTABaBZHQJf3Wk1uR9x1fZQoaAZoCWgPQwjwUX+9wldgQJSGlFKUaBVN6ANoFkdAl/kXFtKqXHV9lChoBmgJaA9DCBZod0hxt3BAlIaUUpRoFU0lAWgWR0CX+xhmoR7JdX2UKGgGaAloD0MIIeS8/49VX0CUhpRSlGgVTegDaBZHQJf8q0Y0l7d1fZQoaAZoCWgPQwiwOJz51YVpQJSGlFKUaBVNbQJoFkdAmAFpDNQj2XV9lChoBmgJaA9DCFlsk4pGdmdAlIaUUpRoFU2CAWgWR0CYAWyHmA9WdX2UKGgGaAloD0MIVRLZB1laaUCUhpRSlGgVTaIBaBZHQJgEfM9r4351fZQoaAZoCWgPQwhp44i1eF1tQJSGlFKUaBVNIAFoFkdAmAg3nuAqeHV9lChoBmgJaA9DCBoxs89jK15AlIaUUpRoFU3oA2gWR0CYDOU8FINFdX2UKGgGaAloD0MIrP2d7VF9cECUhpRSlGgVTXoCaBZHQJgNG+M6zVt1fZQoaAZoCWgPQwiSBUzg1i1dQJSGlFKUaBVN6ANoFkdAmA5y53C9AXV9lChoBmgJaA9DCAK7mjxlL0FAlIaUUpRoFUvxaBZHQJgREHeJpFl1fZQoaAZoCWgPQwj2XRH873NiQJSGlFKUaBVN6ANoFkdAmBcYGY8dP3V9lChoBmgJaA9DCJSl1vsNHGtAlIaUUpRoFU13AmgWR0CYGPL8aXKKdX2UKGgGaAloD0MI1cvvNJlvbECUhpRSlGgVTZoBaBZHQJggqSkj5bh1fZQoaAZoCWgPQwjzVfKxuxFqQJSGlFKUaBVNNgFoFkdAmCMgl8gIQnV9lChoBmgJaA9DCM/ZAkLrjmtAlIaUUpRoFU2wA2gWR0CYI9N8E3bVdX2UKGgGaAloD0MIwaikTkAbWkCUhpRSlGgVTegDaBZHQJgkXL0SRKZ1fZQoaAZoCWgPQwigpMACmP9qQJSGlFKUaBVNcQJoFkdAmCUceGO+7HV9lChoBmgJaA9DCDVG66hq5mFAlIaUUpRoFU3oA2gWR0CYJR6sQumKdX2UKGgGaAloD0MIHXIz3IDMbECUhpRSlGgVTWABaBZHQJgpoXUH6dl1fZQoaAZoCWgPQwgXZwxzgjYJQJSGlFKUaBVNCAFoFkdAmCr2nsLORnV9lChoBmgJaA9DCBLcSNmiH2lAlIaUUpRoFU1UAWgWR0CYLfktmL9/dX2UKGgGaAloD0MIJy8yAb/pW0CUhpRSlGgVTegDaBZHQJgwflhgE2Z1fZQoaAZoCWgPQwi7KHrg42lrQJSGlFKUaBVNbwJoFkdAmDH/+bVjJHV9lChoBmgJaA9DCFuwVBfwa29AlIaUUpRoFU0wAmgWR0CYMn5avA45dX2UKGgGaAloD0MIxCKGHcbUM8CUhpRSlGgVTQUBaBZHQJgztFw1ivx1fZQoaAZoCWgPQwiXVG03QQljQJSGlFKUaBVN6ANoFkdAmDmGEkB0ZHV9lChoBmgJaA9DCNTX8zVL2WJAlIaUUpRoFU3oA2gWR0CYPpicG1QZdX2UKGgGaAloD0MIUkZcAJpfakCUhpRSlGgVTTYBaBZHQJg+q8pTdcl1fZQoaAZoCWgPQwiNYOP6dz33P5SGlFKUaBVL3mgWR0CYQUd7fHghdX2UKGgGaAloD0MIAruaPGUTakCUhpRSlGgVTYcBaBZHQJhC6dwvQF91fZQoaAZoCWgPQwiXGqGfqX5iQJSGlFKUaBVN6ANoFkdAmEQE/OdGzHV9lChoBmgJaA9DCJxvRPesPWJAlIaUUpRoFU3oA2gWR0CYUrXCTEBKdX2UKGgGaAloD0MI93MK8rP9OkCUhpRSlGgVTSEBaBZHQJhTjoZAIIF1fZQoaAZoCWgPQwgjTbwDvJloQJSGlFKUaBVNRwFoFkdAmFZzhtLteHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf188343b1713273210ff6befd57a32619cf938c5857852a514e9f514380411b
3
+ size 205246
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 184.07008777008232, "std_reward": 69.57750614098263, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T06:03:31.905974"}