Delete modeling_stablelm_epoch.py
Browse files- modeling_stablelm_epoch.py +0 -916
modeling_stablelm_epoch.py
DELETED
@@ -1,916 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
# This code is based off the following work:
|
17 |
-
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
18 |
-
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
19 |
-
""" PyTorch StableLM Epoch model. """
|
20 |
-
from typing import Optional, Tuple, Union
|
21 |
-
import math
|
22 |
-
import warnings
|
23 |
-
|
24 |
-
import torch
|
25 |
-
import torch.nn.functional as F
|
26 |
-
import torch.utils.checkpoint
|
27 |
-
from torch import nn
|
28 |
-
from torch.nn import CrossEntropyLoss
|
29 |
-
|
30 |
-
from transformers.cache_utils import Cache
|
31 |
-
from transformers.modeling_outputs import (
|
32 |
-
BaseModelOutputWithPast,
|
33 |
-
CausalLMOutputWithPast,
|
34 |
-
)
|
35 |
-
from transformers.modeling_utils import PreTrainedModel
|
36 |
-
from transformers.utils import logging, is_flash_attn_greater_or_equal_2_10
|
37 |
-
|
38 |
-
from .configuration_stablelm_epoch import StableLMEpochConfig
|
39 |
-
|
40 |
-
try:
|
41 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
42 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
43 |
-
except:
|
44 |
-
flash_attn_func, flash_attn_varlen_func = None, None
|
45 |
-
index_first_axis, pad_input, unpad_input = None, None, None
|
46 |
-
|
47 |
-
|
48 |
-
logger = logging.get_logger(__name__)
|
49 |
-
|
50 |
-
|
51 |
-
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
52 |
-
def _get_unpad_data(attention_mask):
|
53 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
54 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
55 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
56 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
57 |
-
return (
|
58 |
-
indices,
|
59 |
-
cu_seqlens,
|
60 |
-
max_seqlen_in_batch,
|
61 |
-
)
|
62 |
-
|
63 |
-
|
64 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
65 |
-
def _make_causal_mask(
|
66 |
-
input_ids_shape: torch.Size,
|
67 |
-
dtype: torch.dtype,
|
68 |
-
device: torch.device,
|
69 |
-
past_key_values_length: int = 0,
|
70 |
-
):
|
71 |
-
"""Make causal mask used for bi-directional self-attention."""
|
72 |
-
batch_size, tgt_len = input_ids_shape
|
73 |
-
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
|
74 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
75 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
76 |
-
mask = mask.to(dtype)
|
77 |
-
if past_key_values_length > 0:
|
78 |
-
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
79 |
-
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
|
80 |
-
|
81 |
-
|
82 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
83 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
84 |
-
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
|
85 |
-
batch_size, src_len = mask.size()
|
86 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
87 |
-
|
88 |
-
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
|
89 |
-
inverted_mask = 1.0 - expanded_mask
|
90 |
-
|
91 |
-
return inverted_mask.masked_fill(
|
92 |
-
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
93 |
-
)
|
94 |
-
|
95 |
-
|
96 |
-
class RotaryEmbedding(nn.Module):
|
97 |
-
def __init__(
|
98 |
-
self,
|
99 |
-
dim: int,
|
100 |
-
max_position_embeddings: int,
|
101 |
-
base: int = 10_000,
|
102 |
-
device: Optional[torch.device] = None,
|
103 |
-
):
|
104 |
-
super().__init__()
|
105 |
-
|
106 |
-
self.dim = dim
|
107 |
-
self.max_position_embeddings = max_position_embeddings
|
108 |
-
self.base = base
|
109 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
110 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
111 |
-
|
112 |
-
# Build here to make `torch.jit.trace` work.
|
113 |
-
self._set_cos_sin_cache(
|
114 |
-
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
|
115 |
-
)
|
116 |
-
|
117 |
-
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
118 |
-
self.max_seq_len_cached = seq_len
|
119 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
120 |
-
|
121 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
122 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
123 |
-
freqs = torch.outer(t, self.inv_freq)
|
124 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
125 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
126 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
127 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
128 |
-
|
129 |
-
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
|
130 |
-
# x: [batch_size, num_heads, seq_len, head_size]
|
131 |
-
if seq_len > self.max_seq_len_cached:
|
132 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
|
133 |
-
return (
|
134 |
-
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
135 |
-
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
136 |
-
)
|
137 |
-
|
138 |
-
|
139 |
-
def rotate_half(x: torch.Tensor):
|
140 |
-
"""Rotates half the hidden dims of the input."""
|
141 |
-
x1, x2 = torch.chunk(x, 2, dim=-1)
|
142 |
-
return torch.cat((-x2, x1), dim=-1)
|
143 |
-
|
144 |
-
|
145 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
146 |
-
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
147 |
-
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
148 |
-
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
149 |
-
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
150 |
-
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
151 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
152 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
153 |
-
return q_embed, k_embed
|
154 |
-
|
155 |
-
|
156 |
-
class MLP(nn.Module):
|
157 |
-
def __init__(self, config: StableLMEpochConfig):
|
158 |
-
super().__init__()
|
159 |
-
self.config = config
|
160 |
-
self.hidden_size = config.hidden_size
|
161 |
-
self.intermediate_size = config.intermediate_size
|
162 |
-
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
163 |
-
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
164 |
-
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
165 |
-
self.act_fn = nn.SiLU()
|
166 |
-
|
167 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
168 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
169 |
-
|
170 |
-
|
171 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
172 |
-
"""
|
173 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
174 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
175 |
-
"""
|
176 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
177 |
-
if n_rep == 1:
|
178 |
-
return hidden_states
|
179 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
180 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
181 |
-
|
182 |
-
|
183 |
-
class Attention(nn.Module):
|
184 |
-
def __init__(self, config: StableLMEpochConfig):
|
185 |
-
super().__init__()
|
186 |
-
self.config = config
|
187 |
-
self.hidden_size = config.hidden_size
|
188 |
-
self.num_heads = config.num_attention_heads
|
189 |
-
self.head_dim = self.hidden_size // self.num_heads
|
190 |
-
self.num_key_value_heads = config.num_key_value_heads
|
191 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
192 |
-
self.max_position_embeddings = config.max_position_embeddings
|
193 |
-
self.is_causal = True
|
194 |
-
|
195 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
196 |
-
raise ValueError(
|
197 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
198 |
-
f" and `num_heads`: {self.num_heads})."
|
199 |
-
)
|
200 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
201 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
202 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
203 |
-
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
204 |
-
|
205 |
-
self._init_rope()
|
206 |
-
|
207 |
-
def _init_rope(self):
|
208 |
-
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
209 |
-
self.rotary_emb = RotaryEmbedding(
|
210 |
-
self.rotary_ndims,
|
211 |
-
max_position_embeddings=self.config.max_position_embeddings,
|
212 |
-
base=self.config.rope_theta,
|
213 |
-
)
|
214 |
-
|
215 |
-
def forward(
|
216 |
-
self,
|
217 |
-
hidden_states: torch.FloatTensor,
|
218 |
-
attention_mask: torch.FloatTensor,
|
219 |
-
position_ids: torch.LongTensor,
|
220 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
221 |
-
output_attentions: Optional[bool] = False,
|
222 |
-
use_cache: Optional[bool] = False,
|
223 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
224 |
-
bsz, q_len, _ = hidden_states.size()
|
225 |
-
|
226 |
-
query_states = self.q_proj(hidden_states)
|
227 |
-
key_states = self.k_proj(hidden_states)
|
228 |
-
value_states = self.v_proj(hidden_states)
|
229 |
-
|
230 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
231 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
232 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
233 |
-
|
234 |
-
query_rot = query_states[..., : self.rotary_ndims]
|
235 |
-
query_pass = query_states[..., self.rotary_ndims :]
|
236 |
-
key_rot = key_states[..., : self.rotary_ndims]
|
237 |
-
key_pass = key_states[..., self.rotary_ndims :]
|
238 |
-
|
239 |
-
kv_seq_len = key_states.shape[-2]
|
240 |
-
if past_key_value is not None:
|
241 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
242 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
243 |
-
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
244 |
-
|
245 |
-
# [batch_size, num_heads, seq_len, head_dim]
|
246 |
-
query_states = torch.cat((query_states, query_pass), dim=-1)
|
247 |
-
key_states = torch.cat((key_states, key_pass), dim=-1)
|
248 |
-
|
249 |
-
if past_key_value is not None:
|
250 |
-
# Reuse k, v, self_attention
|
251 |
-
key_states = torch.cat((past_key_value[0], key_states), dim=2)
|
252 |
-
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
253 |
-
|
254 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
255 |
-
|
256 |
-
# Repeat k/v heads if n_kv_heads < n_heads
|
257 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
258 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
259 |
-
|
260 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
261 |
-
|
262 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
263 |
-
raise ValueError(
|
264 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
265 |
-
f" {attn_weights.size()}"
|
266 |
-
)
|
267 |
-
|
268 |
-
if attention_mask is not None:
|
269 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
270 |
-
raise ValueError(
|
271 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
272 |
-
)
|
273 |
-
attn_weights = attn_weights + attention_mask
|
274 |
-
|
275 |
-
# Upcast attention to fp32
|
276 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
277 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
278 |
-
|
279 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
280 |
-
raise ValueError(
|
281 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
282 |
-
f" {attn_output.size()}"
|
283 |
-
)
|
284 |
-
|
285 |
-
# Merge heads
|
286 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
287 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
288 |
-
|
289 |
-
# Final linear projection
|
290 |
-
attn_output = self.o_proj(attn_output)
|
291 |
-
|
292 |
-
if not output_attentions:
|
293 |
-
attn_weights = None
|
294 |
-
|
295 |
-
return attn_output, attn_weights, past_key_value
|
296 |
-
|
297 |
-
|
298 |
-
class FlashAttention2(Attention):
|
299 |
-
"""
|
300 |
-
Reference: https://github.com/huggingface/transformers/blob/5d36025ca13d05151b7a0c761e90d429c4644a30/src/transformers/models/llama/modeling_llama.py#L456
|
301 |
-
"""
|
302 |
-
|
303 |
-
def __init__(self, *args, **kwargs):
|
304 |
-
super().__init__(*args, **kwargs)
|
305 |
-
|
306 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
307 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
308 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
309 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
310 |
-
|
311 |
-
def forward(
|
312 |
-
self,
|
313 |
-
hidden_states: torch.Tensor,
|
314 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
315 |
-
position_ids: Optional[torch.LongTensor] = None,
|
316 |
-
past_key_value: Optional[Cache] = None,
|
317 |
-
output_attentions: bool = False,
|
318 |
-
use_cache: bool = False,
|
319 |
-
**kwargs,
|
320 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
321 |
-
# FlashAttention2 attention does not support output_attentions
|
322 |
-
if "padding_mask" in kwargs:
|
323 |
-
warnings.warn(
|
324 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
325 |
-
)
|
326 |
-
|
327 |
-
# overwrite attention_mask with padding_mask
|
328 |
-
attention_mask = kwargs.pop("padding_mask")
|
329 |
-
|
330 |
-
output_attentions = False
|
331 |
-
|
332 |
-
bsz, q_len, _ = hidden_states.size()
|
333 |
-
|
334 |
-
query_states = self.q_proj(hidden_states)
|
335 |
-
key_states = self.k_proj(hidden_states)
|
336 |
-
value_states = self.v_proj(hidden_states)
|
337 |
-
|
338 |
-
# Flash attention requires the input to have the shape
|
339 |
-
# batch_size x seq_length x head_dim x hidden_dim
|
340 |
-
# therefore we just need to keep the original shape
|
341 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
342 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
343 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
344 |
-
|
345 |
-
query_rot = query_states[..., : self.rotary_ndims]
|
346 |
-
query_pass = query_states[..., self.rotary_ndims :]
|
347 |
-
key_rot = key_states[..., : self.rotary_ndims]
|
348 |
-
key_pass = key_states[..., self.rotary_ndims :]
|
349 |
-
|
350 |
-
kv_seq_len = key_states.shape[-2]
|
351 |
-
if past_key_value is not None:
|
352 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
353 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
354 |
-
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
355 |
-
|
356 |
-
# [batch_size, num_heads, seq_len, head_dim]
|
357 |
-
query_states = torch.cat((query_states, query_pass), dim=-1)
|
358 |
-
key_states = torch.cat((key_states, key_pass), dim=-1)
|
359 |
-
|
360 |
-
if past_key_value is not None:
|
361 |
-
# Reuse k, v, self_attention
|
362 |
-
key_states = torch.cat((past_key_value[0], key_states), dim=2)
|
363 |
-
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
364 |
-
|
365 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
366 |
-
|
367 |
-
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
368 |
-
# to be able to avoid many of these transpose/reshape/view.
|
369 |
-
query_states = query_states.transpose(1, 2)
|
370 |
-
key_states = key_states.transpose(1, 2)
|
371 |
-
value_states = value_states.transpose(1, 2)
|
372 |
-
|
373 |
-
dropout_rate = self.attention_dropout if self.training else 0.0
|
374 |
-
|
375 |
-
attn_output = self._flash_attention_forward(
|
376 |
-
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
377 |
-
)
|
378 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
379 |
-
attn_output = self.o_proj(attn_output)
|
380 |
-
|
381 |
-
if not output_attentions:
|
382 |
-
attn_weights = None
|
383 |
-
|
384 |
-
return attn_output, attn_weights, past_key_value
|
385 |
-
|
386 |
-
def _flash_attention_forward(
|
387 |
-
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
388 |
-
):
|
389 |
-
"""
|
390 |
-
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
391 |
-
first unpad the input, then computes the attention scores and pad the final attention scores.
|
392 |
-
|
393 |
-
Args:
|
394 |
-
query_states (`torch.Tensor`):
|
395 |
-
Input query states to be passed to Flash Attention API
|
396 |
-
key_states (`torch.Tensor`):
|
397 |
-
Input key states to be passed to Flash Attention API
|
398 |
-
value_states (`torch.Tensor`):
|
399 |
-
Input value states to be passed to Flash Attention API
|
400 |
-
attention_mask (`torch.Tensor`):
|
401 |
-
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
402 |
-
position of padding tokens and 1 for the position of non-padding tokens.
|
403 |
-
dropout (`int`, *optional*):
|
404 |
-
Attention dropout
|
405 |
-
softmax_scale (`float`, *optional*):
|
406 |
-
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
407 |
-
"""
|
408 |
-
if not self._flash_attn_uses_top_left_mask:
|
409 |
-
causal = self.is_causal
|
410 |
-
else:
|
411 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in FlashAttention2 __init__.
|
412 |
-
causal = self.is_causal and query_length != 1
|
413 |
-
|
414 |
-
# Contains at least one padding token in the sequence
|
415 |
-
if attention_mask is not None:
|
416 |
-
batch_size = query_states.shape[0]
|
417 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
418 |
-
query_states, key_states, value_states, attention_mask, query_length
|
419 |
-
)
|
420 |
-
|
421 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
422 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
423 |
-
|
424 |
-
attn_output_unpad = flash_attn_varlen_func(
|
425 |
-
query_states,
|
426 |
-
key_states,
|
427 |
-
value_states,
|
428 |
-
cu_seqlens_q=cu_seqlens_q,
|
429 |
-
cu_seqlens_k=cu_seqlens_k,
|
430 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
431 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
432 |
-
dropout_p=dropout,
|
433 |
-
softmax_scale=softmax_scale,
|
434 |
-
causal=causal,
|
435 |
-
)
|
436 |
-
|
437 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
438 |
-
else:
|
439 |
-
attn_output = flash_attn_func(
|
440 |
-
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
441 |
-
)
|
442 |
-
|
443 |
-
return attn_output
|
444 |
-
|
445 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
446 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
447 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
448 |
-
|
449 |
-
key_layer = index_first_axis(
|
450 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
451 |
-
)
|
452 |
-
value_layer = index_first_axis(
|
453 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
454 |
-
)
|
455 |
-
if query_length == kv_seq_len:
|
456 |
-
query_layer = index_first_axis(
|
457 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
458 |
-
)
|
459 |
-
cu_seqlens_q = cu_seqlens_k
|
460 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
461 |
-
indices_q = indices_k
|
462 |
-
elif query_length == 1:
|
463 |
-
max_seqlen_in_batch_q = 1
|
464 |
-
cu_seqlens_q = torch.arange(
|
465 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
466 |
-
) # There is a memcpy here, that is very bad.
|
467 |
-
indices_q = cu_seqlens_q[:-1]
|
468 |
-
query_layer = query_layer.squeeze(1)
|
469 |
-
else:
|
470 |
-
# The -q_len: slice assumes left padding.
|
471 |
-
attention_mask = attention_mask[:, -query_length:]
|
472 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
473 |
-
|
474 |
-
return (
|
475 |
-
query_layer,
|
476 |
-
key_layer,
|
477 |
-
value_layer,
|
478 |
-
indices_q,
|
479 |
-
(cu_seqlens_q, cu_seqlens_k),
|
480 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
481 |
-
)
|
482 |
-
|
483 |
-
|
484 |
-
ATTENTION_CLASSES = {
|
485 |
-
"eager": Attention,
|
486 |
-
"flash_attention_2": FlashAttention2,
|
487 |
-
}
|
488 |
-
|
489 |
-
|
490 |
-
class DecoderLayer(nn.Module):
|
491 |
-
def __init__(self, config: StableLMEpochConfig):
|
492 |
-
super().__init__()
|
493 |
-
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config=config)
|
494 |
-
self.mlp = MLP(config)
|
495 |
-
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
496 |
-
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
497 |
-
|
498 |
-
def forward(
|
499 |
-
self,
|
500 |
-
hidden_states: Optional[torch.FloatTensor],
|
501 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
502 |
-
position_ids: Optional[torch.LongTensor] = None,
|
503 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
504 |
-
output_attentions: Optional[bool] = False,
|
505 |
-
use_cache: Optional[bool] = False,
|
506 |
-
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
507 |
-
residual = hidden_states
|
508 |
-
|
509 |
-
hidden_states = self.input_layernorm(hidden_states)
|
510 |
-
|
511 |
-
# Self Attention
|
512 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
513 |
-
hidden_states=hidden_states,
|
514 |
-
attention_mask=attention_mask,
|
515 |
-
position_ids=position_ids,
|
516 |
-
past_key_value=past_key_value,
|
517 |
-
output_attentions=output_attentions,
|
518 |
-
use_cache=use_cache,
|
519 |
-
)
|
520 |
-
hidden_states = residual + hidden_states
|
521 |
-
|
522 |
-
# Fully Connected
|
523 |
-
residual = hidden_states
|
524 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
525 |
-
hidden_states = self.mlp(hidden_states)
|
526 |
-
hidden_states = residual + hidden_states
|
527 |
-
|
528 |
-
outputs = (hidden_states,)
|
529 |
-
|
530 |
-
if output_attentions:
|
531 |
-
outputs += (self_attn_weights,)
|
532 |
-
|
533 |
-
if use_cache:
|
534 |
-
outputs += (present_key_value,)
|
535 |
-
|
536 |
-
return outputs
|
537 |
-
|
538 |
-
|
539 |
-
class StableLMEpochPreTrainedModel(PreTrainedModel):
|
540 |
-
"""An abstract class to handle weights initialization and a simple interface
|
541 |
-
for downloading and loading pretrained models.
|
542 |
-
"""
|
543 |
-
|
544 |
-
config_class = StableLMEpochConfig
|
545 |
-
base_model_prefix = "transformer"
|
546 |
-
supports_gradient_checkpointing = True
|
547 |
-
_no_split_modules = ["DecoderLayer"]
|
548 |
-
_skip_keys_device_placement = "past_key_values"
|
549 |
-
_supports_flash_attn_2 = True
|
550 |
-
|
551 |
-
def _init_weights(self, module: nn.Module):
|
552 |
-
"""Initialize the weights"""
|
553 |
-
if isinstance(module, nn.Linear):
|
554 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
555 |
-
if module.bias is not None:
|
556 |
-
module.bias.data.zero_()
|
557 |
-
elif isinstance(module, nn.Embedding):
|
558 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
559 |
-
if module.padding_idx is not None:
|
560 |
-
module.weight.data[module.padding_idx].zero_()
|
561 |
-
elif isinstance(module, nn.LayerNorm):
|
562 |
-
module.bias.data.zero_()
|
563 |
-
module.weight.data.fill_(1.0)
|
564 |
-
|
565 |
-
def _set_gradient_checkpointing(self, module: nn.Module, value=False):
|
566 |
-
if isinstance(module, StableLMEpochModel):
|
567 |
-
module.gradient_checkpointing = value
|
568 |
-
|
569 |
-
|
570 |
-
class StableLMEpochModel(StableLMEpochPreTrainedModel):
|
571 |
-
def __init__(self, config: StableLMEpochConfig):
|
572 |
-
super().__init__(config)
|
573 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
574 |
-
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
575 |
-
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
576 |
-
|
577 |
-
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
578 |
-
self.gradient_checkpointing = False
|
579 |
-
# Initialize weights and apply final processing
|
580 |
-
self.post_init()
|
581 |
-
|
582 |
-
def get_input_embeddings(self):
|
583 |
-
return self.embed_tokens
|
584 |
-
|
585 |
-
def set_input_embeddings(self, value: nn.Module):
|
586 |
-
self.embed_tokens = value
|
587 |
-
|
588 |
-
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
589 |
-
def _prepare_decoder_attention_mask(
|
590 |
-
self,
|
591 |
-
attention_mask: torch.Tensor,
|
592 |
-
input_shape: torch.Size,
|
593 |
-
inputs_embeds: torch.Tensor,
|
594 |
-
past_key_values_length: int,
|
595 |
-
):
|
596 |
-
# Create causal mask
|
597 |
-
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
598 |
-
combined_attention_mask = None
|
599 |
-
if input_shape[-1] > 1:
|
600 |
-
combined_attention_mask = _make_causal_mask(
|
601 |
-
input_shape,
|
602 |
-
inputs_embeds.dtype,
|
603 |
-
device=inputs_embeds.device,
|
604 |
-
past_key_values_length=past_key_values_length,
|
605 |
-
)
|
606 |
-
|
607 |
-
if attention_mask is not None:
|
608 |
-
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
609 |
-
expanded_attn_mask = _expand_mask(
|
610 |
-
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
611 |
-
).to(inputs_embeds.device)
|
612 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
613 |
-
|
614 |
-
return combined_attention_mask
|
615 |
-
|
616 |
-
def forward(
|
617 |
-
self,
|
618 |
-
input_ids: Optional[torch.LongTensor] = None,
|
619 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
620 |
-
position_ids: Optional[torch.LongTensor] = None,
|
621 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
622 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
623 |
-
use_cache: Optional[bool] = None,
|
624 |
-
output_attentions: Optional[bool] = None,
|
625 |
-
output_hidden_states: Optional[bool] = None,
|
626 |
-
return_dict: Optional[bool] = None,
|
627 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
628 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
629 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
630 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
631 |
-
|
632 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
633 |
-
|
634 |
-
# Retrieve input_ids and inputs_embeds
|
635 |
-
if input_ids is not None and inputs_embeds is not None:
|
636 |
-
raise ValueError(
|
637 |
-
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
638 |
-
)
|
639 |
-
elif input_ids is not None:
|
640 |
-
batch_size, seq_length = input_ids.shape
|
641 |
-
elif inputs_embeds is not None:
|
642 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
643 |
-
else:
|
644 |
-
raise ValueError(
|
645 |
-
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
646 |
-
)
|
647 |
-
|
648 |
-
seq_length_with_past = seq_length
|
649 |
-
past_key_values_length = 0
|
650 |
-
|
651 |
-
if position_ids is None:
|
652 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
653 |
-
position_ids = torch.arange(
|
654 |
-
past_key_values_length,
|
655 |
-
seq_length + past_key_values_length,
|
656 |
-
dtype=torch.long,
|
657 |
-
device=device,
|
658 |
-
)
|
659 |
-
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
660 |
-
else:
|
661 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
662 |
-
|
663 |
-
if inputs_embeds is None:
|
664 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
665 |
-
# Embed positions
|
666 |
-
if self._use_flash_attention_2:
|
667 |
-
# 2d mask is passed through the layers
|
668 |
-
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
669 |
-
else:
|
670 |
-
if attention_mask is None:
|
671 |
-
attention_mask = torch.ones(
|
672 |
-
(batch_size, seq_length_with_past),
|
673 |
-
dtype=torch.bool,
|
674 |
-
device=inputs_embeds.device,
|
675 |
-
)
|
676 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
677 |
-
attention_mask,
|
678 |
-
(batch_size, seq_length),
|
679 |
-
inputs_embeds,
|
680 |
-
past_key_values_length,
|
681 |
-
)
|
682 |
-
|
683 |
-
hidden_states = inputs_embeds
|
684 |
-
|
685 |
-
if self.gradient_checkpointing and self.training:
|
686 |
-
if use_cache:
|
687 |
-
logger.warning(
|
688 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
689 |
-
)
|
690 |
-
use_cache = False
|
691 |
-
|
692 |
-
# Decoder layers
|
693 |
-
all_hidden_states = () if output_hidden_states else None
|
694 |
-
all_self_attns = () if output_attentions else None
|
695 |
-
next_decoder_cache = () if use_cache else None
|
696 |
-
|
697 |
-
for idx, decoder_layer in enumerate(self.layers):
|
698 |
-
if output_hidden_states:
|
699 |
-
all_hidden_states += (hidden_states,)
|
700 |
-
|
701 |
-
past_key_value = (
|
702 |
-
past_key_values[idx] if past_key_values is not None else None
|
703 |
-
)
|
704 |
-
|
705 |
-
if self.gradient_checkpointing and self.training:
|
706 |
-
|
707 |
-
def create_custom_forward(module):
|
708 |
-
def custom_forward(*inputs):
|
709 |
-
# None for past_key_value
|
710 |
-
return module(*inputs, past_key_value, output_attentions)
|
711 |
-
|
712 |
-
return custom_forward
|
713 |
-
|
714 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
715 |
-
create_custom_forward(decoder_layer),
|
716 |
-
hidden_states,
|
717 |
-
attention_mask,
|
718 |
-
position_ids,
|
719 |
-
)
|
720 |
-
else:
|
721 |
-
layer_outputs = decoder_layer(
|
722 |
-
hidden_states,
|
723 |
-
attention_mask=attention_mask,
|
724 |
-
position_ids=position_ids,
|
725 |
-
past_key_value=past_key_value,
|
726 |
-
output_attentions=output_attentions,
|
727 |
-
use_cache=use_cache,
|
728 |
-
)
|
729 |
-
|
730 |
-
hidden_states = layer_outputs[0]
|
731 |
-
|
732 |
-
if use_cache:
|
733 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
734 |
-
|
735 |
-
if output_attentions:
|
736 |
-
all_self_attns += (layer_outputs[1],)
|
737 |
-
|
738 |
-
hidden_states = self.norm(hidden_states)
|
739 |
-
|
740 |
-
# Add hidden states from the last decoder layer
|
741 |
-
if output_hidden_states:
|
742 |
-
all_hidden_states += (hidden_states,)
|
743 |
-
|
744 |
-
next_cache = next_decoder_cache if use_cache else None
|
745 |
-
if not return_dict:
|
746 |
-
return tuple(
|
747 |
-
v
|
748 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
749 |
-
if v is not None
|
750 |
-
)
|
751 |
-
return BaseModelOutputWithPast(
|
752 |
-
last_hidden_state=hidden_states,
|
753 |
-
past_key_values=next_cache,
|
754 |
-
hidden_states=all_hidden_states,
|
755 |
-
attentions=all_self_attns,
|
756 |
-
)
|
757 |
-
|
758 |
-
|
759 |
-
class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
760 |
-
_tied_weights_keys = ["lm_head.weight"]
|
761 |
-
|
762 |
-
def __init__(self, config: StableLMEpochConfig):
|
763 |
-
super().__init__(config)
|
764 |
-
|
765 |
-
self.model = StableLMEpochModel(config)
|
766 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
767 |
-
|
768 |
-
# Initialize weights and apply final processing
|
769 |
-
self.post_init()
|
770 |
-
|
771 |
-
def get_input_embeddings(self):
|
772 |
-
return self.model.embed_tokens
|
773 |
-
|
774 |
-
def set_input_embeddings(self, value):
|
775 |
-
self.model.embed_tokens = value
|
776 |
-
|
777 |
-
def get_output_embeddings(self):
|
778 |
-
return self.lm_head
|
779 |
-
|
780 |
-
def set_output_embeddings(self, new_embeddings: nn.Module):
|
781 |
-
self.lm_head = new_embeddings
|
782 |
-
|
783 |
-
def get_decoder(self):
|
784 |
-
return self.model
|
785 |
-
|
786 |
-
def set_decoder(self, decoder):
|
787 |
-
self.model = decoder
|
788 |
-
|
789 |
-
def forward(
|
790 |
-
self,
|
791 |
-
input_ids: Optional[torch.LongTensor] = None,
|
792 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
793 |
-
position_ids: Optional[torch.LongTensor] = None,
|
794 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
795 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
796 |
-
labels: Optional[torch.LongTensor] = None,
|
797 |
-
use_cache: Optional[bool] = None,
|
798 |
-
output_attentions: Optional[bool] = None,
|
799 |
-
output_hidden_states: Optional[bool] = None,
|
800 |
-
return_dict: Optional[bool] = None,
|
801 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
802 |
-
output_attentions = (
|
803 |
-
output_attentions
|
804 |
-
if output_attentions is not None
|
805 |
-
else self.config.output_attentions
|
806 |
-
)
|
807 |
-
output_hidden_states = (
|
808 |
-
output_hidden_states
|
809 |
-
if output_hidden_states is not None
|
810 |
-
else self.config.output_hidden_states
|
811 |
-
)
|
812 |
-
return_dict = (
|
813 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
814 |
-
)
|
815 |
-
|
816 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
817 |
-
outputs = self.model(
|
818 |
-
input_ids,
|
819 |
-
attention_mask=attention_mask,
|
820 |
-
position_ids=position_ids,
|
821 |
-
past_key_values=past_key_values,
|
822 |
-
inputs_embeds=inputs_embeds,
|
823 |
-
use_cache=use_cache,
|
824 |
-
output_attentions=output_attentions,
|
825 |
-
output_hidden_states=output_hidden_states,
|
826 |
-
return_dict=return_dict,
|
827 |
-
)
|
828 |
-
|
829 |
-
hidden_states = outputs[0]
|
830 |
-
logits = self.lm_head(hidden_states).float()
|
831 |
-
|
832 |
-
loss = None
|
833 |
-
if labels is not None:
|
834 |
-
# Shift so that tokens < n predict n
|
835 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
836 |
-
shift_labels = labels[..., 1:].contiguous()
|
837 |
-
# Flatten the tokens
|
838 |
-
loss_fct = CrossEntropyLoss()
|
839 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
840 |
-
shift_labels = shift_labels.view(-1)
|
841 |
-
# Enable model parallelism
|
842 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
843 |
-
loss = loss_fct(shift_logits, shift_labels)
|
844 |
-
|
845 |
-
if not return_dict:
|
846 |
-
output = (logits,) + outputs[1:]
|
847 |
-
return (loss,) + output if loss is not None else output
|
848 |
-
|
849 |
-
return CausalLMOutputWithPast(
|
850 |
-
loss=loss,
|
851 |
-
logits=logits,
|
852 |
-
past_key_values=outputs.past_key_values,
|
853 |
-
hidden_states=outputs.hidden_states,
|
854 |
-
attentions=outputs.attentions,
|
855 |
-
)
|
856 |
-
|
857 |
-
def prepare_inputs_for_generation(
|
858 |
-
self,
|
859 |
-
input_ids,
|
860 |
-
past_key_values: Optional[torch.Tensor] = None,
|
861 |
-
attention_mask: Optional[torch.Tensor] = None,
|
862 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
863 |
-
**kwargs,
|
864 |
-
):
|
865 |
-
# Trim decoder_input_ids if past is used
|
866 |
-
if past_key_values is not None:
|
867 |
-
past_length = past_key_values[0][0].shape[2]
|
868 |
-
|
869 |
-
# Some generation methods already pass only the last input ID
|
870 |
-
if input_ids.shape[1] > past_length:
|
871 |
-
remove_prefix_length = past_length
|
872 |
-
else:
|
873 |
-
# Default to old behavior: keep only final ID
|
874 |
-
remove_prefix_length = input_ids.shape[1] - 1
|
875 |
-
|
876 |
-
input_ids = input_ids[:, remove_prefix_length:]
|
877 |
-
|
878 |
-
position_ids = kwargs.get("position_ids", None)
|
879 |
-
if attention_mask is not None and position_ids is None:
|
880 |
-
# Create position_ids on the fly for batch generation
|
881 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
882 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
883 |
-
if past_key_values:
|
884 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
885 |
-
|
886 |
-
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
887 |
-
if inputs_embeds is not None and past_key_values is None:
|
888 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
889 |
-
else:
|
890 |
-
model_inputs = {"input_ids": input_ids}
|
891 |
-
|
892 |
-
model_inputs.update(
|
893 |
-
{
|
894 |
-
"attention_mask": attention_mask,
|
895 |
-
"past_key_values": past_key_values,
|
896 |
-
"use_cache": kwargs.get("use_cache"),
|
897 |
-
"position_ids": position_ids,
|
898 |
-
}
|
899 |
-
)
|
900 |
-
return model_inputs
|
901 |
-
|
902 |
-
@staticmethod
|
903 |
-
def _reorder_cache(past_key_values, beam_idx):
|
904 |
-
reordered_past = ()
|
905 |
-
for layer_past in past_key_values:
|
906 |
-
reordered_past += (
|
907 |
-
tuple(
|
908 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
909 |
-
for past_state in layer_past
|
910 |
-
),
|
911 |
-
)
|
912 |
-
return reordered_past
|
913 |
-
|
914 |
-
|
915 |
-
StableLMEpochConfig.register_for_auto_class()
|
916 |
-
StableLMEpochForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|