--- library_name: transformers license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - generated_from_trainer model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: microsoft/Phi-3.5-mini-instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/stheno-filtered-v1.1 type: sharegpt conversation: chatml - path: anthracite-org/nopm_claude_writing_fixed type: sharegpt conversation: chatml - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: ResplendentAI/bluemoon type: sharegpt conversation: chatml - path: openerotica/freedom-rp type: sharegpt conversation: chatml - path: MinervaAI/Aesir-Preview type: sharegpt conversation: chatml - path: jeiku/jeikutxt type: completion - path: ResplendentAI/Sissification_Hypno_1k type: alpaca - path: ResplendentAI/theory_of_mind_fixed_output type: alpaca - path: ResplendentAI/Synthetic_Soul_1k type: alpaca chat_template: chatml val_set_size: 0.01 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 8192 # sequence_len: 32768 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: phi wandb_entity: wandb_watch: wandb_name: phi wandb_log_model: gradient_accumulation_steps: 32 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3.json fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

# outputs/out This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.1048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 8 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 15.986 | 0.0233 | 1 | 16.8119 | | 9.6041 | 0.2567 | 11 | 9.1897 | | 7.5864 | 0.5135 | 22 | 7.5221 | | 7.2575 | 0.7702 | 33 | 7.2532 | | 7.1368 | 1.0270 | 44 | 7.1665 | | 7.078 | 1.2844 | 55 | 7.1249 | | 7.0613 | 1.5417 | 66 | 7.1079 | | 7.0599 | 1.7990 | 77 | 7.1048 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1