File size: 1,723 Bytes
cc11350
 
 
 
 
 
 
 
 
 
 
 
 
 
9d95f4c
cc11350
080d58e
 
 
 
 
cc11350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9b06fe
cc11350
 
 
 
 
 
a9b06fe
080d58e
cc11350
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: huynhdoo/camembert-base-finetuned-jva-missions-report
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# huynhdoo/camembert-base-finetuned-jva-missions-report

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3006
- Train Accuracy: 0.8886
- Validation Loss: 0.4087
- Validation Accuracy: 0.8324
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 603, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.4675     | 0.7816         | 0.3782          | 0.8436              | 0     |
| 0.3006     | 0.8886         | 0.4087          | 0.8324              | 1     |


### Framework versions

- Transformers 4.26.1
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2