Upload with huggingface_hub
Browse files- requirements.txt +3 -0
- sentence_camembert_base.py +39 -0
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
optimum[onnxruntime]
|
2 |
+
mkl-include
|
3 |
+
mkl
|
sentence_camembert_base.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# copied from the model card
|
8 |
+
def mean_pooling(model_output, attention_mask):
|
9 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
10 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
11 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
12 |
+
|
13 |
+
|
14 |
+
class sentence_embeddings(path = '.'):
|
15 |
+
def __init__(self, path):
|
16 |
+
# load the optimized model
|
17 |
+
self.model = ORTModelForFeatureExtraction.from_pretrained(path, file_name="model_quantized.onnx")
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
19 |
+
|
20 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
21 |
+
"""
|
22 |
+
Args:
|
23 |
+
data (:obj:):
|
24 |
+
includes the input data and the parameters for the inference.
|
25 |
+
Return:
|
26 |
+
A :obj:`list`:. The list contains the embeddings of the inference inputs
|
27 |
+
"""
|
28 |
+
inputs = data.get("inputs", data)
|
29 |
+
|
30 |
+
# tokenize the input
|
31 |
+
encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt')
|
32 |
+
# run the model
|
33 |
+
outputs = self.model(**encoded_inputs)
|
34 |
+
# Perform pooling
|
35 |
+
embeddings = mean_pooling(outputs, encoded_inputs['attention_mask'])
|
36 |
+
# Normalize embeddings
|
37 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
38 |
+
# postprocess the prediction
|
39 |
+
return {'embeddings': embeddings.tolist()}
|