--- library_name: peft tags: - generated_from_trainer base_model: google/pegasus-xsum model-index: - name: T5-lora-legalease results: [] --- # T5-lora-legalease This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.18 | 250 | 4.1826 | | 4.6756 | 0.35 | 500 | 3.8860 | | 4.6756 | 0.53 | 750 | 3.7923 | | 3.8476 | 0.71 | 1000 | 3.7309 | | 3.8476 | 0.89 | 1250 | 3.6762 | | 3.7406 | 1.06 | 1500 | 3.6374 | | 3.7406 | 1.24 | 1750 | 3.6072 | | 3.6278 | 1.42 | 2000 | 3.5841 | | 3.6278 | 1.6 | 2250 | 3.5630 | | 3.6359 | 1.77 | 2500 | 3.5509 | | 3.6359 | 1.95 | 2750 | 3.5452 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2