Add model definitions and pretrained weights
Browse files- ModelDefinitions.py +230 -0
- best_model_100x_0064.pth +3 -0
- best_model_100x_0064_statedict.pth +3 -0
ModelDefinitions.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torchsummary import summary
|
6 |
+
from torch.utils.data import TensorDataset, DataLoader
|
7 |
+
|
8 |
+
class recon_encoder(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, latent_size, nconv=16, pool=4, drop=0.05):
|
11 |
+
super(recon_encoder, self).__init__()
|
12 |
+
|
13 |
+
|
14 |
+
self.encoder = nn.Sequential( # Appears sequential has similar functionality as TF avoiding need for separate model definition and activ
|
15 |
+
nn.Conv2d(in_channels=1, out_channels=nconv, kernel_size=3, stride=1, padding=(1,1)),
|
16 |
+
nn.Dropout(drop),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Conv2d(nconv, nconv, 3, stride=1, padding=(1,1)),
|
19 |
+
nn.Dropout(drop),
|
20 |
+
nn.ReLU(),
|
21 |
+
nn.MaxPool2d((pool,pool)),
|
22 |
+
|
23 |
+
nn.Conv2d(nconv, nconv*2, 3, stride=1, padding=(1,1)),
|
24 |
+
nn.Dropout(drop),
|
25 |
+
nn.ReLU(),
|
26 |
+
nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
27 |
+
nn.Dropout(drop),
|
28 |
+
nn.ReLU(),
|
29 |
+
nn.MaxPool2d((pool,pool)),
|
30 |
+
|
31 |
+
nn.Conv2d(nconv*2, nconv*4, 3, stride=1, padding=(1,1)),
|
32 |
+
nn.Dropout(drop),
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
35 |
+
nn.Dropout(drop),
|
36 |
+
nn.ReLU(),
|
37 |
+
nn.MaxPool2d((pool,pool)),
|
38 |
+
|
39 |
+
#nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
40 |
+
#nn.Dropout(drop),
|
41 |
+
#nn.ReLU(),
|
42 |
+
#nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
43 |
+
#nn.Dropout(drop),
|
44 |
+
#nn.ReLU(),
|
45 |
+
#nn.MaxPool2d((pool,pool)),
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
self.bottleneck = nn.Sequential(
|
50 |
+
# FC layer at bottleneck -- dropout might not make sense here
|
51 |
+
nn.Flatten(),
|
52 |
+
nn.Linear(1024, latent_size),
|
53 |
+
#nn.Dropout(drop),
|
54 |
+
nn.ReLU(),
|
55 |
+
# nn.Linear(latent_size, 1024),
|
56 |
+
# #nn.Dropout(drop),
|
57 |
+
# nn.ReLU(),
|
58 |
+
# nn.Unflatten(1,(64,4,4))# 0 is batch dimension
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
self.decoder1 = nn.Sequential(
|
63 |
+
|
64 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
65 |
+
nn.Dropout(drop),
|
66 |
+
nn.ReLU(),
|
67 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
68 |
+
nn.Dropout(drop),
|
69 |
+
nn.ReLU(),
|
70 |
+
nn.Upsample(scale_factor=pool, mode='bilinear'),
|
71 |
+
|
72 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
73 |
+
nn.Dropout(drop),
|
74 |
+
nn.ReLU(),
|
75 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
76 |
+
nn.Dropout(drop),
|
77 |
+
nn.ReLU(),
|
78 |
+
nn.Upsample(scale_factor=pool, mode='bilinear'),
|
79 |
+
|
80 |
+
nn.Conv2d(nconv*4, nconv*2, 3, stride=1, padding=(1,1)),
|
81 |
+
nn.Dropout(drop),
|
82 |
+
nn.ReLU(),
|
83 |
+
nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
84 |
+
nn.Dropout(drop),
|
85 |
+
nn.ReLU(),
|
86 |
+
nn.Upsample(scale_factor=pool, mode='bilinear'),
|
87 |
+
|
88 |
+
#nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
89 |
+
#nn.Dropout(drop),
|
90 |
+
#nn.ReLU(),
|
91 |
+
#nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
92 |
+
#nn.Dropout(drop),
|
93 |
+
#nn.ReLU(),
|
94 |
+
#nn.Upsample(scale_factor=pool, mode='bilinear'),
|
95 |
+
|
96 |
+
nn.Conv2d(nconv*2, 1, 3, stride=1, padding=(1,1)), #Output conv layer has 2 for mu and sigma
|
97 |
+
nn.Sigmoid() #Amplitude mode
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
def forward(self,x):
|
102 |
+
with torch.cuda.amp.autocast():
|
103 |
+
x1 = self.encoder(x)
|
104 |
+
x1 = self.bottleneck(x1)
|
105 |
+
#print(x1.shape)
|
106 |
+
return x1
|
107 |
+
|
108 |
+
|
109 |
+
#Helper function to calculate size of flattened array from conv layer shapes
|
110 |
+
def calc_fc_shape(self):
|
111 |
+
x0 = torch.zeros([256,256]).unsqueeze(0)
|
112 |
+
x0 = self.encoder(x0)
|
113 |
+
|
114 |
+
self.conv_bock_output_shape = x0.shape
|
115 |
+
#print ("Output of conv block shape is", self.conv_bock_output_shape)
|
116 |
+
self.flattened_size = x0.flatten().shape[0]
|
117 |
+
#print ("Flattened layer size is", self.flattened_size)
|
118 |
+
return self.flattened_size
|
119 |
+
|
120 |
+
class recon_model(nn.Module):
|
121 |
+
|
122 |
+
def __init__(self, latent_size, nconv=16, pool=4, drop=0.05):
|
123 |
+
super(recon_model, self).__init__()
|
124 |
+
|
125 |
+
|
126 |
+
self.encoder = nn.Sequential( # Appears sequential has similar functionality as TF avoiding need for separate model definition and activ
|
127 |
+
nn.Conv2d(in_channels=1, out_channels=nconv, kernel_size=3, stride=1, padding=(1,1)),
|
128 |
+
nn.Dropout(drop),
|
129 |
+
nn.ReLU(),
|
130 |
+
nn.Conv2d(nconv, nconv, 3, stride=1, padding=(1,1)),
|
131 |
+
nn.Dropout(drop),
|
132 |
+
nn.ReLU(),
|
133 |
+
nn.MaxPool2d((pool,pool)),
|
134 |
+
|
135 |
+
nn.Conv2d(nconv, nconv*2, 3, stride=1, padding=(1,1)),
|
136 |
+
nn.Dropout(drop),
|
137 |
+
nn.ReLU(),
|
138 |
+
nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
139 |
+
nn.Dropout(drop),
|
140 |
+
nn.ReLU(),
|
141 |
+
nn.MaxPool2d((pool,pool)),
|
142 |
+
|
143 |
+
nn.Conv2d(nconv*2, nconv*4, 3, stride=1, padding=(1,1)),
|
144 |
+
nn.Dropout(drop),
|
145 |
+
nn.ReLU(),
|
146 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
147 |
+
nn.Dropout(drop),
|
148 |
+
nn.ReLU(),
|
149 |
+
nn.MaxPool2d((pool,pool)),
|
150 |
+
|
151 |
+
#nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
152 |
+
#nn.Dropout(drop),
|
153 |
+
#nn.ReLU(),
|
154 |
+
#nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
155 |
+
#nn.Dropout(drop),
|
156 |
+
#nn.ReLU(),
|
157 |
+
#nn.MaxPool2d((pool,pool)),
|
158 |
+
)
|
159 |
+
|
160 |
+
|
161 |
+
self.bottleneck = nn.Sequential(
|
162 |
+
# FC layer at bottleneck -- dropout might not make sense here
|
163 |
+
nn.Flatten(),
|
164 |
+
nn.Linear(1024, latent_size),
|
165 |
+
#nn.Dropout(drop),
|
166 |
+
nn.ReLU(),
|
167 |
+
nn.Linear(latent_size, 1024),
|
168 |
+
#nn.Dropout(drop),
|
169 |
+
nn.ReLU(),
|
170 |
+
nn.Unflatten(1,(64,4,4))# 0 is batch dimension
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
self.decoder1 = nn.Sequential(
|
175 |
+
|
176 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
177 |
+
nn.Dropout(drop),
|
178 |
+
nn.ReLU(),
|
179 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
180 |
+
nn.Dropout(drop),
|
181 |
+
nn.ReLU(),
|
182 |
+
nn.Upsample(scale_factor=pool, mode='bilinear'),
|
183 |
+
|
184 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
185 |
+
nn.Dropout(drop),
|
186 |
+
nn.ReLU(),
|
187 |
+
nn.Conv2d(nconv*4, nconv*4, 3, stride=1, padding=(1,1)),
|
188 |
+
nn.Dropout(drop),
|
189 |
+
nn.ReLU(),
|
190 |
+
nn.Upsample(scale_factor=pool, mode='bilinear'),
|
191 |
+
|
192 |
+
nn.Conv2d(nconv*4, nconv*2, 3, stride=1, padding=(1,1)),
|
193 |
+
nn.Dropout(drop),
|
194 |
+
nn.ReLU(),
|
195 |
+
nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
196 |
+
nn.Dropout(drop),
|
197 |
+
nn.ReLU(),
|
198 |
+
nn.Upsample(scale_factor=pool, mode='bilinear'),
|
199 |
+
|
200 |
+
#nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
201 |
+
#nn.Dropout(drop),
|
202 |
+
#nn.ReLU(),
|
203 |
+
#nn.Conv2d(nconv*2, nconv*2, 3, stride=1, padding=(1,1)),
|
204 |
+
#nn.Dropout(drop),
|
205 |
+
#nn.ReLU(),
|
206 |
+
#nn.Upsample(scale_factor=pool, mode='bilinear'),
|
207 |
+
|
208 |
+
nn.Conv2d(nconv*2, 1, 3, stride=1, padding=(1,1)), #Output conv layer has 2 for mu and sigma
|
209 |
+
nn.Sigmoid() #Amplitude mode
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
def forward(self,x):
|
214 |
+
with torch.cuda.amp.autocast():
|
215 |
+
x1 = self.encoder(x)
|
216 |
+
x1 = self.bottleneck(x1)
|
217 |
+
#print(x1.shape)
|
218 |
+
return self.decoder1(x1)
|
219 |
+
|
220 |
+
|
221 |
+
#Helper function to calculate size of flattened array from conv layer shapes
|
222 |
+
def calc_fc_shape(self):
|
223 |
+
x0 = torch.zeros([256,256]).unsqueeze(0)
|
224 |
+
x0 = self.encoder(x0)
|
225 |
+
|
226 |
+
self.conv_bock_output_shape = x0.shape
|
227 |
+
#print ("Output of conv block shape is", self.conv_bock_output_shape)
|
228 |
+
self.flattened_size = x0.flatten().shape[0]
|
229 |
+
#print ("Flattened layer size is", self.flattened_size)
|
230 |
+
return self.flattened_size
|
best_model_100x_0064.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e89e9b45bece44b11c9e00978bb54e5533ea6b146b310a0edad4f2839c98a4b
|
3 |
+
size 1538571
|
best_model_100x_0064_statedict.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af36b48cb6c7818e3e68d443620f4ca61e7c8332ad61e98170111a0feb6c8713
|
3 |
+
size 1528395
|