jiajunlong's picture
Update generate_model.py
d30acb2 verified
raw
history blame
6.6 kB
import argparse
import time
import logging
import requests
import os
from PIL import Image
from io import BytesIO
from PIL import Image
import torch
from transformers import AutoTokenizer
from .modeling_tinyllava_elm import TinyLlavaForConditionalGeneration
from .configuration import *
from .conversion import *
from .utils import *
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def generate(
prompt: str,
model: str,
tokenizer = None,
image: str = None,
device: str = None,
max_new_tokens: int = 1024,
num_beams = 1,
top_p=None,
temperature=0.2
):
if not device:
if torch.cuda.is_available() and torch.cuda.device_count():
device = "cuda:0"
logging.warning(
'inference device is not set, using cuda:0, %s',
torch.cuda.get_device_name(0)
)
else:
device = 'cpu'
logging.warning(
(
'No CUDA device detected, using cpu, '
'expect slower speeds.'
)
)
if 'cuda' in device and not torch.cuda.is_available():
raise ValueError('CUDA device requested but no CUDA device detected.')
if isinstance(model, str):
checkpoint_path = model
# print(f'loading model from {checkpoint_path}...')
model = TinyLlavaForConditionalGeneration.from_pretrained(
checkpoint_path,
torch_dtype=torch.float16,
)
# print('model load over')
config = model.config
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False, model_max_length = config.tokenizer_model_max_length,
padding_side = config.tokenizer_padding_side)
image_processor = model.vision_tower._image_processor
context_len = getattr(config, 'max_sequence_length', 2048)
model.to(device).eval()
if image is not None:
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv = conv_phi_v0.copy()
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if image is not None:
# print('loading image...')
image = load_image(image)
# print('load image over')
image_tensor = process_images(image, image_processor, config).to(model.device, dtype=torch.float16)
input_ids = (
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.cuda()
)
# Generate
stime = time.time()
# stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
# keywords = [stop_str]
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
# print('start inference...')
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=max_new_tokens,
use_cache=True,
# stopping_criteria=[stopping_criteria],
)
# print('inference over')
generation_time = time.time() - stime
outputs = tokenizer.batch_decode(
output_ids, skip_special_tokens=True
)[0]
# outputs = outputs.strip()
# if outputs.endswith(stop_str):
# outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
return outputs, generation_time
def tinyllava_elm_generate_parser():
"""Argument Parser"""
class KwargsParser(argparse.Action):
"""Parser action class to parse kwargs of form key=value"""
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, dict())
for val in values:
if '=' not in val:
raise ValueError(
(
'Argument parsing error, kwargs are expected in'
' the form of key=value.'
)
)
kwarg_k, kwarg_v = val.split('=')
try:
converted_v = int(kwarg_v)
except ValueError:
try:
converted_v = float(kwarg_v)
except ValueError:
converted_v = kwarg_v
getattr(namespace, self.dest)[kwarg_k] = converted_v
parser = argparse.ArgumentParser('TinyLLaVA-OpenELM Generate Module')
parser.add_argument(
'--model',
dest='model',
help='Path to the hf converted model.',
required=True,
type=str,
)
parser.add_argument(
'--prompt',
dest='prompt',
help='Prompt for LLM call.',
default='',
type=str,
)
parser.add_argument(
'--device',
dest='device',
help='Device used for inference.',
type=str,
)
parser.add_argument("--image", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=512)
return parser.parse_args()
if __name__ == '__main__':
args = tinyllava_elm_generate_parser()
prompt = args.prompt
model = TinyLlavaForConditionalGeneration.from_pretrained(args.model)
output_text, genertaion_time = generate(
prompt=prompt,
image=args.image,
model=args.model,
device=args.device,
max_new_tokens = args.max_new_tokens,
num_beams = args.num_beams,
top_p=args.top_p,
temperature=args.temperature
)
print_txt = (
f'\r\n{"=" * os.get_terminal_size().columns}\r\n'
'\033[1m Prompt + Generated Output\033[0m\r\n'
f'{"-" * os.get_terminal_size().columns}\r\n'
f'{output_text}\r\n'
f'{"-" * os.get_terminal_size().columns}\r\n'
'\r\nGeneration took'
f'\033[1m\033[92m {round(genertaion_time, 2)} \033[0m'
'seconds.\r\n'
)
print(print_txt)