jiajunlong
commited on
Commit
•
0bff7b9
1
Parent(s):
879d393
update
Browse files- modeling_tinyllava_elm.py +225 -3
modeling_tinyllava_elm.py
CHANGED
@@ -1,7 +1,14 @@
|
|
1 |
from dataclasses import dataclass
|
|
|
2 |
from typing import List, Optional, Tuple, Union
|
3 |
import ast
|
4 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
import torch
|
7 |
import torch.utils.checkpoint
|
@@ -12,11 +19,10 @@ from transformers import PreTrainedModel
|
|
12 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
13 |
from transformers.generation.utils import GenerateOutput
|
14 |
from transformers import CLIPVisionModel, CLIPImageProcessor,SiglipVisionModel, SiglipImageProcessor
|
|
|
15 |
|
16 |
from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
17 |
|
18 |
-
from transformers import AutoConfig, AutoModelForCausalLM
|
19 |
-
|
20 |
# from tinyllava.utils.data_utils import get_value_from_kwargs
|
21 |
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
22 |
WORKER_HEART_BEAT_INTERVAL = 15
|
@@ -47,6 +53,169 @@ import numpy as np
|
|
47 |
from transformers import PretrainedConfig, AutoTokenizer
|
48 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def make_divisible(
|
51 |
v: Union[float, int],
|
52 |
divisor: Optional[int] = 8,
|
@@ -1686,10 +1855,63 @@ class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
|
|
1686 |
position_ids = None
|
1687 |
|
1688 |
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1689 |
|
1690 |
|
1691 |
|
1692 |
|
1693 |
|
1694 |
AutoConfig.register("tinyllava", TinyLlavaConfig)
|
1695 |
-
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
|
|
|
1 |
from dataclasses import dataclass
|
2 |
+
import dataclasses
|
3 |
from typing import List, Optional, Tuple, Union
|
4 |
import ast
|
5 |
import re
|
6 |
+
from enum import auto, Enum
|
7 |
+
import requests
|
8 |
+
from PIL import Image
|
9 |
+
from io import BytesIO
|
10 |
+
import base64
|
11 |
+
import time
|
12 |
|
13 |
import torch
|
14 |
import torch.utils.checkpoint
|
|
|
19 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
20 |
from transformers.generation.utils import GenerateOutput
|
21 |
from transformers import CLIPVisionModel, CLIPImageProcessor,SiglipVisionModel, SiglipImageProcessor
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
23 |
|
24 |
from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
25 |
|
|
|
|
|
26 |
# from tinyllava.utils.data_utils import get_value_from_kwargs
|
27 |
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
28 |
WORKER_HEART_BEAT_INTERVAL = 15
|
|
|
53 |
from transformers import PretrainedConfig, AutoTokenizer
|
54 |
|
55 |
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__)
|
58 |
+
|
59 |
+
# Model Constants
|
60 |
+
IGNORE_INDEX = -100
|
61 |
+
IMAGE_TOKEN_INDEX = -200
|
62 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
63 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
64 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
65 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
66 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
67 |
+
|
68 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
69 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
70 |
+
LOGDIR = "."
|
71 |
+
|
72 |
+
|
73 |
+
class SeparatorStyle(Enum):
|
74 |
+
"""Different separator style."""
|
75 |
+
SINGLE = auto()
|
76 |
+
TWO = auto()
|
77 |
+
MPT = auto()
|
78 |
+
PLAIN = auto()
|
79 |
+
LLAMA_2 = auto()
|
80 |
+
TINY_LLAMA = auto()
|
81 |
+
QWEN_2 = auto()
|
82 |
+
|
83 |
+
|
84 |
+
@dataclasses.dataclass
|
85 |
+
class Conversation:
|
86 |
+
"""A class that keeps all conversation history."""
|
87 |
+
system: str
|
88 |
+
roles: List[str]
|
89 |
+
messages: List[List[str]]
|
90 |
+
offset: int
|
91 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
92 |
+
sep: str = "###"
|
93 |
+
sep2: str = None
|
94 |
+
version: str = "Unknown"
|
95 |
+
|
96 |
+
skip_next: bool = False
|
97 |
+
|
98 |
+
def get_prompt(self):
|
99 |
+
messages = self.messages
|
100 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
101 |
+
messages = self.messages.copy()
|
102 |
+
init_role, init_msg = messages[0].copy()
|
103 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
104 |
+
if 'mmtag' in self.version:
|
105 |
+
messages[0] = (init_role, init_msg)
|
106 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
107 |
+
messages.insert(1, (self.roles[1], "Received."))
|
108 |
+
else:
|
109 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
110 |
+
|
111 |
+
if self.sep_style == SeparatorStyle.TWO:
|
112 |
+
seps = [self.sep, self.sep2]
|
113 |
+
ret = self.system + seps[0]
|
114 |
+
for i, (role, message) in enumerate(messages):
|
115 |
+
if message:
|
116 |
+
if type(message) is tuple:
|
117 |
+
message, _, _ = message
|
118 |
+
ret += role + ": " + message + seps[i % 2]
|
119 |
+
else:
|
120 |
+
ret += role + ":"
|
121 |
+
else:
|
122 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
123 |
+
|
124 |
+
return ret
|
125 |
+
|
126 |
+
def append_message(self, role, message):
|
127 |
+
self.messages.append([role, message])
|
128 |
+
|
129 |
+
def copy(self):
|
130 |
+
return Conversation(
|
131 |
+
system=self.system,
|
132 |
+
roles=self.roles,
|
133 |
+
messages=[[x, y] for x, y in self.messages],
|
134 |
+
offset=self.offset,
|
135 |
+
sep_style=self.sep_style,
|
136 |
+
sep=self.sep,
|
137 |
+
sep2=self.sep2,
|
138 |
+
version=self.version)
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
conv_phi_v0 = Conversation(
|
144 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
145 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
146 |
+
roles=("USER", "ASSISTANT"),
|
147 |
+
version="phi",
|
148 |
+
messages=(),
|
149 |
+
offset=0,
|
150 |
+
sep_style=SeparatorStyle.TWO,
|
151 |
+
sep=" ",
|
152 |
+
sep2="<|endoftext|>",
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
def load_image_from_base64(image):
|
157 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
158 |
+
|
159 |
+
|
160 |
+
def expand2square(pil_img, background_color):
|
161 |
+
width, height = pil_img.size
|
162 |
+
if width == height:
|
163 |
+
return pil_img
|
164 |
+
elif width > height:
|
165 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
166 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
167 |
+
return result
|
168 |
+
else:
|
169 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
170 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
171 |
+
return result
|
172 |
+
|
173 |
+
|
174 |
+
def process_images(images, image_processor, model_cfg):
|
175 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
176 |
+
new_images = []
|
177 |
+
if image_aspect_ratio == 'pad':
|
178 |
+
for image in images:
|
179 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
180 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
181 |
+
new_images.append(image)
|
182 |
+
else:
|
183 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
184 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
185 |
+
new_images = torch.stack(new_images, dim=0)
|
186 |
+
return new_images
|
187 |
+
|
188 |
+
|
189 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
190 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
191 |
+
|
192 |
+
def insert_separator(X, sep):
|
193 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
194 |
+
|
195 |
+
input_ids = []
|
196 |
+
offset = 0
|
197 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
198 |
+
offset = 1
|
199 |
+
input_ids.append(prompt_chunks[0][0])
|
200 |
+
|
201 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
202 |
+
input_ids.extend(x[offset:])
|
203 |
+
|
204 |
+
if return_tensors is not None:
|
205 |
+
if return_tensors == 'pt':
|
206 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
207 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
208 |
+
return input_ids
|
209 |
+
|
210 |
+
def load_image(image_file):
|
211 |
+
if image_file.startswith("http") or image_file.startswith("https"):
|
212 |
+
response = requests.get(image_file)
|
213 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
214 |
+
else:
|
215 |
+
image = Image.open(image_file).convert("RGB")
|
216 |
+
return image
|
217 |
+
|
218 |
+
|
219 |
def make_divisible(
|
220 |
v: Union[float, int],
|
221 |
divisor: Optional[int] = 8,
|
|
|
1855 |
position_ids = None
|
1856 |
|
1857 |
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
1858 |
+
|
1859 |
+
def chat(
|
1860 |
+
self,
|
1861 |
+
prompt: str,
|
1862 |
+
tokenizer = None,
|
1863 |
+
image: str = None,
|
1864 |
+
max_new_tokens: int = 512,
|
1865 |
+
num_beams = 1,
|
1866 |
+
top_p=None,
|
1867 |
+
temperature=0
|
1868 |
+
):
|
1869 |
+
image_processor = self.vision_tower._image_processor
|
1870 |
+
|
1871 |
+
if image is not None:
|
1872 |
+
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
1873 |
+
conv = conv_phi_v0.copy()
|
1874 |
+
conv.append_message(conv.roles[0], prompt)
|
1875 |
+
conv.append_message(conv.roles[1], None)
|
1876 |
+
prompt = conv.get_prompt()
|
1877 |
+
if image is not None:
|
1878 |
+
image = load_image(image)
|
1879 |
+
image_tensor = process_images(image, image_processor, self.config).to(self.device)
|
1880 |
+
|
1881 |
+
input_ids = (
|
1882 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
1883 |
+
.unsqueeze(0).to(self.device)
|
1884 |
+
)
|
1885 |
+
# Generate
|
1886 |
+
stime = time.time()
|
1887 |
+
|
1888 |
+
with torch.inference_mode():
|
1889 |
+
output_ids = self.generate(
|
1890 |
+
input_ids,
|
1891 |
+
images=image_tensor,
|
1892 |
+
do_sample=True if temperature > 0 else False,
|
1893 |
+
temperature=temperature,
|
1894 |
+
top_p=top_p,
|
1895 |
+
num_beams=num_beams,
|
1896 |
+
pad_token_id=tokenizer.pad_token_id,
|
1897 |
+
max_new_tokens=max_new_tokens,
|
1898 |
+
use_cache=True,
|
1899 |
+
# stopping_criteria=[stopping_criteria],
|
1900 |
+
)
|
1901 |
+
|
1902 |
+
# print('inference over')
|
1903 |
+
generation_time = time.time() - stime
|
1904 |
+
outputs = tokenizer.batch_decode(
|
1905 |
+
output_ids, skip_special_tokens=True
|
1906 |
+
)[0]
|
1907 |
+
|
1908 |
+
outputs = outputs.strip()
|
1909 |
+
|
1910 |
+
return outputs, generation_time
|
1911 |
|
1912 |
|
1913 |
|
1914 |
|
1915 |
|
1916 |
AutoConfig.register("tinyllava", TinyLlavaConfig)
|
1917 |
+
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
|