File size: 2,269 Bytes
bd39069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: superb_ks_42
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: superb
      type: superb
      config: ks
      split: validation
      args: ks
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9848484848484849
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# superb_ks_42

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0976
- Accuracy: 0.9848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3599        | 1.0   | 1597  | 0.1546          | 0.9707   |
| 0.0819        | 2.0   | 3194  | 0.0998          | 0.9762   |
| 0.0635        | 3.0   | 4791  | 0.1049          | 0.9800   |
| 0.0437        | 4.0   | 6388  | 0.0905          | 0.9797   |
| 0.0411        | 5.0   | 7985  | 0.0898          | 0.9809   |
| 0.0283        | 6.0   | 9582  | 0.1006          | 0.9812   |
| 0.0229        | 7.0   | 11179 | 0.0976          | 0.9848   |
| 0.0186        | 8.0   | 12776 | 0.1143          | 0.9825   |
| 0.0094        | 9.0   | 14373 | 0.1136          | 0.9835   |
| 0.0066        | 10.0  | 15970 | 0.1172          | 0.9834   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1