jialinselenasong
commited on
Commit
•
0ca6442
1
Parent(s):
4606027
Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: allenai/scibert_scivocab_cased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: scibert_all_deep
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# scibert_all_deep
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8270
|
23 |
+
- Precision: 0.6648
|
24 |
+
- Recall: 0.7172
|
25 |
+
- F1: 0.6900
|
26 |
+
- Accuracy: 0.8207
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 363 | 0.5559 | 0.6191 | 0.6867 | 0.6511 | 0.8131 |
|
58 |
+
| 0.6741 | 2.0 | 726 | 0.5344 | 0.6271 | 0.7101 | 0.6660 | 0.8203 |
|
59 |
+
| 0.3917 | 3.0 | 1089 | 0.5548 | 0.6558 | 0.7064 | 0.6801 | 0.8205 |
|
60 |
+
| 0.3917 | 4.0 | 1452 | 0.5835 | 0.6717 | 0.7110 | 0.6908 | 0.8246 |
|
61 |
+
| 0.271 | 5.0 | 1815 | 0.6643 | 0.6524 | 0.7255 | 0.6870 | 0.8196 |
|
62 |
+
| 0.188 | 6.0 | 2178 | 0.7021 | 0.6724 | 0.7067 | 0.6892 | 0.8222 |
|
63 |
+
| 0.1437 | 7.0 | 2541 | 0.7594 | 0.6555 | 0.7180 | 0.6853 | 0.8191 |
|
64 |
+
| 0.1437 | 8.0 | 2904 | 0.7916 | 0.6664 | 0.7109 | 0.6879 | 0.8194 |
|
65 |
+
| 0.114 | 9.0 | 3267 | 0.8123 | 0.6582 | 0.7225 | 0.6888 | 0.8203 |
|
66 |
+
| 0.0943 | 10.0 | 3630 | 0.8270 | 0.6648 | 0.7172 | 0.6900 | 0.8207 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.40.1
|
72 |
+
- Pytorch 2.2.1+cu121
|
73 |
+
- Datasets 2.19.1
|
74 |
+
- Tokenizers 0.19.1
|