jialinselenasong commited on
Commit
0ca6442
1 Parent(s): 4606027

Training complete

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/scibert_scivocab_cased
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: scibert_all_deep
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # scibert_all_deep
19
+
20
+ This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.8270
23
+ - Precision: 0.6648
24
+ - Recall: 0.7172
25
+ - F1: 0.6900
26
+ - Accuracy: 0.8207
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 363 | 0.5559 | 0.6191 | 0.6867 | 0.6511 | 0.8131 |
58
+ | 0.6741 | 2.0 | 726 | 0.5344 | 0.6271 | 0.7101 | 0.6660 | 0.8203 |
59
+ | 0.3917 | 3.0 | 1089 | 0.5548 | 0.6558 | 0.7064 | 0.6801 | 0.8205 |
60
+ | 0.3917 | 4.0 | 1452 | 0.5835 | 0.6717 | 0.7110 | 0.6908 | 0.8246 |
61
+ | 0.271 | 5.0 | 1815 | 0.6643 | 0.6524 | 0.7255 | 0.6870 | 0.8196 |
62
+ | 0.188 | 6.0 | 2178 | 0.7021 | 0.6724 | 0.7067 | 0.6892 | 0.8222 |
63
+ | 0.1437 | 7.0 | 2541 | 0.7594 | 0.6555 | 0.7180 | 0.6853 | 0.8191 |
64
+ | 0.1437 | 8.0 | 2904 | 0.7916 | 0.6664 | 0.7109 | 0.6879 | 0.8194 |
65
+ | 0.114 | 9.0 | 3267 | 0.8123 | 0.6582 | 0.7225 | 0.6888 | 0.8203 |
66
+ | 0.0943 | 10.0 | 3630 | 0.8270 | 0.6648 | 0.7172 | 0.6900 | 0.8207 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.40.1
72
+ - Pytorch 2.2.1+cu121
73
+ - Datasets 2.19.1
74
+ - Tokenizers 0.19.1