--- base_model: allenai/scibert_scivocab_cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scibert_all_deep results: [] --- # scibert_all_deep This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8270 - Precision: 0.6648 - Recall: 0.7172 - F1: 0.6900 - Accuracy: 0.8207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 363 | 0.5559 | 0.6191 | 0.6867 | 0.6511 | 0.8131 | | 0.6741 | 2.0 | 726 | 0.5344 | 0.6271 | 0.7101 | 0.6660 | 0.8203 | | 0.3917 | 3.0 | 1089 | 0.5548 | 0.6558 | 0.7064 | 0.6801 | 0.8205 | | 0.3917 | 4.0 | 1452 | 0.5835 | 0.6717 | 0.7110 | 0.6908 | 0.8246 | | 0.271 | 5.0 | 1815 | 0.6643 | 0.6524 | 0.7255 | 0.6870 | 0.8196 | | 0.188 | 6.0 | 2178 | 0.7021 | 0.6724 | 0.7067 | 0.6892 | 0.8222 | | 0.1437 | 7.0 | 2541 | 0.7594 | 0.6555 | 0.7180 | 0.6853 | 0.8191 | | 0.1437 | 8.0 | 2904 | 0.7916 | 0.6664 | 0.7109 | 0.6879 | 0.8194 | | 0.114 | 9.0 | 3267 | 0.8123 | 0.6582 | 0.7225 | 0.6888 | 0.8203 | | 0.0943 | 10.0 | 3630 | 0.8270 | 0.6648 | 0.7172 | 0.6900 | 0.8207 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1