Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +18 -18
- a2c-AntBulletEnv-v0/policy.optimizer.pth +2 -2
- a2c-AntBulletEnv-v0/policy.pth +2 -2
- a2c-AntBulletEnv-v0/system_info.txt +5 -5
- config.json +1 -1
- logs/a2c-AntBulletEnv-v0.zip +3 -0
- logs/tensorboard/A2C_1/events.out.tfevents.1659066037.rlcube.25123.0 +3 -0
- logs/tensorboard/A2C_2/events.out.tfevents.1659066077.rlcube.25589.0 +3 -0
- logs/tensorboard/A2C_3/events.out.tfevents.1659066147.rlcube.26627.0 +3 -0
- logs/tensorboard/A2C_4/events.out.tfevents.1659066270.rlcube.27292.0 +3 -0
- logs/tensorboard/A2C_5/events.out.tfevents.1659066388.rlcube.27802.0 +3 -0
- logs/vec_normalize.pkl +3 -0
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 319.91 +/- 45.37
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d29e28a2ad9d57ab69917d65be0b5ed487a51b4a980d9926509422ddbc1d02f
|
3 |
+
size 124978
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
@@ -63,16 +63,16 @@
|
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
-
"start_time":
|
67 |
"learning_rate": 0.00096,
|
68 |
-
"tensorboard_log": "
|
69 |
"lr_schedule": {
|
70 |
":type:": "<class 'function'>",
|
71 |
-
":serialized:": "
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
-
":serialized:": "
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -80,7 +80,7 @@
|
|
80 |
},
|
81 |
"_last_original_obs": {
|
82 |
":type:": "<class 'numpy.ndarray'>",
|
83 |
-
":serialized:": "
|
84 |
},
|
85 |
"_episode_num": 0,
|
86 |
"use_sde": true,
|
@@ -88,7 +88,7 @@
|
|
88 |
"_current_progress_remaining": -0.1200000000000001,
|
89 |
"ep_info_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
-
":serialized:": "
|
92 |
},
|
93 |
"ep_success_buffer": {
|
94 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f40275aedc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f40275aee50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f40275aeee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f40275aef70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f40275b2040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f40275b20d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f40275b2160>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f40275b21f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f40275b2280>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f40275b2310>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f40275b23a0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f40276a8d00>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
|
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
+
"start_time": 1659066388.5388026,
|
67 |
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "work_dirs/AntBulletEnv-v0/tensorboard",
|
69 |
"lr_schedule": {
|
70 |
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9ybGN1YmUvbWluaWNvbmRhMy9lbnZzL3B5dG9yY2gvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL3JsY3ViZS9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ/TlL9Gt2I+TwdhP2RMSDyQmgA+UZQZP80clr9zUu+9WhOCP0cZHD4eCn6+wrJQvigKw78DDcm9VzwQP6CV0D79s1K/ttrIPXXKmT6KfdY++xSiP78oOrwGbC4+gT5SvqqaOD/yAXU/+Wc6P2CIjz/HZ2m/sya5v6dz0L+Zdhy79hqcPuaHEz80XES/8zNeP1z9g78+9A4+rNc3v/pWdr7ZbHc/6s/DvQq7RL+rdL4+f2yJv4NKzT1Ekzm/5GhLPzDwnL9fKoi8hJ/HPgDncr6qmjg/8gF1P/lnOj9giI8/omDMvkCpv79MRuW/NofhvJbWaz6P8hY/au/OPwQDqz9/tIS/UGAZPpMGML+As2K+RKp2P3VFn732eQDA5rbBPgFQib8cp+c9iNe7v0SI9D4ovZy/aOcpvOS8R78Np3K+qpo4P/IBdT/5Zzo/YIiPPzRZZb1INUI/+Oo4PwvY+T3SVuY+UlVSP/OQQ758DNK/hz6Ev01wnj5ELPQ/Q0pWvivxTD/flWu+eYVePx2r1D5dlaY/3ZchPfCcuD4G9l6+TMrCPwU37ry8cVA/wr0zvqqaOD/yAXU/+Wc6P8RLZL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
80 |
},
|
81 |
"_last_original_obs": {
|
82 |
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGAk22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4zs7OwAAAABEZve/AAAAACkAjb0AAAAAJLrbPwAAAABMJA++AAAAAPyXAEAAAAAAwx+zvQAAAAByn/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAafXpNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJIjzwAAAAAXRn3vwAAAAAnGrc8AAAAAICY6T8AAAAAqBIXPQAAAABbpN4/AAAAAFrKDL0AAAAAL7DsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlMBLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICHq+c8AAAAABYN9L8AAAAABybnvQAAAAA3Ets/AAAAAG/uDT0AAAAAhoz3PwAAAAAFFY+8AAAAAP4M3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYrrs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf5vlvQAAAACysuC/AAAAAJbHBb0AAAAArCn4PwAAAAAF8j49AAAAAAvz7z8AAAAAbDvpvQAAAADFgOq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
},
|
85 |
"_episode_num": 0,
|
86 |
"use_sde": true,
|
|
|
88 |
"_current_progress_remaining": -0.1200000000000001,
|
89 |
"ep_info_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
92 |
},
|
93 |
"ep_success_buffer": {
|
94 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ee66febc94a8ec689d14258ae684b21855ee351922fec3367834632a3455b51
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8239193c6dd3e0b46a140ee94bdcc05d88b9e2ff83160feea3630f29241efb22
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS:
|
2 |
-
Python: 3.
|
3 |
Stable-Baselines3: 1.6.0
|
4 |
-
PyTorch: 1.
|
5 |
-
GPU Enabled:
|
6 |
-
Numpy: 1.
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.27 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022
|
2 |
+
Python: 3.9.12
|
3 |
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.1
|
7 |
Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee25290830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee252908c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee25290950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee252909e0>", "_build": "<function ActorCriticPolicy._build at 0x7fee25290a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fee25290b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee25290b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee25290c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee25290cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee25290d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee25290dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fee2525ab40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 224, "_total_timesteps": 200, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659060932.07266, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVBwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxsL1VzZXJzL2ppYW56aGVuZ25pZS9vcHQvYW5hY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxsL1VzZXJzL2ppYW56aGVuZ25pZS9vcHQvYW5hY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHduTj/rVxe/uzjxPZSvnj7/1t49iQ+bv+LZhT7n+ra/WdOrvqf9FUCoaco/TmyDQPONQ79dz6M+ShtDPxRgQz5l6Qi/wreBP5cuVj/KUZE+3dkyv/oMYj8qqAY/x+AEQBK8cL+ScwK/Xyt3v196VL+7BJW/PwNyPq/cjz95TbK+wAXZPjXMRD8Cj2BAnHiKv+EQLr9fJ3w85hwwQP/xzL6P/lq/fUqzPvSGd7w9REE+NMt5v0onKT5QAXc/I6imPoPe/z+wghY+Mog7PzFqh77OHYg/knMCv6OShD/QN5o/WAxOv/Cbib/Vu4+/XCU8vykIyz2sN0Q/Dyn9vQcQo73QiK2+6OFGv5a2ST448tm+UBI+v6eolj7Vxqu+ds1bPnsqA78LVZo/rBvLvfpXTz83LIq/MXgbPsQVaz+/gJK+zh2IP0Uw+z9fK3e/0DeaP/sczL2oqlM/CD+GPxLh5r/Hq4g/OZuTP4H48z7EvwtAoNUqP8fwm7/y2RE9Y2rJvsPs7b4fEeC/+5yJvuu0mD6LbNg/0eMdPrAn5L9ijY8+ZqMQvgNdf790A1a/xmLBvs4diD+ScwK/o5KEP9A3mj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABw8fI1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYnLavQAAAAAtGf+/AAAAAL8XSjwAAAAAz8D6PwAAAABW2089AAAAAE5y3T8AAAAAwRC+PQAAAADFq+q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkz0itgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGoTpbwAAAAAp3j3vwAAAAB8nsa9AAAAAImw5j8AAAAAm+pnPQAAAAB9Ct4/AAAAAHjnqT0AAAAAfr70vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGzILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBSUk09AAAAAMoa6b8AAAAAr38sPQAAAACUDec/AAAAAFbYJ70AAAAA+K77PwAAAAAyCVg9AAAAALTD+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeYQo3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA51VPvAAAAAD0d92/AAAAAGOSyj0AAAAAGbLjPwAAAADFAv09AAAAADL92j8AAAAAsGwCvgAAAAChvuy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.1200000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQB3yV8kUsWiMAWyUSxSMAXSURz/R5rxiG34LdX2UKGgGR0A4pthd+ocaaAdLLWgIRz/ZQuVX3g1ndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Darwin-19.6.0-x86_64-i386-64bit Darwin Kernel Version 19.6.0: Tue Feb 15 21:39:11 PST 2022; root:xnu-6153.141.59~1/RELEASE_X86_64", "Python": "3.7.6", "Stable-Baselines3": "1.6.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f40275aedc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f40275aee50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f40275aeee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f40275aef70>", "_build": "<function ActorCriticPolicy._build at 0x7f40275b2040>", "forward": "<function ActorCriticPolicy.forward at 0x7f40275b20d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f40275b2160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f40275b21f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f40275b2280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f40275b2310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f40275b23a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f40276a8d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 224, "_total_timesteps": 200, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659066388.5388026, "learning_rate": 0.00096, "tensorboard_log": "work_dirs/AntBulletEnv-v0/tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9ybGN1YmUvbWluaWNvbmRhMy9lbnZzL3B5dG9yY2gvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL3JsY3ViZS9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ/TlL9Gt2I+TwdhP2RMSDyQmgA+UZQZP80clr9zUu+9WhOCP0cZHD4eCn6+wrJQvigKw78DDcm9VzwQP6CV0D79s1K/ttrIPXXKmT6KfdY++xSiP78oOrwGbC4+gT5SvqqaOD/yAXU/+Wc6P2CIjz/HZ2m/sya5v6dz0L+Zdhy79hqcPuaHEz80XES/8zNeP1z9g78+9A4+rNc3v/pWdr7ZbHc/6s/DvQq7RL+rdL4+f2yJv4NKzT1Ekzm/5GhLPzDwnL9fKoi8hJ/HPgDncr6qmjg/8gF1P/lnOj9giI8/omDMvkCpv79MRuW/NofhvJbWaz6P8hY/au/OPwQDqz9/tIS/UGAZPpMGML+As2K+RKp2P3VFn732eQDA5rbBPgFQib8cp+c9iNe7v0SI9D4ovZy/aOcpvOS8R78Np3K+qpo4P/IBdT/5Zzo/YIiPPzRZZb1INUI/+Oo4PwvY+T3SVuY+UlVSP/OQQ758DNK/hz6Ev01wnj5ELPQ/Q0pWvivxTD/flWu+eYVePx2r1D5dlaY/3ZchPfCcuD4G9l6+TMrCPwU37ry8cVA/wr0zvqqaOD/yAXU/+Wc6P8RLZL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGAk22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4zs7OwAAAABEZve/AAAAACkAjb0AAAAAJLrbPwAAAABMJA++AAAAAPyXAEAAAAAAwx+zvQAAAAByn/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAafXpNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJIjzwAAAAAXRn3vwAAAAAnGrc8AAAAAICY6T8AAAAAqBIXPQAAAABbpN4/AAAAAFrKDL0AAAAAL7DsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPlMBLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICHq+c8AAAAABYN9L8AAAAABybnvQAAAAA3Ets/AAAAAG/uDT0AAAAAhoz3PwAAAAAFFY+8AAAAAP4M3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYrrs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf5vlvQAAAACysuC/AAAAAJbHBb0AAAAArCn4PwAAAAAF8j49AAAAAAvz7z8AAAAAbDvpvQAAAADFgOq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.1200000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.27 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu102", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
|
logs/a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:772228a9a4d9e086c1e92c5b33d520c8f12a6f2ac23b79e45a4477fa5d2980d9
|
3 |
+
size 124978
|
logs/tensorboard/A2C_1/events.out.tfevents.1659066037.rlcube.25123.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dec255b825a6e666dbcd652a3e005c32602456b711dd34780d7df6ecb7a1999
|
3 |
+
size 40
|
logs/tensorboard/A2C_2/events.out.tfevents.1659066077.rlcube.25589.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e06a12d601f549e39ec8a90e6ec6592e6caeea7bd15801e4841869617bbca02e
|
3 |
+
size 40
|
logs/tensorboard/A2C_3/events.out.tfevents.1659066147.rlcube.26627.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23649725e85f73a8ec7a259a088dbd0a86e75cdaa9dd5d6b0ba2eb0dc4702bf8
|
3 |
+
size 40
|
logs/tensorboard/A2C_4/events.out.tfevents.1659066270.rlcube.27292.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6598d93f4b24ed4c50499d75720e39628039fc18afa0094d57c85ea80a91778
|
3 |
+
size 40
|
logs/tensorboard/A2C_5/events.out.tfevents.1659066388.rlcube.27802.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d20e58983c2ede83ffe88da62e07c6053b3046788064e9ae8f74ed96aadb10b
|
3 |
+
size 40
|
logs/vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0b392508ce6c26f1cec6f21bc88fbf848e85a948614f37206e4a8a3f7f6ba80
|
3 |
+
size 2453
|
replay.mp4
ADDED
Binary file (236 kB). View file
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 319.91129219942377, "std_reward": 45.37349312855758, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-29T11:46:52.525094"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d605634e782a19c6dc2ba98a0b93622262ea131a9e45f102715f5f9fc5a1f358
|
3 |
+
size 2521
|