File size: 27,965 Bytes
a99ecce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
""" ViTamin

Paper: Designing Scalable Vison Models in the Vision-Language Era

@misc{chen2023designing,
      title={Designing Scalable Vison Models in the Vision-Language Era},
      author={Jieneng Chen and Qihang Yu and Xiaohui Shen and Alan Yuille and Liang-Cheih Chen},
      year={2023},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Based on Apache 2.0 licensed code at https://github.com/Beckschen/ViTamin

by Jieneng Chen 2024

Reference: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""

from dataclasses import dataclass
import logging
import math
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.checkpoint import checkpoint
from functools import partial
from open_clip.hf_model import HFTextEncoder
from open_clip.modified_resnet import ModifiedResNet
from open_clip.transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
from open_clip.utils import to_2tuple
import time
import timm
from timm.models.vision_transformer import _create_vision_transformer
from .timm_model import TimmModel 
from .vitamin import *
# from .vitamin import HybridEmbed, MbConvStages, VitCfg, VitConvCfg
from .vitamin import GeGluMlp, ViTamin, HybridEmbed, MbConvStages, VitCfg, VitConvCfg
from transformers.modeling_utils import PreTrainedModel
from .configuration_vitamin import ViTaminConfig, ViTaminVisionConfig

@dataclass
class CLIPVisionCfg:
    layers: Union[Tuple[int, int, int, int], int] = 12
    width: int = 768
    head_width: int = 64
    mlp_ratio: float = 4.0
    patch_size: int = 16
    image_size: Union[Tuple[int, int], int] = 224

    ls_init_value: Optional[float] = None  
    patch_dropout: float = 0.  
    input_patchnorm: bool = False  
    global_average_pool: bool = False 
    attentional_pool: bool = False  
    n_queries: int = 256  
    attn_pooler_heads: int = 8  
    output_tokens: bool = False

    timm_model_name: str = None  
    timm_model_pretrained: bool = False  
    timm_pool: str = 'avg' 
    timm_proj: str = 'linear'  
    timm_proj_bias: bool = False 
    timm_drop: float = 0. 
    timm_drop_path: Optional[float] = None  


@dataclass
class CLIPTextCfg:
    context_length: int = 77
    vocab_size: int = 49408
    width: int = 512
    heads: int = 8
    layers: int = 12
    ls_init_value: Optional[float] = None  # layer scale initial value
    hf_model_name: str = None
    hf_tokenizer_name: str = None
    hf_model_pretrained: bool = True
    proj: str = 'mlp'
    pooler_type: str = 'mean_pooler'
    embed_cls: bool = False
    pad_id: int = 0
    output_tokens: bool = False
    text_mask: str = 'first' # default first truncate in bpe_tokenizer


def get_cast_dtype(precision: str):
    cast_dtype = None
    if precision == 'bf16':
        cast_dtype = torch.bfloat16
    elif precision == 'fp16':
        cast_dtype = torch.float16
    return cast_dtype


def get_input_dtype(precision: str):
    input_dtype = None
    if precision in ('bf16', 'pure_bf16'):
        input_dtype = torch.bfloat16
    elif precision in ('fp16', 'pure_fp16'):
        input_dtype = torch.float16
    return input_dtype


def _build_vision_tower(
        embed_dim: int,
        vision_cfg: CLIPVisionCfg,
        quick_gelu: bool = False,
        cast_dtype: Optional[torch.dtype] = None
):
    if isinstance(vision_cfg, dict):
        vision_cfg = CLIPVisionCfg(**vision_cfg)

    act_layer = QuickGELU if quick_gelu else nn.GELU

    if vision_cfg.timm_model_name:
        visual = TimmModel(
            vision_cfg.timm_model_name,
            pretrained=vision_cfg.timm_model_pretrained,
            pool=vision_cfg.timm_pool,
            proj=vision_cfg.timm_proj,
            proj_bias=vision_cfg.timm_proj_bias,
            drop=vision_cfg.timm_drop,
            drop_path=vision_cfg.timm_drop_path,
            patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None,
            embed_dim=embed_dim,
            image_size=vision_cfg.image_size,
        )
    elif isinstance(vision_cfg.layers, (tuple, list)):
        vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
        visual = ModifiedResNet(
            layers=vision_cfg.layers,
            output_dim=embed_dim,
            heads=vision_heads,
            image_size=vision_cfg.image_size,
            width=vision_cfg.width,
        )
    else:
        vision_heads = vision_cfg.width // vision_cfg.head_width
        norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
        visual = VisionTransformer(
            image_size=vision_cfg.image_size,
            patch_size=vision_cfg.patch_size,
            width=vision_cfg.width,
            layers=vision_cfg.layers,
            heads=vision_heads,
            mlp_ratio=vision_cfg.mlp_ratio,
            ls_init_value=vision_cfg.ls_init_value,
            patch_dropout=vision_cfg.patch_dropout,
            input_patchnorm=vision_cfg.input_patchnorm,
            global_average_pool=vision_cfg.global_average_pool,
            attentional_pool=vision_cfg.attentional_pool,
            n_queries=vision_cfg.n_queries,
            attn_pooler_heads=vision_cfg.attn_pooler_heads,
            output_tokens=vision_cfg.output_tokens,
            output_dim=embed_dim,
            act_layer=act_layer,
            norm_layer=norm_layer,
        )

    return visual


def _build_text_tower(
        embed_dim: int,
        text_cfg: CLIPTextCfg,
        quick_gelu: bool = False,
        cast_dtype: Optional[torch.dtype] = None,
):
    if isinstance(text_cfg, dict):
        text_cfg = CLIPTextCfg(**text_cfg)

    if text_cfg.hf_model_name:
        text = HFTextEncoder(
            text_cfg.hf_model_name,
            output_dim=embed_dim,
            proj=text_cfg.proj,
            pooler_type=text_cfg.pooler_type,
            pretrained=text_cfg.hf_model_pretrained,
            output_tokens=text_cfg.output_tokens,
        )
    else:
        act_layer = QuickGELU if quick_gelu else nn.GELU
        norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm

        text = TextTransformer(
            context_length=text_cfg.context_length,
            vocab_size=text_cfg.vocab_size,
            width=text_cfg.width,
            heads=text_cfg.heads,
            layers=text_cfg.layers,
            ls_init_value=text_cfg.ls_init_value,
            output_dim=embed_dim,
            embed_cls=text_cfg.embed_cls,
            output_tokens=text_cfg.output_tokens,
            pad_id=text_cfg.pad_id,
            act_layer=act_layer,
            norm_layer=norm_layer,
        )
    return text


class CLIP(nn.Module):
    output_dict: torch.jit.Final[bool]

    def __init__(
            self,
            embed_dim: int,
            vision_cfg: CLIPVisionCfg,
            text_cfg: CLIPTextCfg,
            quick_gelu: bool = False,
            cast_dtype: Optional[torch.dtype] = None,
            output_dict: bool = False,
    ):
        super().__init__()
        self.output_dict = output_dict
        self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)

        text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
        self.transformer = text.transformer
        self.context_length = text.context_length
        self.vocab_size = text.vocab_size
        self.token_embedding = text.token_embedding
        self.positional_embedding = text.positional_embedding

        self.ln_final = text.ln_final
        self.text_projection = text.text_projection
        self.register_buffer('attn_mask', text.attn_mask, persistent=False)

        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.method_lock_text_tower = text.lock
        self.text_no_grad = False

    def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
        # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
        self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)

    def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True, unlock_text_proj=False):
        # added by jieneng
        self.method_lock_text_tower(unlocked_layers, freeze_layer_norm)
        self.text_no_grad = True

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True, enable_text=True):
        self.visual.set_grad_checkpointing(enable)
        self.transformer.grad_checkpointing = enable_text

    def encode_image(self, image, normalize: bool = False):
        features = self.visual(image)
        return F.normalize(features, dim=-1) if normalize else features

    def encode_text(self, text, normalize: bool = False):
        cast_dtype = self.transformer.get_cast_dtype()

        x = self.token_embedding(text).to(cast_dtype)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding.to(cast_dtype)
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x, attn_mask=self.attn_mask)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x)  # [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
        return F.normalize(x, dim=-1) if normalize else x

    def forward(
            self,
            image: Optional[torch.Tensor] = None,
            text: Optional[torch.Tensor] = None,
    ):
        # torch.cuda.synchronize()
        image_features = self.encode_image(image, normalize=True) if image is not None else None

        if self.text_no_grad:
            with torch.no_grad():
                text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
        else:
            text_features = self.encode_text(text, normalize=True) if text is not None else None


        if self.output_dict:
            return {
                "image_features": image_features,
                "text_features": text_features,
                "logit_scale": self.logit_scale.exp()
            }
        return image_features, text_features, self.logit_scale.exp()


# class CustomTextCLIP(nn.Module):


class CustomTextCLIP(nn.Module):
    output_dict: torch.jit.Final[bool]

    def __init__(
            self,
            embed_dim: int,
            vision_cfg: CLIPVisionCfg,
            text_cfg: CLIPTextCfg,
            quick_gelu: bool = False,
            cast_dtype: Optional[torch.dtype] = None,
            output_dict: bool = False,
    ):
        super().__init__()
        self.output_dict = output_dict
        self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
        self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
        self.context_length = self.text.context_length
        self.vocab_size = self.text.vocab_size
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        self.text_no_grad = False

    def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
        # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
        self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)

    def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True, unlock_text_proj = False):
        self.text.lock(unlocked_layers, freeze_layer_norm, unlock_text_proj)
        self.text_no_grad = True


    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True, enable_text=True):
        self.visual.set_grad_checkpointing(enable)
        self.text.set_grad_checkpointing(enable_text)


    def encode_image(self, image, normalize: bool = False):
        features = self.visual(image)
        return F.normalize(features, dim=-1) if normalize else features

    def encode_text(self, text, normalize: bool = False):
        features = self.text(text)
        return F.normalize(features, dim=-1) if normalize else features

    def forward(
            self,
            image: Optional[torch.Tensor] = None,
            text: Optional[torch.Tensor] = None,
    ):
        image_features = self.encode_image(image, normalize=True) if image is not None else None
        # if self.text_no_grad:
        #     with torch.no_grad():
        #         text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
        # else:
        text_features = self.encode_text(text, normalize=True) if text is not None else None
        
        if self.output_dict:
            return {
                "image_features": image_features,
                "text_features": text_features,
                "logit_scale": self.logit_scale.exp()
            }
        return image_features, text_features, self.logit_scale.exp()


class ViTaminPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ViTaminConfig
    base_model_prefix = 'vitamin'


# hack CLIPVisionModel for llava: https://github.com/huggingface/transformers/blob/9acce7de1cb8229304a467938ebb47727d60cdb2/src/transformers/models/clip/modeling_clip.py#L878
class ViTaminVisionModel(PreTrainedModel):
    config_class = ViTaminVisionConfig
    main_input_name = 'pixel_values'

    def __init__(self, config: ViTaminVisionConfig):
        super().__init__(config)

        self.visual = _build_vision_tower(config.embed_dim, config)
        
    def forward(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            select_layer = -2,
    ):
        assert len(pixel_values.shape) == 4, f'wrong pixel_values size: {pixel_values.shape}'
        x = self.visual.trunk.patch_embed.backbone.stem(pixel_values)
        x = self.visual.trunk.patch_embed.backbone.stages[0](x)
        x = self.visual.trunk.patch_embed.backbone.stages[1](x)
        x = self.visual.trunk.patch_embed.backbone.pool(x)
        x = self.visual.trunk.patch_embed.proj(x)
        x = x.flatten(2).transpose(1, 2)
        x = self.visual.trunk.patch_drop(x)
        x = self.visual.trunk.norm_pre(x)
        x = self.visual.trunk.blocks[:select_layer+1](x)
        return x


class ViTaminCLIP(ViTaminPreTrainedModel):
    output_dict: torch.jit.Final[bool]
    config_class: ViTaminConfig

    def __init__(
            self,
            config: ViTaminConfig
    ):
        super().__init__(config)

        embed_dim=config.embed_dim #: int,
        vision_cfg=config.vision_cfg #: CLIPVisionCfg,
        text_cfg=config.text_cfg #: CLIPTextCfg,
        quick_gelu=False
        cast_dtype=None
        output_dict=False
        
        self.config = config
        self.output_dict = output_dict
        self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
        self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
        self.context_length = self.text.context_length
        self.vocab_size = self.text.vocab_size
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        self.text_no_grad = False

    def forward_visual4llava(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            select_layer = -2,
    ):
        assert len(pixel_values.shape) == 4, f'wrong pixel_values size: {pixel_values.shape}'
        x = self.visual.trunk.patch_embed.backbone.stem(pixel_values)
        x = self.visual.trunk.patch_embed.backbone.stages[0](x)
        x = self.visual.trunk.patch_embed.backbone.stages[1](x)
        x = self.visual.trunk.patch_embed.backbone.pool(x)
        x = self.visual.trunk.patch_embed.proj(x)
        x = x.flatten(2).transpose(1, 2)
        x = self.visual.trunk.patch_drop(x)
        x = self.visual.trunk.norm_pre(x)
        x = self.visual.trunk.blocks[:select_layer+1](x)
        return x

    def encode_image(self, image, normalize: bool = False):
        features = self.visual(image)
        return F.normalize(features, dim=-1) if normalize else features

    def encode_text(self, text, normalize: bool = False):
        features = self.text(text)
        return F.normalize(features, dim=-1) if normalize else features

    def forward_pixel(
            self,
            image: Optional[torch.Tensor] = None,
            text: Optional[torch.Tensor] = None,
    ):

        x = self.visual.trunk.patch_embed.backbone.stem(image)
        x = self.visual.trunk.patch_embed.backbone.stages[0](x)
        x = self.visual.trunk.patch_embed.backbone.stages[1](x)
        x = self.visual.trunk.patch_embed.backbone.pool(x)
        x = self.visual.trunk.patch_embed.proj(x)
        x = x.flatten(2).transpose(1, 2)
        x = self.visual.trunk.patch_drop(x)
        x = self.visual.trunk.norm_pre(x)
        x = self.visual.trunk.blocks(x)
        x = self.visual.trunk.fc_norm(x)
        x = self.visual.head.proj(x)
        image_features = F.normalize(x, dim=-1)
        text_features = self.encode_text(text, normalize=True) if text is not None else None
        
        if self.output_dict:
            return {
                "image_features": image_features,
                "text_features": text_features,
                "logit_scale": self.logit_scale.exp()
            }
        return image_features, text_features, self.logit_scale.exp()

    def forward(
            self,
            image: Optional[torch.Tensor] = None,
            text: Optional[torch.Tensor] = None,
    ):
        image_features = self.encode_image(image, normalize=True) if image is not None else None
        # if self.text_no_grad:
        #     with torch.no_grad():
        #         text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
        # else:
        text_features = self.encode_text(text, normalize=True) if text is not None else None
        
        if self.output_dict:
            return {
                "image_features": image_features,
                "text_features": text_features,
                "logit_scale": self.logit_scale.exp()
            }
        return image_features, text_features, self.logit_scale.exp()

def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
    """Convert applicable model parameters to low-precision (bf16 or fp16)"""

    def _convert_weights(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.to(dtype)
            if l.bias is not None:
                l.bias.data = l.bias.data.to(dtype)

        if isinstance(l, (nn.MultiheadAttention, Attention)):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.to(dtype)

        if isinstance(l, (CLIP, TextTransformer)):
            # convert text nn.Parameter projections
            attr = getattr(l, "text_projection", None)
            if attr is not None:
                attr.data = attr.data.to(dtype)

        if isinstance(l, VisionTransformer):
            # convert vision nn.Parameter projections
            attr = getattr(l, "proj", None)
            if attr is not None:
                attr.data = attr.data.to(dtype)

    model.apply(_convert_weights)


convert_weights_to_fp16 = convert_weights_to_lp  # backwards compat


# used to maintain checkpoint compatibility
def convert_to_custom_text_state_dict(state_dict: dict):
    if 'text_projection' in state_dict:
        # old format state_dict, move text tower -> .text
        new_state_dict = {}
        for k, v in state_dict.items():
            if any(k.startswith(p) for p in (
                'text_projection',
                'positional_embedding',
                'token_embedding',
                'transformer',
                'ln_final',
            )):
                k = 'text.' + k
            new_state_dict[k] = v
        return new_state_dict
    return state_dict


def build_model_from_openai_state_dict(
        state_dict: dict,
        quick_gelu=True,
        cast_dtype=torch.float16,
):
    vit = "visual.proj" in state_dict

    if vit:
        vision_width = state_dict["visual.conv1.weight"].shape[0]
        vision_layers = len(
            [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
        vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
        grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
        image_size = vision_patch_size * grid_size
    else:
        counts: list = [
            len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
        vision_layers = tuple(counts)
        vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
        output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
        vision_patch_size = None
        assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
        image_size = output_width * 32

    embed_dim = state_dict["text_projection"].shape[1]
    context_length = state_dict["positional_embedding"].shape[0]
    vocab_size = state_dict["token_embedding.weight"].shape[0]
    transformer_width = state_dict["ln_final.weight"].shape[0]
    transformer_heads = transformer_width // 64
    transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))

    vision_cfg = CLIPVisionCfg(
        layers=vision_layers,
        width=vision_width,
        patch_size=vision_patch_size,
        image_size=image_size,
    )
    text_cfg = CLIPTextCfg(
        context_length=context_length,
        vocab_size=vocab_size,
        width=transformer_width,
        heads=transformer_heads,
        layers=transformer_layers,
    )
    model = CLIP(
        embed_dim,
        vision_cfg=vision_cfg,
        text_cfg=text_cfg,
        quick_gelu=quick_gelu,  # OpenAI models were trained with QuickGELU
        cast_dtype=cast_dtype,
    )

    for key in ["input_resolution", "context_length", "vocab_size"]:
        state_dict.pop(key, None)

    convert_weights_to_fp16(model)  # OpenAI state dicts are partially converted to float16
    model.load_state_dict(state_dict)
    return model.eval()


def trace_model(model, batch_size=256, device=torch.device('cpu')):
    model.eval()
    image_size = model.visual.image_size
    example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
    example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
    model = torch.jit.trace_module(
        model,
        inputs=dict(
            forward=(example_images, example_text),
            encode_text=(example_text,),
            encode_image=(example_images,)
        ))
    model.visual.image_size = image_size
    return model

def resize_pos_embed_timm(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
    # Rescale the grid of position embeddings when loading from state_dict
    old_pos_embed = state_dict.get('visual.trunk.pos_embed', None) # 1, 196, 1024]
    if old_pos_embed is None:
        return
    
    grid_size = to_2tuple(model.visual.trunk.patch_embed.grid_size)
 
    
    if hasattr(model.visual.trunk, 'cls_token') and model.visual.trunk.cls_token is not None:
        return
        # extra_tokens?
        raise NotImplementedError

    new_seq_len = grid_size[0] * grid_size[1]
    if new_seq_len == old_pos_embed.shape[0]:
        return

    pos_emb_img = old_pos_embed
    old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img[0]))))
    old_pos_emb_img = pos_emb_img
    logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) # Resizing position embedding grid-size from (1, 1) to (21, 21)
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)

    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        antialias=antialias,
        align_corners=False,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)
    state_dict['visual.trunk.pos_embed'] = pos_emb_img

def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
    # Rescale the grid of position embeddings when loading from state_dict
    pe_key_name = 'visual.positional_embedding'
    old_pos_embed = state_dict.get('visual.positional_embedding', None)
    if old_pos_embed is None:
        pe_key_name = 'visual.trunk.pos_embed'
        old_pos_embed = state_dict.get('visual.trunk.pos_embed', None) # 1, 196, 1024]
        
    if old_pos_embed is None:
        return
    
    if hasattr(model.visual, 'grid_size'):
        grid_size = to_2tuple(model.visual.grid_size)
    elif hasattr(model.visual.trunk.patch_embed, 'grid_size'):
        grid_size = to_2tuple(model.visual.trunk.patch_embed.grid_size)
    else:
        return
    
    if hasattr(model.visual.trunk, 'cls_token') and model.visual.trunk.cls_token is not None:
        extra_tokens = 1  # FIXME detect different token configs (ie no class token, or more)
    else:
        extra_tokens = 0
    new_seq_len = grid_size[0] * grid_size[1] + extra_tokens

    if new_seq_len == old_pos_embed.shape[0]:
        return

    if extra_tokens:
        pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
    else:
        pos_emb_tok, pos_emb_img = None, old_pos_embed
    old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
    old_pos_emb_img = pos_emb_img
    logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) # Resizing position embedding grid-size from (1, 1) to (21, 21)
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)


    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        antialias=antialias,
        align_corners=False,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
    if pos_emb_tok is not None:
        new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
    else:
        new_pos_embed = pos_emb_img
    state_dict[pe_key_name] = new_pos_embed

def resize_text_pos_embed(state_dict, model, interpolation: str = 'linear', antialias: bool = False):
    old_pos_embed = state_dict.get('positional_embedding', None)
    if old_pos_embed is None:
        return
    # FIXME add support for text cls_token
    model_pos_embed = getattr(model, 'positional_embedding', None)
    if model_pos_embed is None:
        model_pos_embed = getattr(model.text, 'positional_embedding', None)

    old_num_pos = old_pos_embed.shape[0]
    old_width = old_pos_embed.shape[1]
    num_pos = model_pos_embed.shape[0]
    width = model_pos_embed.shape[1]
    assert old_width == width, 'text pos_embed width changed!'
    if old_num_pos == num_pos:
        return

    logging.info('Resizing text position embedding num_pos from %s to %s', old_num_pos, num_pos)
    old_pos_embed = old_pos_embed.reshape(1, old_num_pos, old_width).permute(0, 2, 1)
    old_pos_embed = F.interpolate(
        old_pos_embed,
        size=num_pos,
        mode=interpolation,
        antialias=antialias,
        align_corners=False,
    )
    old_pos_embed = old_pos_embed.permute(0, 2, 1)[0]
    new_pos_embed = old_pos_embed

    state_dict['positional_embedding'] = new_pos_embed