File size: 27,965 Bytes
a99ecce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
""" ViTamin
Paper: Designing Scalable Vison Models in the Vision-Language Era
@misc{chen2023designing,
title={Designing Scalable Vison Models in the Vision-Language Era},
author={Jieneng Chen and Qihang Yu and Xiaohui Shen and Alan Yuille and Liang-Cheih Chen},
year={2023},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Based on Apache 2.0 licensed code at https://github.com/Beckschen/ViTamin
by Jieneng Chen 2024
Reference: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
from dataclasses import dataclass
import logging
import math
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.checkpoint import checkpoint
from functools import partial
from open_clip.hf_model import HFTextEncoder
from open_clip.modified_resnet import ModifiedResNet
from open_clip.transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
from open_clip.utils import to_2tuple
import time
import timm
from timm.models.vision_transformer import _create_vision_transformer
from .timm_model import TimmModel
from .vitamin import *
# from .vitamin import HybridEmbed, MbConvStages, VitCfg, VitConvCfg
from .vitamin import GeGluMlp, ViTamin, HybridEmbed, MbConvStages, VitCfg, VitConvCfg
from transformers.modeling_utils import PreTrainedModel
from .configuration_vitamin import ViTaminConfig, ViTaminVisionConfig
@dataclass
class CLIPVisionCfg:
layers: Union[Tuple[int, int, int, int], int] = 12
width: int = 768
head_width: int = 64
mlp_ratio: float = 4.0
patch_size: int = 16
image_size: Union[Tuple[int, int], int] = 224
ls_init_value: Optional[float] = None
patch_dropout: float = 0.
input_patchnorm: bool = False
global_average_pool: bool = False
attentional_pool: bool = False
n_queries: int = 256
attn_pooler_heads: int = 8
output_tokens: bool = False
timm_model_name: str = None
timm_model_pretrained: bool = False
timm_pool: str = 'avg'
timm_proj: str = 'linear'
timm_proj_bias: bool = False
timm_drop: float = 0.
timm_drop_path: Optional[float] = None
@dataclass
class CLIPTextCfg:
context_length: int = 77
vocab_size: int = 49408
width: int = 512
heads: int = 8
layers: int = 12
ls_init_value: Optional[float] = None # layer scale initial value
hf_model_name: str = None
hf_tokenizer_name: str = None
hf_model_pretrained: bool = True
proj: str = 'mlp'
pooler_type: str = 'mean_pooler'
embed_cls: bool = False
pad_id: int = 0
output_tokens: bool = False
text_mask: str = 'first' # default first truncate in bpe_tokenizer
def get_cast_dtype(precision: str):
cast_dtype = None
if precision == 'bf16':
cast_dtype = torch.bfloat16
elif precision == 'fp16':
cast_dtype = torch.float16
return cast_dtype
def get_input_dtype(precision: str):
input_dtype = None
if precision in ('bf16', 'pure_bf16'):
input_dtype = torch.bfloat16
elif precision in ('fp16', 'pure_fp16'):
input_dtype = torch.float16
return input_dtype
def _build_vision_tower(
embed_dim: int,
vision_cfg: CLIPVisionCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None
):
if isinstance(vision_cfg, dict):
vision_cfg = CLIPVisionCfg(**vision_cfg)
act_layer = QuickGELU if quick_gelu else nn.GELU
if vision_cfg.timm_model_name:
visual = TimmModel(
vision_cfg.timm_model_name,
pretrained=vision_cfg.timm_model_pretrained,
pool=vision_cfg.timm_pool,
proj=vision_cfg.timm_proj,
proj_bias=vision_cfg.timm_proj_bias,
drop=vision_cfg.timm_drop,
drop_path=vision_cfg.timm_drop_path,
patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None,
embed_dim=embed_dim,
image_size=vision_cfg.image_size,
)
elif isinstance(vision_cfg.layers, (tuple, list)):
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
visual = ModifiedResNet(
layers=vision_cfg.layers,
output_dim=embed_dim,
heads=vision_heads,
image_size=vision_cfg.image_size,
width=vision_cfg.width,
)
else:
vision_heads = vision_cfg.width // vision_cfg.head_width
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
visual = VisionTransformer(
image_size=vision_cfg.image_size,
patch_size=vision_cfg.patch_size,
width=vision_cfg.width,
layers=vision_cfg.layers,
heads=vision_heads,
mlp_ratio=vision_cfg.mlp_ratio,
ls_init_value=vision_cfg.ls_init_value,
patch_dropout=vision_cfg.patch_dropout,
input_patchnorm=vision_cfg.input_patchnorm,
global_average_pool=vision_cfg.global_average_pool,
attentional_pool=vision_cfg.attentional_pool,
n_queries=vision_cfg.n_queries,
attn_pooler_heads=vision_cfg.attn_pooler_heads,
output_tokens=vision_cfg.output_tokens,
output_dim=embed_dim,
act_layer=act_layer,
norm_layer=norm_layer,
)
return visual
def _build_text_tower(
embed_dim: int,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
):
if isinstance(text_cfg, dict):
text_cfg = CLIPTextCfg(**text_cfg)
if text_cfg.hf_model_name:
text = HFTextEncoder(
text_cfg.hf_model_name,
output_dim=embed_dim,
proj=text_cfg.proj,
pooler_type=text_cfg.pooler_type,
pretrained=text_cfg.hf_model_pretrained,
output_tokens=text_cfg.output_tokens,
)
else:
act_layer = QuickGELU if quick_gelu else nn.GELU
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
text = TextTransformer(
context_length=text_cfg.context_length,
vocab_size=text_cfg.vocab_size,
width=text_cfg.width,
heads=text_cfg.heads,
layers=text_cfg.layers,
ls_init_value=text_cfg.ls_init_value,
output_dim=embed_dim,
embed_cls=text_cfg.embed_cls,
output_tokens=text_cfg.output_tokens,
pad_id=text_cfg.pad_id,
act_layer=act_layer,
norm_layer=norm_layer,
)
return text
class CLIP(nn.Module):
output_dict: torch.jit.Final[bool]
def __init__(
self,
embed_dim: int,
vision_cfg: CLIPVisionCfg,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
output_dict: bool = False,
):
super().__init__()
self.output_dict = output_dict
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
self.transformer = text.transformer
self.context_length = text.context_length
self.vocab_size = text.vocab_size
self.token_embedding = text.token_embedding
self.positional_embedding = text.positional_embedding
self.ln_final = text.ln_final
self.text_projection = text.text_projection
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.method_lock_text_tower = text.lock
self.text_no_grad = False
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True, unlock_text_proj=False):
# added by jieneng
self.method_lock_text_tower(unlocked_layers, freeze_layer_norm)
self.text_no_grad = True
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True, enable_text=True):
self.visual.set_grad_checkpointing(enable)
self.transformer.grad_checkpointing = enable_text
def encode_image(self, image, normalize: bool = False):
features = self.visual(image)
return F.normalize(features, dim=-1) if normalize else features
def encode_text(self, text, normalize: bool = False):
cast_dtype = self.transformer.get_cast_dtype()
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.to(cast_dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, attn_mask=self.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return F.normalize(x, dim=-1) if normalize else x
def forward(
self,
image: Optional[torch.Tensor] = None,
text: Optional[torch.Tensor] = None,
):
# torch.cuda.synchronize()
image_features = self.encode_image(image, normalize=True) if image is not None else None
if self.text_no_grad:
with torch.no_grad():
text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
else:
text_features = self.encode_text(text, normalize=True) if text is not None else None
if self.output_dict:
return {
"image_features": image_features,
"text_features": text_features,
"logit_scale": self.logit_scale.exp()
}
return image_features, text_features, self.logit_scale.exp()
# class CustomTextCLIP(nn.Module):
class CustomTextCLIP(nn.Module):
output_dict: torch.jit.Final[bool]
def __init__(
self,
embed_dim: int,
vision_cfg: CLIPVisionCfg,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
output_dict: bool = False,
):
super().__init__()
self.output_dict = output_dict
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
self.context_length = self.text.context_length
self.vocab_size = self.text.vocab_size
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.text_no_grad = False
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True, unlock_text_proj = False):
self.text.lock(unlocked_layers, freeze_layer_norm, unlock_text_proj)
self.text_no_grad = True
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True, enable_text=True):
self.visual.set_grad_checkpointing(enable)
self.text.set_grad_checkpointing(enable_text)
def encode_image(self, image, normalize: bool = False):
features = self.visual(image)
return F.normalize(features, dim=-1) if normalize else features
def encode_text(self, text, normalize: bool = False):
features = self.text(text)
return F.normalize(features, dim=-1) if normalize else features
def forward(
self,
image: Optional[torch.Tensor] = None,
text: Optional[torch.Tensor] = None,
):
image_features = self.encode_image(image, normalize=True) if image is not None else None
# if self.text_no_grad:
# with torch.no_grad():
# text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
# else:
text_features = self.encode_text(text, normalize=True) if text is not None else None
if self.output_dict:
return {
"image_features": image_features,
"text_features": text_features,
"logit_scale": self.logit_scale.exp()
}
return image_features, text_features, self.logit_scale.exp()
class ViTaminPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTaminConfig
base_model_prefix = 'vitamin'
# hack CLIPVisionModel for llava: https://github.com/huggingface/transformers/blob/9acce7de1cb8229304a467938ebb47727d60cdb2/src/transformers/models/clip/modeling_clip.py#L878
class ViTaminVisionModel(PreTrainedModel):
config_class = ViTaminVisionConfig
main_input_name = 'pixel_values'
def __init__(self, config: ViTaminVisionConfig):
super().__init__(config)
self.visual = _build_vision_tower(config.embed_dim, config)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
select_layer = -2,
):
assert len(pixel_values.shape) == 4, f'wrong pixel_values size: {pixel_values.shape}'
x = self.visual.trunk.patch_embed.backbone.stem(pixel_values)
x = self.visual.trunk.patch_embed.backbone.stages[0](x)
x = self.visual.trunk.patch_embed.backbone.stages[1](x)
x = self.visual.trunk.patch_embed.backbone.pool(x)
x = self.visual.trunk.patch_embed.proj(x)
x = x.flatten(2).transpose(1, 2)
x = self.visual.trunk.patch_drop(x)
x = self.visual.trunk.norm_pre(x)
x = self.visual.trunk.blocks[:select_layer+1](x)
return x
class ViTaminCLIP(ViTaminPreTrainedModel):
output_dict: torch.jit.Final[bool]
config_class: ViTaminConfig
def __init__(
self,
config: ViTaminConfig
):
super().__init__(config)
embed_dim=config.embed_dim #: int,
vision_cfg=config.vision_cfg #: CLIPVisionCfg,
text_cfg=config.text_cfg #: CLIPTextCfg,
quick_gelu=False
cast_dtype=None
output_dict=False
self.config = config
self.output_dict = output_dict
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
self.context_length = self.text.context_length
self.vocab_size = self.text.vocab_size
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.text_no_grad = False
def forward_visual4llava(
self,
pixel_values: Optional[torch.FloatTensor] = None,
select_layer = -2,
):
assert len(pixel_values.shape) == 4, f'wrong pixel_values size: {pixel_values.shape}'
x = self.visual.trunk.patch_embed.backbone.stem(pixel_values)
x = self.visual.trunk.patch_embed.backbone.stages[0](x)
x = self.visual.trunk.patch_embed.backbone.stages[1](x)
x = self.visual.trunk.patch_embed.backbone.pool(x)
x = self.visual.trunk.patch_embed.proj(x)
x = x.flatten(2).transpose(1, 2)
x = self.visual.trunk.patch_drop(x)
x = self.visual.trunk.norm_pre(x)
x = self.visual.trunk.blocks[:select_layer+1](x)
return x
def encode_image(self, image, normalize: bool = False):
features = self.visual(image)
return F.normalize(features, dim=-1) if normalize else features
def encode_text(self, text, normalize: bool = False):
features = self.text(text)
return F.normalize(features, dim=-1) if normalize else features
def forward_pixel(
self,
image: Optional[torch.Tensor] = None,
text: Optional[torch.Tensor] = None,
):
x = self.visual.trunk.patch_embed.backbone.stem(image)
x = self.visual.trunk.patch_embed.backbone.stages[0](x)
x = self.visual.trunk.patch_embed.backbone.stages[1](x)
x = self.visual.trunk.patch_embed.backbone.pool(x)
x = self.visual.trunk.patch_embed.proj(x)
x = x.flatten(2).transpose(1, 2)
x = self.visual.trunk.patch_drop(x)
x = self.visual.trunk.norm_pre(x)
x = self.visual.trunk.blocks(x)
x = self.visual.trunk.fc_norm(x)
x = self.visual.head.proj(x)
image_features = F.normalize(x, dim=-1)
text_features = self.encode_text(text, normalize=True) if text is not None else None
if self.output_dict:
return {
"image_features": image_features,
"text_features": text_features,
"logit_scale": self.logit_scale.exp()
}
return image_features, text_features, self.logit_scale.exp()
def forward(
self,
image: Optional[torch.Tensor] = None,
text: Optional[torch.Tensor] = None,
):
image_features = self.encode_image(image, normalize=True) if image is not None else None
# if self.text_no_grad:
# with torch.no_grad():
# text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
# else:
text_features = self.encode_text(text, normalize=True) if text is not None else None
if self.output_dict:
return {
"image_features": image_features,
"text_features": text_features,
"logit_scale": self.logit_scale.exp()
}
return image_features, text_features, self.logit_scale.exp()
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
def _convert_weights(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.to(dtype)
if l.bias is not None:
l.bias.data = l.bias.data.to(dtype)
if isinstance(l, (nn.MultiheadAttention, Attention)):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.to(dtype)
if isinstance(l, (CLIP, TextTransformer)):
# convert text nn.Parameter projections
attr = getattr(l, "text_projection", None)
if attr is not None:
attr.data = attr.data.to(dtype)
if isinstance(l, VisionTransformer):
# convert vision nn.Parameter projections
attr = getattr(l, "proj", None)
if attr is not None:
attr.data = attr.data.to(dtype)
model.apply(_convert_weights)
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
# used to maintain checkpoint compatibility
def convert_to_custom_text_state_dict(state_dict: dict):
if 'text_projection' in state_dict:
# old format state_dict, move text tower -> .text
new_state_dict = {}
for k, v in state_dict.items():
if any(k.startswith(p) for p in (
'text_projection',
'positional_embedding',
'token_embedding',
'transformer',
'ln_final',
)):
k = 'text.' + k
new_state_dict[k] = v
return new_state_dict
return state_dict
def build_model_from_openai_state_dict(
state_dict: dict,
quick_gelu=True,
cast_dtype=torch.float16,
):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_size = vision_patch_size * grid_size
else:
counts: list = [
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_size = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
vision_cfg = CLIPVisionCfg(
layers=vision_layers,
width=vision_width,
patch_size=vision_patch_size,
image_size=image_size,
)
text_cfg = CLIPTextCfg(
context_length=context_length,
vocab_size=vocab_size,
width=transformer_width,
heads=transformer_heads,
layers=transformer_layers,
)
model = CLIP(
embed_dim,
vision_cfg=vision_cfg,
text_cfg=text_cfg,
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
cast_dtype=cast_dtype,
)
for key in ["input_resolution", "context_length", "vocab_size"]:
state_dict.pop(key, None)
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
model.load_state_dict(state_dict)
return model.eval()
def trace_model(model, batch_size=256, device=torch.device('cpu')):
model.eval()
image_size = model.visual.image_size
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
model = torch.jit.trace_module(
model,
inputs=dict(
forward=(example_images, example_text),
encode_text=(example_text,),
encode_image=(example_images,)
))
model.visual.image_size = image_size
return model
def resize_pos_embed_timm(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
# Rescale the grid of position embeddings when loading from state_dict
old_pos_embed = state_dict.get('visual.trunk.pos_embed', None) # 1, 196, 1024]
if old_pos_embed is None:
return
grid_size = to_2tuple(model.visual.trunk.patch_embed.grid_size)
if hasattr(model.visual.trunk, 'cls_token') and model.visual.trunk.cls_token is not None:
return
# extra_tokens?
raise NotImplementedError
new_seq_len = grid_size[0] * grid_size[1]
if new_seq_len == old_pos_embed.shape[0]:
return
pos_emb_img = old_pos_embed
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img[0]))))
old_pos_emb_img = pos_emb_img
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) # Resizing position embedding grid-size from (1, 1) to (21, 21)
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
pos_emb_img = F.interpolate(
pos_emb_img,
size=grid_size,
mode=interpolation,
antialias=antialias,
align_corners=False,
)
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)
state_dict['visual.trunk.pos_embed'] = pos_emb_img
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
# Rescale the grid of position embeddings when loading from state_dict
pe_key_name = 'visual.positional_embedding'
old_pos_embed = state_dict.get('visual.positional_embedding', None)
if old_pos_embed is None:
pe_key_name = 'visual.trunk.pos_embed'
old_pos_embed = state_dict.get('visual.trunk.pos_embed', None) # 1, 196, 1024]
if old_pos_embed is None:
return
if hasattr(model.visual, 'grid_size'):
grid_size = to_2tuple(model.visual.grid_size)
elif hasattr(model.visual.trunk.patch_embed, 'grid_size'):
grid_size = to_2tuple(model.visual.trunk.patch_embed.grid_size)
else:
return
if hasattr(model.visual.trunk, 'cls_token') and model.visual.trunk.cls_token is not None:
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
else:
extra_tokens = 0
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
if new_seq_len == old_pos_embed.shape[0]:
return
if extra_tokens:
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
else:
pos_emb_tok, pos_emb_img = None, old_pos_embed
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
old_pos_emb_img = pos_emb_img
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) # Resizing position embedding grid-size from (1, 1) to (21, 21)
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
pos_emb_img = F.interpolate(
pos_emb_img,
size=grid_size,
mode=interpolation,
antialias=antialias,
align_corners=False,
)
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
if pos_emb_tok is not None:
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
else:
new_pos_embed = pos_emb_img
state_dict[pe_key_name] = new_pos_embed
def resize_text_pos_embed(state_dict, model, interpolation: str = 'linear', antialias: bool = False):
old_pos_embed = state_dict.get('positional_embedding', None)
if old_pos_embed is None:
return
# FIXME add support for text cls_token
model_pos_embed = getattr(model, 'positional_embedding', None)
if model_pos_embed is None:
model_pos_embed = getattr(model.text, 'positional_embedding', None)
old_num_pos = old_pos_embed.shape[0]
old_width = old_pos_embed.shape[1]
num_pos = model_pos_embed.shape[0]
width = model_pos_embed.shape[1]
assert old_width == width, 'text pos_embed width changed!'
if old_num_pos == num_pos:
return
logging.info('Resizing text position embedding num_pos from %s to %s', old_num_pos, num_pos)
old_pos_embed = old_pos_embed.reshape(1, old_num_pos, old_width).permute(0, 2, 1)
old_pos_embed = F.interpolate(
old_pos_embed,
size=num_pos,
mode=interpolation,
antialias=antialias,
align_corners=False,
)
old_pos_embed = old_pos_embed.permute(0, 2, 1)[0]
new_pos_embed = old_pos_embed
state_dict['positional_embedding'] = new_pos_embed |