File size: 5,849 Bytes
82f517a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
""" timm model adapter

Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model (OpenCLIP).
"""
import logging
from collections import OrderedDict

import torch, sys
import torch.nn as nn
import timm

try:
    import timm
    from timm.models.layers import Mlp, to_2tuple
    try:
        # old timm imports < 0.8.1
        from timm.models.layers.attention_pool2d import RotAttentionPool2d
        from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
    except ImportError:
        # new timm imports >= 0.8.1
        from timm.layers import RotAttentionPool2d
        from timm.layers import AttentionPool2d as AbsAttentionPool2d
except ImportError:
    timm = None
from timm.models import create_model
from open_clip.utils import freeze_batch_norm_2d

from .vitamin import *

class TimmModel(nn.Module):
    """ timm model adapter
    """

    def __init__(
            self,
            model_name,
            embed_dim,
            image_size=224,
            pool='avg',
            proj='linear',
            proj_bias=False,
            drop=0.,
            drop_path=None,
            patch_drop=None,
            pretrained=False,
    ):
        super().__init__()
        if timm is None:
            raise RuntimeError("Please `pip install timm` to use timm models.")
        self.image_size = to_2tuple(image_size)

        # setup kwargs that may not be common across all models
        timm_kwargs = {}
        if drop_path is not None:
            timm_kwargs['drop_path_rate'] = drop_path
        if patch_drop is not None:
            timm_kwargs['patch_drop_rate'] = patch_drop

        custom_pool = pool in ('abs_attn', 'rot_attn')
        if not proj and not custom_pool:
            # use network classifier head as projection if no proj specified and no custom pooling used
            self.trunk = timm.create_model(
                model_name,
                num_classes=embed_dim,
                global_pool=pool,
                pretrained=pretrained,
                **timm_kwargs,
            )
            prev_chs = embed_dim
        else:
            self.trunk = timm.create_model(
                model_name,
                pretrained=pretrained,
                **timm_kwargs,
            )
            feat_size = self.trunk.default_cfg.get('pool_size', None)
            feature_ndim = 1 if not feat_size else 2
            if custom_pool:
                assert feature_ndim == 2
                # if attn pooling used, remove both classifier and default pool
                self.trunk.reset_classifier(0, global_pool='')
            else:
                # reset global pool if pool config set, otherwise leave as network default
                reset_kwargs = dict(global_pool=pool) if pool else {}
                self.trunk.reset_classifier(0, **reset_kwargs)
            prev_chs = self.trunk.num_features

        head_layers = OrderedDict()

        # Add custom pooling to head
        if pool == 'abs_attn':
            head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
            prev_chs = embed_dim
        elif pool == 'rot_attn':
            head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
            prev_chs = embed_dim

        # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
        if proj == 'linear':
            head_layers['drop'] = nn.Dropout(drop)
            head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
        elif proj == 'mlp':
            head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=(drop, 0), bias=(True, proj_bias))
        else:
            assert not proj, f'Unknown projection type {proj}.'

        self.head = nn.Sequential(head_layers)

    def lock(self, unlocked_groups=0, freeze_bn_stats=False):
        """ lock modules
        Args:
            unlocked_groups (int): leave last n layer groups unlocked (default: 0)
        """
        if not unlocked_groups:
            # lock full model
            for param in self.trunk.parameters():
                param.requires_grad = False
            if freeze_bn_stats:
                freeze_batch_norm_2d(self.trunk)
        else:
            # NOTE: partial freeze requires latest timm (master) branch and is subject to change
            try:
                # FIXME import here until API stable and in an official release
                from timm.models.helpers import group_parameters, group_modules
            except ImportError:
                raise RuntimeError(
                    'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
            matcher = self.trunk.group_matcher()
            gparams = group_parameters(self.trunk, matcher)
            max_layer_id = max(gparams.keys())
            max_layer_id = max_layer_id - unlocked_groups
            for group_idx in range(max_layer_id + 1):
                group = gparams[group_idx]
                for param in group:
                    self.trunk.get_parameter(param).requires_grad = False
            if freeze_bn_stats:
                gmodules = group_modules(self.trunk, matcher, reverse=True)
                gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
                freeze_batch_norm_2d(self.trunk, gmodules)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        try:
            self.trunk.set_grad_checkpointing(enable)
        except Exception as e:
            logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')

    def forward(self, x):
        x = self.trunk(x)
        x = self.head(x)
        return x