--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - yashtiwari/PaulMooney-Medical-ASR-Data metrics: - wer model-index: - name: Whisper Medium Medical results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical ASR type: yashtiwari/PaulMooney-Medical-ASR-Data metrics: - name: Wer type: wer value: 12.406468742457157 --- # Whisper Medium Medical This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Medical ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.0995 - Wer: 12.4065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7532 | 0.1357 | 100 | 0.2695 | 13.0099 | | 0.2155 | 0.2714 | 200 | 0.2053 | 9.8238 | | 0.2392 | 0.4071 | 300 | 0.1567 | 8.9549 | | 0.151 | 0.5427 | 400 | 0.1159 | 6.9273 | | 0.1439 | 0.6784 | 500 | 0.0995 | 12.4065 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0