File size: 5,764 Bytes
87b642a c35343d 87b642a 75a4e4d 5b58f09 d4d5621 463061d 32458be 767b681 a416a9d 87b642a 5b58f09 87b642a 46df05d 87b642a 75a4e4d 5b58f09 d4d5621 463061d 767b681 a416a9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT model configuration"""
from transformers import PretrainedConfig
class JinaBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BERT
[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
window_size (`tuple`, *optional*, defaults to `(-1, -1)`): If not the default, use local attention
"""
model_type = "bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
window_size=(-1, -1),
dense_seq_output=False,
fused_mlp=False,
mlp_checkpoint_lvl=0,
last_layer_subset=False,
fused_dropout_add_ln=False,
fused_bias_fc=False,
pad_vocab_size_multiple=1,
use_flash_attn=True,
use_qk_norm=True,
emb_pooler=None,
classifier_dropout=None,
num_loras=5,
**kwargs,
):
assert 'position_embedding_type' not in kwargs
assert 'max_position_embeddings' not in kwargs
super().__init__(pad_token_id=pad_token_id, **kwargs)
if fused_mlp and hidden_act not in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]:
raise ValueError('Fused MLP only supports approximate gelu')
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.window_size = window_size
self.dense_seq_output = dense_seq_output
self.fused_mlp = fused_mlp
self.mlp_checkpoint_lvl = mlp_checkpoint_lvl
self.last_layer_subset = last_layer_subset
self.fused_dropout_add_ln = fused_dropout_add_ln
self.fused_bias_fc = fused_bias_fc
self.pad_vocab_size_multiple = pad_vocab_size_multiple
self.use_flash_attn = use_flash_attn
self.use_qk_norm = use_qk_norm
self.emb_pooler = emb_pooler
self.classifier_dropout = classifier_dropout
self.num_loras = num_loras |