File size: 24,604 Bytes
56fe6da 96e41b8 4f6f082 56fe6da 79a1cae 96e41b8 e1eb2c8 96e41b8 56fe6da cd77b48 56fe6da cd1adcb 56fe6da cd1adcb e1eb2c8 cd77b48 e1eb2c8 56fe6da 7f069e2 96e41b8 56fe6da cdebfc7 56fe6da 4f6f082 6e76918 4f6f082 6e76918 4f6f082 56fe6da 6ba3c14 56fe6da d779277 56fe6da 4f6f082 56fe6da e1eb2c8 56fe6da cd1adcb 56fe6da d779277 56fe6da cd77b48 96e41b8 cd77b48 96e41b8 cd77b48 96e41b8 e1eb2c8 cd77b48 56fe6da cd77b48 e1eb2c8 c4692ad 96e41b8 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 cd1adcb e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd1adcb e1eb2c8 cd77b48 e1eb2c8 96e41b8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 96e41b8 ed1da94 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 56fe6da cd77b48 e1eb2c8 c4692ad 96e41b8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 d779277 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd1adcb cd77b48 96e41b8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 fe33287 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd1adcb e1eb2c8 cd77b48 96e41b8 cd77b48 d779277 cdebfc7 79a1cae cd77b48 d779277 96e41b8 ed1da94 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 cd77b48 e1eb2c8 56fe6da d779277 56fe6da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
# coding=utf-8
#
# Code mainly copied from:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py
# and adjusted for Jina CLIP
import base64
import importlib.util
import warnings
from functools import partial
from io import BytesIO
from typing import List, Optional, Tuple, Union
import numpy as np
import requests
import torch
import torch.nn.functional as f
import torch.utils.checkpoint
from PIL import Image
from torch import nn
from transformers import (
AutoImageProcessor,
AutoTokenizer,
BatchEncoding,
BatchFeature,
PreTrainedModel,
logging,
)
from transformers.models.clip.modeling_clip import (
CLIPOutput,
CLIPTextModelOutput,
CLIPVisionModelOutput,
clip_loss,
)
try:
from tqdm.autonotebook import trange
has_tqdm = True
except ImportError:
trange = None
has_tqdm = False
from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
from .eva_model import EVAVisionTransformer
from .hf_model import HFTextEncoder
from .rope_embeddings import VisionRotaryEmbeddingFast # noqa: F401
from .transform import ( # noqa: F401
OPENAI_DATASET_MEAN,
OPENAI_DATASET_STD,
image_transform,
)
logger = logging.get_logger(__name__)
""" Jina CLIP model implementation """
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor):
origtype = x.dtype
x = f.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(origtype)
def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder:
return HFTextEncoder(
model_name_or_path=config.hf_model_name_or_path,
output_dim=config.embed_dim,
default_instruction_task=config.default_instruction_task,
default_lora_task=config.default_lora_task,
pooler_type=config.pooler_type,
proj_type=config.proj_type,
proj_bias=config.proj_bias,
pretrained=False,
output_tokens=False,
trust_remote_code=True,
revision=None,
model_config_kwargs=config.hf_model_config_kwargs,
)
def _build_vision_tower(config: JinaCLIPVisionConfig) -> EVAVisionTransformer:
norm_layer = partial(LayerNorm, eps=1e-6)
if config.fused_layer_norm:
try:
from apex.normalization import FusedLayerNorm
norm_layer = partial(FusedLayerNorm, eps=1e-6)
except (ModuleNotFoundError, ImportError):
logger.warning('Please install apex to use fused layer norm, ignoring')
return EVAVisionTransformer(
img_size=config.image_size,
patch_size=config.patch_size,
num_classes=config.embed_dim,
use_mean_pooling=False,
init_values=config.ls_init_value,
patch_dropout=config.patch_dropout,
embed_dim=config.width,
depth=config.layers,
num_heads=config.width // config.head_width,
mlp_ratio=config.mlp_ratio,
qkv_bias=config.qkv_bias,
drop_path_rate=config.drop_path_rate,
norm_layer=norm_layer,
xattn=config.x_attention,
rope=config.rope_embeddings,
postnorm=config.post_norm,
pt_hw_seq_len=config.pt_hw_seq_len,
intp_freq=config.intp_freq,
naiveswiglu=config.naive_swiglu,
subln=config.subln,
proj_type=config.proj_type,
)
def _resolve_attention_libs(config: JinaCLIPConfig):
use_text_flash_attn = (
config.use_text_flash_attn
if config.use_text_flash_attn is not None
else config.text_config.hf_model_config_kwargs.get('use_flash_attn', True)
)
use_vision_xformers = (
config.use_vision_xformers
if config.use_vision_xformers is not None
else config.vision_config.x_attention
)
def _resolve_use_text_flash_attn() -> bool:
if use_text_flash_attn:
if not torch.cuda.is_available():
warnings.warn('Flash attention requires CUDA, disabling')
return False
if importlib.util.find_spec('flash_attn') is None:
warnings.warn(
'Flash attention is not installed. Check '
'https://github.com/Dao-AILab/flash-attention?'
'tab=readme-ov-file#installation-and-features '
'for installation instructions, disabling'
)
return False
return True
return False
def _resolve_use_vision_xformers() -> bool:
if use_vision_xformers:
if not torch.cuda.is_available():
warnings.warn('xFormers requires CUDA, disabling')
return False
if importlib.util.find_spec('xformers') is None:
warnings.warn(
'xFormers is not installed. Check '
'https://github.com/facebookresearch/xformers?'
'tab=readme-ov-file#installing-xformers for installation '
'instructions, disabling'
)
return False
return True
return False
_use_text_flash_attn = _resolve_use_text_flash_attn()
_use_vision_xformers = _resolve_use_vision_xformers()
config.use_text_flash_attn = _use_text_flash_attn
config.use_vision_xformers = _use_vision_xformers
config.text_config.hf_model_config_kwargs['use_flash_attn'] = _use_text_flash_attn
config.vision_config.x_attention = _use_vision_xformers
return config
class JinaCLIPPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for
downloading and loading pretrained models.
"""
config_class = JinaCLIPConfig
base_model_prefix = 'clip'
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, JinaCLIPModel):
if isinstance(module.text_projection, nn.Linear):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module.text_projection, nn.Linear):
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(cls, *args, **kwargs):
if 'torch_dtype' not in kwargs:
kwargs['torch_dtype'] = 'auto'
return super().from_pretrained(*args, **kwargs)
class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
config_class = JinaCLIPTextConfig
def __init__(self, config: JinaCLIPTextConfig):
super().__init__(config)
self.text_model = _build_text_tower(config)
self.post_init()
def forward(
self,
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
return_dict: Optional[bool] = None,
*_,
**__,
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
feats = self.text_model(x=x)
out = CLIPTextModelOutput(text_embeds=feats)
return out if return_dict else out.to_tuple()
class JinaCLIPVisionModel(JinaCLIPPreTrainedModel):
config_class = JinaCLIPVisionConfig
main_input_name = 'pixel_values'
def __init__(self, config: JinaCLIPVisionConfig):
super().__init__(config)
self.vision_model = _build_vision_tower(config)
self.post_init()
def forward(
self,
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
return_dict: Optional[bool] = None,
*_,
**__,
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
x = (
pixel_values.pixel_values
if isinstance(pixel_values, BatchFeature)
else pixel_values
)
feats = self.vision_model(x=x)
out = CLIPVisionModelOutput(image_embeds=feats)
return out if return_dict else out.to_tuple()
class JinaCLIPModel(JinaCLIPPreTrainedModel):
config_class = JinaCLIPConfig
def __init__(self, config: JinaCLIPConfig):
super().__init__(config)
if not isinstance(config.text_config, JinaCLIPTextConfig):
raise ValueError(
'Attribute config.text_config is expected to be of type '
f'JinaCLIPTextConfig but is of type {type(config.text_config)}.'
)
if not isinstance(config.vision_config, JinaCLIPVisionConfig):
raise ValueError(
'Attribute config.vision_config is expected to be of type '
f'JinaCLIPVisionConfig but is of type {type(config.vision_config)}.'
)
config = _resolve_attention_libs(config)
text_config = config.text_config
vision_config = config.vision_config
self.add_projections = config.add_projections
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.embed_dim
self.vision_embed_dim = vision_config.embed_dim
self.text_model = _build_text_tower(text_config)
self.vision_model = _build_vision_tower(vision_config)
self.logit_scale = nn.Parameter(
torch.tensor(self.config.logit_scale_init_value)
)
if self.add_projections:
self.visual_projection = nn.Linear(
self.vision_embed_dim, self.projection_dim, bias=False
)
self.text_projection = nn.Linear(
self.text_embed_dim, self.projection_dim, bias=False
)
else:
self.visual_projection = nn.Identity()
self.text_projection = nn.Identity()
self.tokenizer = None
self.preprocess = None
self.post_init()
def get_tokenizer(self):
if not self.tokenizer:
self.tokenizer = AutoTokenizer.from_pretrained(
self.config._name_or_path, trust_remote_code=True
)
return self.tokenizer
def get_preprocess(self):
if not self.preprocess:
self.preprocess = AutoImageProcessor.from_pretrained(
self.config._name_or_path, trust_remote_code=True
)
return self.preprocess
def get_text_features(
self,
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
*_,
**__,
) -> torch.FloatTensor:
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
return self.text_projection(self.text_model(x=x))
def get_image_features(
self,
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
*_,
**__,
) -> torch.FloatTensor:
x = (
pixel_values.pixel_values
if isinstance(pixel_values, BatchFeature)
else pixel_values
)
return self.visual_projection(self.vision_model(x=x))
def _truncate_embeddings(self, embeddings: torch.Tensor, truncate_dim: int):
if not self.config.matryoshka_dimensions:
logger.warning(
'Model is not trained using Matryoshka Representation Learning, '
'truncating embeddings will not work optimally.'
)
return embeddings[:, :truncate_dim]
@staticmethod
def _decode_image_data(image_data_str: str) -> Image:
header, data = image_data_str.split(',', 1)
image_data = base64.b64decode(data)
return Image.open(BytesIO(image_data))
@torch.inference_mode()
def encode_image(
self,
images: Union[str, List[Union[str, 'Image.Image']]],
batch_size: int = 32,
show_progress_bar: Optional[bool] = None,
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: Optional[torch.device] = None,
normalize_embeddings: bool = True,
truncate_dim: Optional[int] = None,
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
"""
Computes image embeddings
Args:
images(`str` or `List[Union[str, Image.Image]]`):
Image paths, URLs, PIL images, or data:image/ strings to be encoded
batch_size(`int`, *optional*, defaults to 32):
Batch size for the computation
show_progress_bar(`bool`, *optional*, defaults to None):
Show a progress bar when encoding images. If set to None, progress bar
is only shown when `logger.level == logging.INFO` or
`logger.level == logging.DEBUG`
convert_to_numpy(`bool`, *optional*, defaults to True):
If true, the output is a list of numpy vectors. Else, it is a list of
pytorch tensors
convert_to_tensor(`bool`, *optional*, defaults to False):
If true, you get one large tensor as return. Overwrites any setting
from convert_to_numpy
device(`torch.device`, *optional*, defaults to None):
Which torch.device to use for the computation
normalize_embeddings(`bool`, *optional*, defaults to False):
If set to true, returned vectors will have length 1. In that case,
the faster dot-product (util.dot_score) instead of cosine similarity
can be used
truncate_dim(`int`, *optional*, defaults to None):
The dimension to truncate sentence embeddings to. If set to `None`
no truncation is performed
Returns:
By default, a list of tensors is returned. If convert_to_tensor, a stacked
tensor is returned. If convert_to_numpy, a numpy matrix is returned
"""
_is_training = self.training
self.eval()
self.preprocess = self.get_preprocess()
all_embeddings = []
if show_progress_bar is None:
show_progress_bar = (
logger.getEffectiveLevel() == logging.INFO
or logger.getEffectiveLevel() == logging.DEBUG
)
if convert_to_tensor:
convert_to_numpy = False
_input_was_single_img = False
if isinstance(images, str) or not hasattr(images, '__len__'):
images = [images]
_input_was_single_img = True
if device is not None:
self.to(device)
_permutation = np.argsort([-len(str(i)) for i in images])
_inverse_permutation = np.argsort(_permutation)
images = [images[idx] for idx in _permutation]
if has_tqdm:
range_iter = trange(
0,
len(images),
batch_size,
desc='Encoding',
disable=not show_progress_bar,
)
else:
range_iter = range(0, len(images), batch_size)
truncate_dim = truncate_dim or self.config.truncate_dim
for i in range_iter:
_processed_images = []
for img in images[i: i + batch_size]:
if isinstance(img, str):
if img.startswith('http'):
response = requests.get(img)
image = Image.open(BytesIO(response.content)).convert('RGB')
elif img.startswith('data:image/'):
image = self._decode_image_data(img).convert('RGB')
else:
image = Image.open(img).convert('RGB')
elif isinstance(img, Image.Image):
image = img.convert('RGB')
else:
raise ValueError('Unsupported image format')
_processed_images.append(image)
pixelvals = self.preprocess(_processed_images)
pixelvals = pixelvals.to(self.device)
embeddings = self.get_image_features(pixelvals)
if truncate_dim:
embeddings = self._truncate_embeddings(embeddings, truncate_dim)
if normalize_embeddings:
embeddings = f.normalize(embeddings, p=2, dim=1)
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray(
[emb.to(torch.float32).numpy() for emb in all_embeddings]
)
if _input_was_single_img:
all_embeddings = all_embeddings[0]
self.train(_is_training)
return all_embeddings
@torch.inference_mode()
def encode_text(
self,
sentences: Union[str, List[str]],
task: Optional[str] = None,
batch_size: int = 32,
show_progress_bar: Optional[bool] = None,
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: Optional[torch.device] = None,
normalize_embeddings: bool = True,
truncate_dim: Optional[int] = None,
**tokenizer_kwargs,
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
"""
Computes text embeddings
Args:
sentences(`str` or `List[str]`):
Sentence or sentences to be encoded
task(`str`, *optional*, defaults to `None`):
Specifies the task for which the encoding is intended. If a `task` is
provided, a task-specific instruction is added to the beginning of each
sentence. If `task` is not provided, no instructions are added.
batch_size(`int`, *optional*, defaults to 32):
Batch size for the computation
show_progress_bar(`bool`, *optional*, defaults to None):
Show a progress bar when encoding sentences. If set to None, progress
bar is only shown when `logger.level == logging.INFO` or
`logger.level == logging.DEBUG`
convert_to_numpy(`bool`, *optional*, defaults to True):
If true, the output is a list of numpy vectors. Else, it is a list of
pytorch tensors
convert_to_tensor(`bool`, *optional*, defaults to False):
If true, you get one large tensor as return. Overwrites any setting
from convert_to_numpy
device(`torch.device`, *optional*, defaults to None):
Which torch.device to use for the computation
normalize_embeddings(`bool`, *optional*, defaults to False):
If set to true, returned vectors will have length 1. In that case,
the faster dot-product (util.dot_score) instead of cosine similarity
can be used
truncate_dim(`int`, *optional*, defaults to None):
The dimension to truncate sentence embeddings to. If set to `None`
no truncation is performed
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
Keyword arguments for the tokenizer
Returns:
By default, a list of tensors is returned. If convert_to_tensor, a stacked
tensor is returned. If convert_to_numpy, a numpy matrix is returned.
"""
_is_training = self.training
self.eval()
all_embeddings = []
self.tokenizer = self.get_tokenizer()
if show_progress_bar is None:
show_progress_bar = (
logger.getEffectiveLevel() == logging.INFO
or logger.getEffectiveLevel() == logging.DEBUG
)
if convert_to_tensor:
convert_to_numpy = False
_input_was_string = False
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
sentences = [sentences]
_input_was_string = True
if device is not None:
self.to(device)
_permutation = np.argsort([-len(i) for i in sentences])
_inverse_permutation = np.argsort(_permutation)
sentences = [sentences[idx] for idx in _permutation]
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512)
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
if has_tqdm:
range_iter = trange(
0,
len(sentences),
batch_size,
desc='Encoding',
disable=not show_progress_bar,
)
else:
range_iter = range(0, len(sentences), batch_size)
truncate_dim = truncate_dim or self.config.truncate_dim
instruction = self.text_model.get_instruction_from_task(task)
if instruction:
sentences = [instruction + sentence for sentence in sentences]
for i in range_iter:
tokens = self.tokenizer(
sentences[i: i + batch_size],
return_tensors='pt',
**tokenizer_kwargs,
).to(self.device)
embeddings = self.get_text_features(input_ids=tokens)
if truncate_dim:
embeddings = self._truncate_embeddings(embeddings, truncate_dim)
if normalize_embeddings:
embeddings = f.normalize(embeddings, p=2, dim=1)
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray(
[emb.to(torch.float32).numpy() for emb in all_embeddings]
)
if _input_was_string:
all_embeddings = all_embeddings[0]
self.train(_is_training)
return all_embeddings
def forward(
self,
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
return_dict: Optional[bool] = None,
return_loss: Optional[bool] = None,
*_,
**__,
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPOutput]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
image_embeds = self.get_image_features(pixel_values=pixel_values)
text_embeds = self.get_text_features(input_ids=input_ids)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if not return_dict:
output = (
logits_per_image,
logits_per_text,
text_embeds,
image_embeds,
None,
None,
)
return ((loss,) + output) if loss is not None else output
return CLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=None,
vision_model_output=None,
)
|