|
import re |
|
from typing import Dict, Optional |
|
import torch |
|
import torch.nn as nn |
|
from transformers import AutoConfig, AutoModel, PretrainedConfig |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
) |
|
|
|
|
|
_HF_ARCH_DICT = { |
|
|
|
'roberta': { |
|
'config_names': { |
|
'context_length': 'max_position_embeddings', |
|
'vocab_size': 'vocab_size', |
|
'width': 'hidden_size', |
|
'heads': 'num_attention_heads', |
|
'layers': 'num_hidden_layers', |
|
'layer_attr': 'layer', |
|
'token_embeddings_attr': 'embeddings', |
|
}, |
|
'pooler': 'mean_pooler', |
|
}, |
|
|
|
'xlm-roberta': { |
|
'config_names': { |
|
'context_length': 'max_position_embeddings', |
|
'vocab_size': 'vocab_size', |
|
'width': 'hidden_size', |
|
'heads': 'num_attention_heads', |
|
'layers': 'num_hidden_layers', |
|
'layer_attr': 'layer', |
|
'token_embeddings_attr': 'embeddings', |
|
}, |
|
'pooler': 'mean_pooler', |
|
}, |
|
|
|
'bert': { |
|
'config_names': { |
|
'context_length': 'max_position_embeddings', |
|
'vocab_size': 'vocab_size', |
|
'width': 'hidden_size', |
|
'heads': 'num_attention_heads', |
|
'layers': 'num_hidden_layers', |
|
}, |
|
'pooler': 'cls_pooler', |
|
}, |
|
} |
|
|
|
_POOLERS = {} |
|
|
|
|
|
def _camel2snake(s): |
|
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower() |
|
|
|
|
|
def register_pooler(cls): |
|
"""Decorator registering pooler class""" |
|
_POOLERS[_camel2snake(cls.__name__)] = cls |
|
return cls |
|
|
|
|
|
@register_pooler |
|
class MeanPooler(nn.Module): |
|
@staticmethod |
|
def forward(x: BaseModelOutput, attention_mask: torch.Tensor): |
|
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1) |
|
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True) |
|
|
|
|
|
@register_pooler |
|
class MaxPooler(nn.Module): |
|
@staticmethod |
|
def forward(x: BaseModelOutput, attention_mask: torch.Tensor): |
|
masked_output = x.last_hidden_state.masked_fill( |
|
attention_mask.unsqueeze(-1), -torch.inf |
|
) |
|
return masked_output.max(1).values |
|
|
|
|
|
@register_pooler |
|
class ClsPooler(nn.Module): |
|
def __init__(self, use_pooler_output: bool = True): |
|
super().__init__() |
|
self.cls_token_position = 0 |
|
self.use_pooler_output = use_pooler_output |
|
|
|
def forward(self, x: BaseModelOutput, _: torch.Tensor): |
|
if ( |
|
self.use_pooler_output |
|
and isinstance( |
|
x, |
|
( |
|
BaseModelOutputWithPooling, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
), |
|
) |
|
and (x.pooler_output is not None) |
|
): |
|
return x.pooler_output |
|
return x.last_hidden_state[:, self.cls_token_position, :] |
|
|
|
|
|
class HFTextEncoder(nn.Module): |
|
output_tokens: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
output_dim: int, |
|
config: PretrainedConfig = None, |
|
pooler_type: str = None, |
|
proj_type: str = None, |
|
proj_bias: bool = False, |
|
pretrained: bool = True, |
|
output_tokens: bool = False, |
|
trust_remote_code: bool = False, |
|
revision: Optional[str] = None, |
|
code_revision: Optional[str] = None, |
|
model_config_kwargs: Optional[Dict] = None, |
|
): |
|
super().__init__() |
|
self.output_tokens = output_tokens |
|
self.output_dim = output_dim |
|
|
|
model_config_kwargs = model_config_kwargs or {} |
|
|
|
if config is None: |
|
self.config = AutoConfig.from_pretrained( |
|
model_name_or_path, |
|
trust_remote_code=trust_remote_code, |
|
revision=revision, |
|
code_revision=code_revision, |
|
) |
|
self.config.update(model_config_kwargs) |
|
create_func, model_args = ( |
|
(AutoModel.from_pretrained, model_name_or_path) |
|
if pretrained |
|
else (AutoModel.from_config, self.config) |
|
) |
|
if ( |
|
hasattr(self.config, 'is_encoder_decoder') |
|
and self.config.is_encoder_decoder |
|
): |
|
self.transformer = create_func( |
|
model_args, |
|
trust_remote_code=trust_remote_code, |
|
revision=revision, |
|
code_revision=code_revision, |
|
**model_config_kwargs, |
|
) |
|
self.transformer = self.transformer.encoder |
|
else: |
|
self.transformer = create_func( |
|
model_args, |
|
trust_remote_code=trust_remote_code, |
|
revision=revision, |
|
add_pooling_layer=False, |
|
code_revision=code_revision, |
|
**model_config_kwargs, |
|
) |
|
else: |
|
self.config = config |
|
self.config.update(model_config_kwargs) |
|
self.transformer = AutoModel.from_config( |
|
self.config, |
|
trust_remote_code=trust_remote_code, |
|
revision=revision, |
|
code_revision=code_revision, |
|
) |
|
self.vocab_size = getattr(self.config, 'vocab_size', 0) |
|
self.context_length = getattr(self.config, 'max_position_embeddings', 0) |
|
|
|
pooler_type = pooler_type or _HF_ARCH_DICT[self.config.model_type]['pooler'] |
|
self.pooler = _POOLERS[pooler_type]() |
|
|
|
d_model = getattr( |
|
self.config, _HF_ARCH_DICT[self.config.model_type]['config_names']['width'] |
|
) |
|
if (d_model == output_dim) and (proj_type is None): |
|
self.proj = nn.Identity() |
|
elif (d_model != output_dim) or proj_type == 'linear': |
|
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias) |
|
elif proj_type == 'mlp': |
|
hidden_size = (d_model + output_dim) // 2 |
|
self.proj = nn.Sequential( |
|
nn.Linear(d_model, hidden_size, bias=proj_bias), |
|
nn.GELU(), |
|
nn.Linear(hidden_size, output_dim, bias=proj_bias), |
|
) |
|
|
|
self._task_instructions = {} |
|
self._lora_adaptation_map = {} |
|
self._supports_task_instructions = False |
|
self._supports_lora = False |
|
if ( |
|
hasattr(self.transformer, '_adaptation_map') |
|
and len(self.transformer._adaptation_map) > 0 |
|
): |
|
self._lora_adaptation_map = self.transformer._adaptation_map |
|
self._supports_lora = True |
|
if ( |
|
hasattr(self.transformer, '_task_instructions') |
|
and len(self.transformer._task_instructions) > 0 |
|
): |
|
self._task_instructions = self.transformer._task_instructions |
|
self._supports_task_instructions = True |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, _=True): |
|
self.transformer.gradient_checkpointing_enable() |
|
|
|
def init_parameters(self): |
|
pass |
|
|
|
def forward(self, x: torch.Tensor, adapter_mask: Optional[torch.Tensor] = None): |
|
attn_mask = (x != self.config.pad_token_id).long() |
|
kwargs = {} |
|
if adapter_mask is not None: |
|
kwargs['adapter_mask'] = adapter_mask |
|
out = self.transformer(input_ids=x, attention_mask=attn_mask, **kwargs) |
|
pooled_out = self.pooler(out, attn_mask) |
|
projected = self.proj(pooled_out) |
|
seqlen = out.last_hidden_state.shape[1] |
|
tokens = ( |
|
out.last_hidden_state[ |
|
:, torch.arange(seqlen) != self.pooler.cls_token_position, : |
|
] |
|
if isinstance(self.pooler, ClsPooler) |
|
else out.last_hidden_state |
|
) |
|
if self.output_tokens: |
|
return projected, tokens |
|
return projected |
|
|
|
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): |
|
if not unlocked_layers: |
|
for n, p in self.transformer.named_parameters(): |
|
p.requires_grad = ( |
|
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False |
|
) |
|
return |
|
|
|
encoder = ( |
|
self.transformer.encoder |
|
if hasattr(self.transformer, 'encoder') |
|
else self.transformer |
|
) |
|
layer_list = getattr( |
|
encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr'] |
|
) |
|
print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model') |
|
embeddings = getattr( |
|
self.transformer, |
|
_HF_ARCH_DICT[self.config.model_type]['config_names'][ |
|
'token_embeddings_attr' |
|
], |
|
) |
|
modules = [embeddings, *layer_list][:-unlocked_layers] |
|
|
|
for module in modules: |
|
for n, p in module.named_parameters(): |
|
p.requires_grad = ( |
|
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False |
|
) |
|
|