revert to previous scores
Browse files
README.md
CHANGED
@@ -11,7 +11,7 @@ datasets:
|
|
11 |
language: en
|
12 |
license: apache-2.0
|
13 |
model-index:
|
14 |
-
- name: jina-embedding-
|
15 |
results:
|
16 |
- task:
|
17 |
type: Classification
|
@@ -23,11 +23,11 @@ model-index:
|
|
23 |
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
24 |
metrics:
|
25 |
- type: accuracy
|
26 |
-
value:
|
27 |
- type: ap
|
28 |
-
value:
|
29 |
- type: f1
|
30 |
-
value:
|
31 |
- task:
|
32 |
type: Classification
|
33 |
dataset:
|
@@ -38,11 +38,11 @@ model-index:
|
|
38 |
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
39 |
metrics:
|
40 |
- type: accuracy
|
41 |
-
value:
|
42 |
- type: ap
|
43 |
-
value:
|
44 |
- type: f1
|
45 |
-
value: 62.
|
46 |
- task:
|
47 |
type: Classification
|
48 |
dataset:
|
@@ -53,9 +53,9 @@ model-index:
|
|
53 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
54 |
metrics:
|
55 |
- type: accuracy
|
56 |
-
value: 30.
|
57 |
- type: f1
|
58 |
-
value: 29.
|
59 |
- task:
|
60 |
type: Retrieval
|
61 |
dataset:
|
@@ -963,1053 +963,156 @@ model-index:
|
|
963 |
revision: None
|
964 |
metrics:
|
965 |
- type: map_at_1
|
966 |
-
value:
|
967 |
- type: map_at_10
|
968 |
-
value:
|
969 |
- type: map_at_100
|
970 |
-
value:
|
971 |
- type: map_at_1000
|
972 |
-
value:
|
973 |
- type: map_at_3
|
974 |
-
value:
|
975 |
- type: map_at_5
|
976 |
-
value:
|
977 |
- type: mrr_at_1
|
978 |
-
value:
|
979 |
- type: mrr_at_10
|
980 |
-
value:
|
981 |
- type: mrr_at_100
|
982 |
-
value:
|
983 |
-
- type: mrr_at_1000
|
984 |
-
value: 37.043
|
985 |
-
- type: mrr_at_3
|
986 |
-
value: 31.093
|
987 |
-
- type: mrr_at_5
|
988 |
-
value: 33.635999999999996
|
989 |
-
- type: ndcg_at_1
|
990 |
-
value: 22.119
|
991 |
-
- type: ndcg_at_10
|
992 |
-
value: 43.566
|
993 |
-
- type: ndcg_at_100
|
994 |
-
value: 49.370000000000005
|
995 |
-
- type: ndcg_at_1000
|
996 |
-
value: 49.901
|
997 |
-
- type: ndcg_at_3
|
998 |
-
value: 34.06
|
999 |
-
- type: ndcg_at_5
|
1000 |
-
value: 38.653999999999996
|
1001 |
-
- type: precision_at_1
|
1002 |
-
value: 22.119
|
1003 |
-
- type: precision_at_10
|
1004 |
-
value: 6.92
|
1005 |
-
- type: precision_at_100
|
1006 |
-
value: 0.95
|
1007 |
-
- type: precision_at_1000
|
1008 |
-
value: 0.099
|
1009 |
-
- type: precision_at_3
|
1010 |
-
value: 14.272000000000002
|
1011 |
-
- type: precision_at_5
|
1012 |
-
value: 10.811
|
1013 |
-
- type: recall_at_1
|
1014 |
-
value: 22.119
|
1015 |
-
- type: recall_at_10
|
1016 |
-
value: 69.203
|
1017 |
-
- type: recall_at_100
|
1018 |
-
value: 95.021
|
1019 |
-
- type: recall_at_1000
|
1020 |
-
value: 99.075
|
1021 |
-
- type: recall_at_3
|
1022 |
-
value: 42.817
|
1023 |
-
- type: recall_at_5
|
1024 |
-
value: 54.054
|
1025 |
-
- task:
|
1026 |
-
type: Clustering
|
1027 |
-
dataset:
|
1028 |
-
type: mteb/arxiv-clustering-p2p
|
1029 |
-
name: MTEB ArxivClusteringP2P
|
1030 |
-
config: default
|
1031 |
-
split: test
|
1032 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
1033 |
-
metrics:
|
1034 |
-
- type: v_measure
|
1035 |
-
value: 34.1740289109719
|
1036 |
-
- task:
|
1037 |
-
type: Clustering
|
1038 |
-
dataset:
|
1039 |
-
type: mteb/arxiv-clustering-s2s
|
1040 |
-
name: MTEB ArxivClusteringS2S
|
1041 |
-
config: default
|
1042 |
-
split: test
|
1043 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
1044 |
-
metrics:
|
1045 |
-
- type: v_measure
|
1046 |
-
value: 23.985251383455463
|
1047 |
-
- task:
|
1048 |
-
type: Reranking
|
1049 |
-
dataset:
|
1050 |
-
type: mteb/askubuntudupquestions-reranking
|
1051 |
-
name: MTEB AskUbuntuDupQuestions
|
1052 |
-
config: default
|
1053 |
-
split: test
|
1054 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
1055 |
-
metrics:
|
1056 |
-
- type: map
|
1057 |
-
value: 60.24873612289029
|
1058 |
-
- type: mrr
|
1059 |
-
value: 74.65692740623489
|
1060 |
-
- task:
|
1061 |
-
type: STS
|
1062 |
-
dataset:
|
1063 |
-
type: mteb/biosses-sts
|
1064 |
-
name: MTEB BIOSSES
|
1065 |
-
config: default
|
1066 |
-
split: test
|
1067 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
1068 |
-
metrics:
|
1069 |
-
- type: cos_sim_pearson
|
1070 |
-
value: 86.22415390332444
|
1071 |
-
- type: cos_sim_spearman
|
1072 |
-
value: 82.9591191954711
|
1073 |
-
- type: euclidean_pearson
|
1074 |
-
value: 44.096317524324945
|
1075 |
-
- type: euclidean_spearman
|
1076 |
-
value: 42.95218351391625
|
1077 |
-
- type: manhattan_pearson
|
1078 |
-
value: 44.07766490545065
|
1079 |
-
- type: manhattan_spearman
|
1080 |
-
value: 42.78350497166606
|
1081 |
-
- task:
|
1082 |
-
type: Classification
|
1083 |
-
dataset:
|
1084 |
-
type: mteb/banking77
|
1085 |
-
name: MTEB Banking77Classification
|
1086 |
-
config: default
|
1087 |
-
split: test
|
1088 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
1089 |
-
metrics:
|
1090 |
-
- type: accuracy
|
1091 |
-
value: 74.64285714285714
|
1092 |
-
- type: f1
|
1093 |
-
value: 73.53680835577447
|
1094 |
-
- task:
|
1095 |
-
type: Clustering
|
1096 |
-
dataset:
|
1097 |
-
type: mteb/biorxiv-clustering-p2p
|
1098 |
-
name: MTEB BiorxivClusteringP2P
|
1099 |
-
config: default
|
1100 |
-
split: test
|
1101 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
1102 |
-
metrics:
|
1103 |
-
- type: v_measure
|
1104 |
-
value: 28.512813238490164
|
1105 |
-
- task:
|
1106 |
-
type: Clustering
|
1107 |
-
dataset:
|
1108 |
-
type: mteb/biorxiv-clustering-s2s
|
1109 |
-
name: MTEB BiorxivClusteringS2S
|
1110 |
-
config: default
|
1111 |
-
split: test
|
1112 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
1113 |
-
metrics:
|
1114 |
-
- type: v_measure
|
1115 |
-
value: 20.942214972649488
|
1116 |
-
- task:
|
1117 |
-
type: Retrieval
|
1118 |
-
dataset:
|
1119 |
-
type: BeIR/cqadupstack
|
1120 |
-
name: MTEB CQADupstackAndroidRetrieval
|
1121 |
-
config: default
|
1122 |
-
split: test
|
1123 |
-
revision: None
|
1124 |
-
metrics:
|
1125 |
-
- type: map_at_1
|
1126 |
-
value: 28.255999999999997
|
1127 |
-
- type: map_at_10
|
1128 |
-
value: 37.091
|
1129 |
-
- type: map_at_100
|
1130 |
-
value: 38.428000000000004
|
1131 |
-
- type: map_at_1000
|
1132 |
-
value: 38.559
|
1133 |
-
- type: map_at_3
|
1134 |
-
value: 34.073
|
1135 |
-
- type: map_at_5
|
1136 |
-
value: 35.739
|
1137 |
-
- type: mrr_at_1
|
1138 |
-
value: 34.907
|
1139 |
-
- type: mrr_at_10
|
1140 |
-
value: 42.769
|
1141 |
-
- type: mrr_at_100
|
1142 |
-
value: 43.607
|
1143 |
-
- type: mrr_at_1000
|
1144 |
-
value: 43.656
|
1145 |
-
- type: mrr_at_3
|
1146 |
-
value: 39.986
|
1147 |
-
- type: mrr_at_5
|
1148 |
-
value: 41.581
|
1149 |
-
- type: ndcg_at_1
|
1150 |
-
value: 34.907
|
1151 |
-
- type: ndcg_at_10
|
1152 |
-
value: 42.681000000000004
|
1153 |
-
- type: ndcg_at_100
|
1154 |
-
value: 48.213
|
1155 |
-
- type: ndcg_at_1000
|
1156 |
-
value: 50.464
|
1157 |
-
- type: ndcg_at_3
|
1158 |
-
value: 37.813
|
1159 |
-
- type: ndcg_at_5
|
1160 |
-
value: 39.936
|
1161 |
-
- type: precision_at_1
|
1162 |
-
value: 34.907
|
1163 |
-
- type: precision_at_10
|
1164 |
-
value: 7.911
|
1165 |
-
- type: precision_at_100
|
1166 |
-
value: 1.349
|
1167 |
-
- type: precision_at_1000
|
1168 |
-
value: 0.184
|
1169 |
-
- type: precision_at_3
|
1170 |
-
value: 17.93
|
1171 |
-
- type: precision_at_5
|
1172 |
-
value: 12.732
|
1173 |
-
- type: recall_at_1
|
1174 |
-
value: 28.255999999999997
|
1175 |
-
- type: recall_at_10
|
1176 |
-
value: 53.49699999999999
|
1177 |
-
- type: recall_at_100
|
1178 |
-
value: 77.288
|
1179 |
-
- type: recall_at_1000
|
1180 |
-
value: 91.776
|
1181 |
-
- type: recall_at_3
|
1182 |
-
value: 39.18
|
1183 |
-
- type: recall_at_5
|
1184 |
-
value: 45.365
|
1185 |
-
- task:
|
1186 |
-
type: Retrieval
|
1187 |
-
dataset:
|
1188 |
-
type: BeIR/cqadupstack
|
1189 |
-
name: MTEB CQADupstackEnglishRetrieval
|
1190 |
-
config: default
|
1191 |
-
split: test
|
1192 |
-
revision: None
|
1193 |
-
metrics:
|
1194 |
-
- type: map_at_1
|
1195 |
-
value: 25.563999999999997
|
1196 |
-
- type: map_at_10
|
1197 |
-
value: 33.913
|
1198 |
-
- type: map_at_100
|
1199 |
-
value: 34.966
|
1200 |
-
- type: map_at_1000
|
1201 |
-
value: 35.104
|
1202 |
-
- type: map_at_3
|
1203 |
-
value: 31.413000000000004
|
1204 |
-
- type: map_at_5
|
1205 |
-
value: 32.854
|
1206 |
-
- type: mrr_at_1
|
1207 |
-
value: 31.72
|
1208 |
-
- type: mrr_at_10
|
1209 |
-
value: 39.391
|
1210 |
-
- type: mrr_at_100
|
1211 |
-
value: 40.02
|
1212 |
-
- type: mrr_at_1000
|
1213 |
-
value: 40.076
|
1214 |
-
- type: mrr_at_3
|
1215 |
-
value: 37.314
|
1216 |
-
- type: mrr_at_5
|
1217 |
-
value: 38.507999999999996
|
1218 |
-
- type: ndcg_at_1
|
1219 |
-
value: 31.72
|
1220 |
-
- type: ndcg_at_10
|
1221 |
-
value: 38.933
|
1222 |
-
- type: ndcg_at_100
|
1223 |
-
value: 43.024
|
1224 |
-
- type: ndcg_at_1000
|
1225 |
-
value: 45.556999999999995
|
1226 |
-
- type: ndcg_at_3
|
1227 |
-
value: 35.225
|
1228 |
-
- type: ndcg_at_5
|
1229 |
-
value: 36.984
|
1230 |
-
- type: precision_at_1
|
1231 |
-
value: 31.72
|
1232 |
-
- type: precision_at_10
|
1233 |
-
value: 7.248
|
1234 |
-
- type: precision_at_100
|
1235 |
-
value: 1.192
|
1236 |
-
- type: precision_at_1000
|
1237 |
-
value: 0.16999999999999998
|
1238 |
-
- type: precision_at_3
|
1239 |
-
value: 16.943
|
1240 |
-
- type: precision_at_5
|
1241 |
-
value: 11.975
|
1242 |
-
- type: recall_at_1
|
1243 |
-
value: 25.563999999999997
|
1244 |
-
- type: recall_at_10
|
1245 |
-
value: 47.808
|
1246 |
-
- type: recall_at_100
|
1247 |
-
value: 65.182
|
1248 |
-
- type: recall_at_1000
|
1249 |
-
value: 81.831
|
1250 |
-
- type: recall_at_3
|
1251 |
-
value: 36.889
|
1252 |
-
- type: recall_at_5
|
1253 |
-
value: 41.829
|
1254 |
-
- task:
|
1255 |
-
type: Retrieval
|
1256 |
-
dataset:
|
1257 |
-
type: BeIR/cqadupstack
|
1258 |
-
name: MTEB CQADupstackGamingRetrieval
|
1259 |
-
config: default
|
1260 |
-
split: test
|
1261 |
-
revision: None
|
1262 |
-
metrics:
|
1263 |
-
- type: map_at_1
|
1264 |
-
value: 33.662
|
1265 |
-
- type: map_at_10
|
1266 |
-
value: 44.096999999999994
|
1267 |
-
- type: map_at_100
|
1268 |
-
value: 45.153999999999996
|
1269 |
-
- type: map_at_1000
|
1270 |
-
value: 45.223
|
1271 |
-
- type: map_at_3
|
1272 |
-
value: 41.377
|
1273 |
-
- type: map_at_5
|
1274 |
-
value: 42.935
|
1275 |
-
- type: mrr_at_1
|
1276 |
-
value: 38.997
|
1277 |
-
- type: mrr_at_10
|
1278 |
-
value: 47.675
|
1279 |
-
- type: mrr_at_100
|
1280 |
-
value: 48.476
|
1281 |
-
- type: mrr_at_1000
|
1282 |
-
value: 48.519
|
1283 |
-
- type: mrr_at_3
|
1284 |
-
value: 45.549
|
1285 |
-
- type: mrr_at_5
|
1286 |
-
value: 46.884
|
1287 |
-
- type: ndcg_at_1
|
1288 |
-
value: 38.997
|
1289 |
-
- type: ndcg_at_10
|
1290 |
-
value: 49.196
|
1291 |
-
- type: ndcg_at_100
|
1292 |
-
value: 53.788000000000004
|
1293 |
-
- type: ndcg_at_1000
|
1294 |
-
value: 55.393
|
1295 |
-
- type: ndcg_at_3
|
1296 |
-
value: 44.67
|
1297 |
-
- type: ndcg_at_5
|
1298 |
-
value: 46.991
|
1299 |
-
- type: precision_at_1
|
1300 |
-
value: 38.997
|
1301 |
-
- type: precision_at_10
|
1302 |
-
value: 7.875
|
1303 |
-
- type: precision_at_100
|
1304 |
-
value: 1.102
|
1305 |
-
- type: precision_at_1000
|
1306 |
-
value: 0.13
|
1307 |
-
- type: precision_at_3
|
1308 |
-
value: 19.854
|
1309 |
-
- type: precision_at_5
|
1310 |
-
value: 13.605
|
1311 |
-
- type: recall_at_1
|
1312 |
-
value: 33.662
|
1313 |
-
- type: recall_at_10
|
1314 |
-
value: 60.75899999999999
|
1315 |
-
- type: recall_at_100
|
1316 |
-
value: 81.11699999999999
|
1317 |
-
- type: recall_at_1000
|
1318 |
-
value: 92.805
|
1319 |
-
- type: recall_at_3
|
1320 |
-
value: 48.577999999999996
|
1321 |
-
- type: recall_at_5
|
1322 |
-
value: 54.384
|
1323 |
-
- task:
|
1324 |
-
type: Retrieval
|
1325 |
-
dataset:
|
1326 |
-
type: BeIR/cqadupstack
|
1327 |
-
name: MTEB CQADupstackGisRetrieval
|
1328 |
-
config: default
|
1329 |
-
split: test
|
1330 |
-
revision: None
|
1331 |
-
metrics:
|
1332 |
-
- type: map_at_1
|
1333 |
-
value: 21.313
|
1334 |
-
- type: map_at_10
|
1335 |
-
value: 29.036
|
1336 |
-
- type: map_at_100
|
1337 |
-
value: 29.975
|
1338 |
-
- type: map_at_1000
|
1339 |
-
value: 30.063000000000002
|
1340 |
-
- type: map_at_3
|
1341 |
-
value: 26.878999999999998
|
1342 |
-
- type: map_at_5
|
1343 |
-
value: 28.005999999999997
|
1344 |
-
- type: mrr_at_1
|
1345 |
-
value: 23.39
|
1346 |
-
- type: mrr_at_10
|
1347 |
-
value: 31.072
|
1348 |
-
- type: mrr_at_100
|
1349 |
-
value: 31.922
|
1350 |
-
- type: mrr_at_1000
|
1351 |
-
value: 31.995
|
1352 |
-
- type: mrr_at_3
|
1353 |
-
value: 28.908
|
1354 |
-
- type: mrr_at_5
|
1355 |
-
value: 30.104999999999997
|
1356 |
-
- type: ndcg_at_1
|
1357 |
-
value: 23.39
|
1358 |
-
- type: ndcg_at_10
|
1359 |
-
value: 33.448
|
1360 |
-
- type: ndcg_at_100
|
1361 |
-
value: 38.255
|
1362 |
-
- type: ndcg_at_1000
|
1363 |
-
value: 40.542
|
1364 |
-
- type: ndcg_at_3
|
1365 |
-
value: 29.060000000000002
|
1366 |
-
- type: ndcg_at_5
|
1367 |
-
value: 31.023
|
1368 |
-
- type: precision_at_1
|
1369 |
-
value: 23.39
|
1370 |
-
- type: precision_at_10
|
1371 |
-
value: 5.175
|
1372 |
-
- type: precision_at_100
|
1373 |
-
value: 0.8049999999999999
|
1374 |
-
- type: precision_at_1000
|
1375 |
-
value: 0.10300000000000001
|
1376 |
-
- type: precision_at_3
|
1377 |
-
value: 12.504999999999999
|
1378 |
-
- type: precision_at_5
|
1379 |
-
value: 8.61
|
1380 |
-
- type: recall_at_1
|
1381 |
-
value: 21.313
|
1382 |
-
- type: recall_at_10
|
1383 |
-
value: 45.345
|
1384 |
-
- type: recall_at_100
|
1385 |
-
value: 67.752
|
1386 |
-
- type: recall_at_1000
|
1387 |
-
value: 84.937
|
1388 |
-
- type: recall_at_3
|
1389 |
-
value: 33.033
|
1390 |
-
- type: recall_at_5
|
1391 |
-
value: 37.929
|
1392 |
-
- task:
|
1393 |
-
type: Retrieval
|
1394 |
-
dataset:
|
1395 |
-
type: BeIR/cqadupstack
|
1396 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
1397 |
-
config: default
|
1398 |
-
split: test
|
1399 |
-
revision: None
|
1400 |
-
metrics:
|
1401 |
-
- type: map_at_1
|
1402 |
-
value: 14.255999999999998
|
1403 |
-
- type: map_at_10
|
1404 |
-
value: 20.339
|
1405 |
-
- type: map_at_100
|
1406 |
-
value: 21.491
|
1407 |
-
- type: map_at_1000
|
1408 |
-
value: 21.616
|
1409 |
-
- type: map_at_3
|
1410 |
-
value: 18.481
|
1411 |
-
- type: map_at_5
|
1412 |
-
value: 19.594
|
1413 |
-
- type: mrr_at_1
|
1414 |
-
value: 17.413
|
1415 |
-
- type: mrr_at_10
|
1416 |
-
value: 24.146
|
1417 |
-
- type: mrr_at_100
|
1418 |
-
value: 25.188
|
1419 |
-
- type: mrr_at_1000
|
1420 |
-
value: 25.273
|
1421 |
-
- type: mrr_at_3
|
1422 |
-
value: 22.264
|
1423 |
-
- type: mrr_at_5
|
1424 |
-
value: 23.302
|
1425 |
-
- type: ndcg_at_1
|
1426 |
-
value: 17.413
|
1427 |
-
- type: ndcg_at_10
|
1428 |
-
value: 24.272
|
1429 |
-
- type: ndcg_at_100
|
1430 |
-
value: 29.82
|
1431 |
-
- type: ndcg_at_1000
|
1432 |
-
value: 33.072
|
1433 |
-
- type: ndcg_at_3
|
1434 |
-
value: 20.826
|
1435 |
-
- type: ndcg_at_5
|
1436 |
-
value: 22.535
|
1437 |
-
- type: precision_at_1
|
1438 |
-
value: 17.413
|
1439 |
-
- type: precision_at_10
|
1440 |
-
value: 4.366
|
1441 |
-
- type: precision_at_100
|
1442 |
-
value: 0.818
|
1443 |
-
- type: precision_at_1000
|
1444 |
-
value: 0.124
|
1445 |
-
- type: precision_at_3
|
1446 |
-
value: 9.866999999999999
|
1447 |
-
- type: precision_at_5
|
1448 |
-
value: 7.164
|
1449 |
-
- type: recall_at_1
|
1450 |
-
value: 14.255999999999998
|
1451 |
-
- type: recall_at_10
|
1452 |
-
value: 32.497
|
1453 |
-
- type: recall_at_100
|
1454 |
-
value: 56.592
|
1455 |
-
- type: recall_at_1000
|
1456 |
-
value: 80.17699999999999
|
1457 |
-
- type: recall_at_3
|
1458 |
-
value: 23.195
|
1459 |
-
- type: recall_at_5
|
1460 |
-
value: 27.392
|
1461 |
-
- task:
|
1462 |
-
type: Retrieval
|
1463 |
-
dataset:
|
1464 |
-
type: BeIR/cqadupstack
|
1465 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
1466 |
-
config: default
|
1467 |
-
split: test
|
1468 |
-
revision: None
|
1469 |
-
metrics:
|
1470 |
-
- type: map_at_1
|
1471 |
-
value: 22.709
|
1472 |
-
- type: map_at_10
|
1473 |
-
value: 31.377
|
1474 |
-
- type: map_at_100
|
1475 |
-
value: 32.536
|
1476 |
-
- type: map_at_1000
|
1477 |
-
value: 32.669
|
1478 |
-
- type: map_at_3
|
1479 |
-
value: 28.572999999999997
|
1480 |
-
- type: map_at_5
|
1481 |
-
value: 30.205
|
1482 |
-
- type: mrr_at_1
|
1483 |
-
value: 27.815
|
1484 |
-
- type: mrr_at_10
|
1485 |
-
value: 36.452
|
1486 |
-
- type: mrr_at_100
|
1487 |
-
value: 37.302
|
1488 |
-
- type: mrr_at_1000
|
1489 |
-
value: 37.364000000000004
|
1490 |
-
- type: mrr_at_3
|
1491 |
-
value: 33.75
|
1492 |
-
- type: mrr_at_5
|
1493 |
-
value: 35.43
|
1494 |
-
- type: ndcg_at_1
|
1495 |
-
value: 27.815
|
1496 |
-
- type: ndcg_at_10
|
1497 |
-
value: 36.84
|
1498 |
-
- type: ndcg_at_100
|
1499 |
-
value: 42.092
|
1500 |
-
- type: ndcg_at_1000
|
1501 |
-
value: 44.727
|
1502 |
-
- type: ndcg_at_3
|
1503 |
-
value: 31.964
|
1504 |
-
- type: ndcg_at_5
|
1505 |
-
value: 34.428
|
1506 |
-
- type: precision_at_1
|
1507 |
-
value: 27.815
|
1508 |
-
- type: precision_at_10
|
1509 |
-
value: 6.67
|
1510 |
-
- type: precision_at_100
|
1511 |
-
value: 1.093
|
1512 |
-
- type: precision_at_1000
|
1513 |
-
value: 0.151
|
1514 |
-
- type: precision_at_3
|
1515 |
-
value: 14.982000000000001
|
1516 |
-
- type: precision_at_5
|
1517 |
-
value: 10.857
|
1518 |
-
- type: recall_at_1
|
1519 |
-
value: 22.709
|
1520 |
-
- type: recall_at_10
|
1521 |
-
value: 48.308
|
1522 |
-
- type: recall_at_100
|
1523 |
-
value: 70.866
|
1524 |
-
- type: recall_at_1000
|
1525 |
-
value: 88.236
|
1526 |
-
- type: recall_at_3
|
1527 |
-
value: 34.709
|
1528 |
-
- type: recall_at_5
|
1529 |
-
value: 40.996
|
1530 |
-
- task:
|
1531 |
-
type: Retrieval
|
1532 |
-
dataset:
|
1533 |
-
type: BeIR/cqadupstack
|
1534 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
1535 |
-
config: default
|
1536 |
-
split: test
|
1537 |
-
revision: None
|
1538 |
-
metrics:
|
1539 |
-
- type: map_at_1
|
1540 |
-
value: 22.348000000000003
|
1541 |
-
- type: map_at_10
|
1542 |
-
value: 29.427999999999997
|
1543 |
-
- type: map_at_100
|
1544 |
-
value: 30.499
|
1545 |
-
- type: map_at_1000
|
1546 |
-
value: 30.631999999999998
|
1547 |
-
- type: map_at_3
|
1548 |
-
value: 27.035999999999998
|
1549 |
-
- type: map_at_5
|
1550 |
-
value: 28.351
|
1551 |
-
- type: mrr_at_1
|
1552 |
-
value: 27.74
|
1553 |
-
- type: mrr_at_10
|
1554 |
-
value: 34.424
|
1555 |
-
- type: mrr_at_100
|
1556 |
-
value: 35.341
|
1557 |
-
- type: mrr_at_1000
|
1558 |
-
value: 35.419
|
1559 |
-
- type: mrr_at_3
|
1560 |
-
value: 32.401
|
1561 |
-
- type: mrr_at_5
|
1562 |
-
value: 33.497
|
1563 |
-
- type: ndcg_at_1
|
1564 |
-
value: 27.74
|
1565 |
-
- type: ndcg_at_10
|
1566 |
-
value: 34.136
|
1567 |
-
- type: ndcg_at_100
|
1568 |
-
value: 39.269
|
1569 |
-
- type: ndcg_at_1000
|
1570 |
-
value: 42.263
|
1571 |
-
- type: ndcg_at_3
|
1572 |
-
value: 30.171999999999997
|
1573 |
-
- type: ndcg_at_5
|
1574 |
-
value: 31.956
|
1575 |
-
- type: precision_at_1
|
1576 |
-
value: 27.74
|
1577 |
-
- type: precision_at_10
|
1578 |
-
value: 6.062
|
1579 |
-
- type: precision_at_100
|
1580 |
-
value: 1.014
|
1581 |
-
- type: precision_at_1000
|
1582 |
-
value: 0.146
|
1583 |
-
- type: precision_at_3
|
1584 |
-
value: 14.079
|
1585 |
-
- type: precision_at_5
|
1586 |
-
value: 9.977
|
1587 |
-
- type: recall_at_1
|
1588 |
-
value: 22.348000000000003
|
1589 |
-
- type: recall_at_10
|
1590 |
-
value: 43.477
|
1591 |
-
- type: recall_at_100
|
1592 |
-
value: 65.945
|
1593 |
-
- type: recall_at_1000
|
1594 |
-
value: 86.587
|
1595 |
-
- type: recall_at_3
|
1596 |
-
value: 32.107
|
1597 |
-
- type: recall_at_5
|
1598 |
-
value: 36.974000000000004
|
1599 |
-
- task:
|
1600 |
-
type: Retrieval
|
1601 |
-
dataset:
|
1602 |
-
type: BeIR/cqadupstack
|
1603 |
-
name: MTEB CQADupstackRetrieval
|
1604 |
-
config: default
|
1605 |
-
split: test
|
1606 |
-
revision: None
|
1607 |
-
metrics:
|
1608 |
-
- type: map_at_1
|
1609 |
-
value: 21.688499999999998
|
1610 |
-
- type: map_at_10
|
1611 |
-
value: 29.164666666666665
|
1612 |
-
- type: map_at_100
|
1613 |
-
value: 30.22575
|
1614 |
-
- type: map_at_1000
|
1615 |
-
value: 30.350833333333334
|
1616 |
-
- type: map_at_3
|
1617 |
-
value: 26.82025
|
1618 |
-
- type: map_at_5
|
1619 |
-
value: 28.14966666666667
|
1620 |
-
- type: mrr_at_1
|
1621 |
-
value: 25.779249999999998
|
1622 |
-
- type: mrr_at_10
|
1623 |
-
value: 32.969
|
1624 |
-
- type: mrr_at_100
|
1625 |
-
value: 33.81725
|
1626 |
- type: mrr_at_1000
|
1627 |
-
value:
|
1628 |
- type: mrr_at_3
|
1629 |
-
value:
|
1630 |
- type: mrr_at_5
|
1631 |
-
value:
|
1632 |
- type: ndcg_at_1
|
1633 |
-
value: 25.
|
1634 |
- type: ndcg_at_10
|
1635 |
-
value:
|
1636 |
- type: ndcg_at_100
|
1637 |
-
value:
|
1638 |
- type: ndcg_at_1000
|
1639 |
-
value:
|
1640 |
- type: ndcg_at_3
|
1641 |
-
value:
|
1642 |
- type: ndcg_at_5
|
1643 |
-
value:
|
1644 |
- type: precision_at_1
|
1645 |
-
value: 25.
|
1646 |
- type: precision_at_10
|
1647 |
-
value:
|
1648 |
- type: precision_at_100
|
1649 |
-
value: 0.
|
1650 |
- type: precision_at_1000
|
1651 |
-
value: 0.
|
1652 |
- type: precision_at_3
|
1653 |
-
value:
|
1654 |
- type: precision_at_5
|
1655 |
-
value:
|
1656 |
- type: recall_at_1
|
1657 |
-
value:
|
1658 |
- type: recall_at_10
|
1659 |
-
value:
|
1660 |
- type: recall_at_100
|
1661 |
-
value:
|
1662 |
- type: recall_at_1000
|
1663 |
-
value:
|
1664 |
- type: recall_at_3
|
1665 |
-
value:
|
1666 |
- type: recall_at_5
|
1667 |
-
value:
|
1668 |
- task:
|
1669 |
-
type:
|
1670 |
dataset:
|
1671 |
-
type:
|
1672 |
-
name: MTEB
|
1673 |
config: default
|
1674 |
split: test
|
1675 |
-
revision:
|
1676 |
metrics:
|
1677 |
-
- type:
|
1678 |
-
value:
|
1679 |
-
- type: map_at_10
|
1680 |
-
value: 23.238
|
1681 |
-
- type: map_at_100
|
1682 |
-
value: 24.026
|
1683 |
-
- type: map_at_1000
|
1684 |
-
value: 24.13
|
1685 |
-
- type: map_at_3
|
1686 |
-
value: 20.730999999999998
|
1687 |
-
- type: map_at_5
|
1688 |
-
value: 22.278000000000002
|
1689 |
-
- type: mrr_at_1
|
1690 |
-
value: 19.017999999999997
|
1691 |
-
- type: mrr_at_10
|
1692 |
-
value: 25.188
|
1693 |
-
- type: mrr_at_100
|
1694 |
-
value: 25.918999999999997
|
1695 |
-
- type: mrr_at_1000
|
1696 |
-
value: 25.996999999999996
|
1697 |
-
- type: mrr_at_3
|
1698 |
-
value: 22.776
|
1699 |
-
- type: mrr_at_5
|
1700 |
-
value: 24.256
|
1701 |
-
- type: ndcg_at_1
|
1702 |
-
value: 19.017999999999997
|
1703 |
-
- type: ndcg_at_10
|
1704 |
-
value: 27.171
|
1705 |
-
- type: ndcg_at_100
|
1706 |
-
value: 31.274
|
1707 |
-
- type: ndcg_at_1000
|
1708 |
-
value: 34.016000000000005
|
1709 |
-
- type: ndcg_at_3
|
1710 |
-
value: 22.442
|
1711 |
-
- type: ndcg_at_5
|
1712 |
-
value: 24.955
|
1713 |
-
- type: precision_at_1
|
1714 |
-
value: 19.017999999999997
|
1715 |
-
- type: precision_at_10
|
1716 |
-
value: 4.494
|
1717 |
-
- type: precision_at_100
|
1718 |
-
value: 0.712
|
1719 |
-
- type: precision_at_1000
|
1720 |
-
value: 0.10300000000000001
|
1721 |
-
- type: precision_at_3
|
1722 |
-
value: 9.611
|
1723 |
-
- type: precision_at_5
|
1724 |
-
value: 7.331
|
1725 |
-
- type: recall_at_1
|
1726 |
-
value: 17.279
|
1727 |
-
- type: recall_at_10
|
1728 |
-
value: 37.464999999999996
|
1729 |
-
- type: recall_at_100
|
1730 |
-
value: 56.458
|
1731 |
-
- type: recall_at_1000
|
1732 |
-
value: 76.759
|
1733 |
-
- type: recall_at_3
|
1734 |
-
value: 24.659
|
1735 |
-
- type: recall_at_5
|
1736 |
-
value: 30.672
|
1737 |
- task:
|
1738 |
-
type:
|
1739 |
dataset:
|
1740 |
-
type:
|
1741 |
-
name: MTEB
|
1742 |
config: default
|
1743 |
split: test
|
1744 |
-
revision:
|
1745 |
metrics:
|
1746 |
-
- type:
|
1747 |
-
value:
|
1748 |
-
- type: map_at_10
|
1749 |
-
value: 20.268
|
1750 |
-
- type: map_at_100
|
1751 |
-
value: 21.143
|
1752 |
-
- type: map_at_1000
|
1753 |
-
value: 21.264
|
1754 |
-
- type: map_at_3
|
1755 |
-
value: 18.557000000000002
|
1756 |
-
- type: map_at_5
|
1757 |
-
value: 19.483
|
1758 |
-
- type: mrr_at_1
|
1759 |
-
value: 17.997
|
1760 |
-
- type: mrr_at_10
|
1761 |
-
value: 23.591
|
1762 |
-
- type: mrr_at_100
|
1763 |
-
value: 24.387
|
1764 |
-
- type: mrr_at_1000
|
1765 |
-
value: 24.471
|
1766 |
-
- type: mrr_at_3
|
1767 |
-
value: 21.874
|
1768 |
-
- type: mrr_at_5
|
1769 |
-
value: 22.797
|
1770 |
-
- type: ndcg_at_1
|
1771 |
-
value: 17.997
|
1772 |
-
- type: ndcg_at_10
|
1773 |
-
value: 23.87
|
1774 |
-
- type: ndcg_at_100
|
1775 |
-
value: 28.459
|
1776 |
-
- type: ndcg_at_1000
|
1777 |
-
value: 31.66
|
1778 |
-
- type: ndcg_at_3
|
1779 |
-
value: 20.779
|
1780 |
-
- type: ndcg_at_5
|
1781 |
-
value: 22.137
|
1782 |
-
- type: precision_at_1
|
1783 |
-
value: 17.997
|
1784 |
-
- type: precision_at_10
|
1785 |
-
value: 4.25
|
1786 |
-
- type: precision_at_100
|
1787 |
-
value: 0.761
|
1788 |
-
- type: precision_at_1000
|
1789 |
-
value: 0.121
|
1790 |
-
- type: precision_at_3
|
1791 |
-
value: 9.716
|
1792 |
-
- type: precision_at_5
|
1793 |
-
value: 6.909999999999999
|
1794 |
-
- type: recall_at_1
|
1795 |
-
value: 14.901
|
1796 |
-
- type: recall_at_10
|
1797 |
-
value: 31.44
|
1798 |
-
- type: recall_at_100
|
1799 |
-
value: 52.717000000000006
|
1800 |
-
- type: recall_at_1000
|
1801 |
-
value: 76.102
|
1802 |
-
- type: recall_at_3
|
1803 |
-
value: 22.675
|
1804 |
-
- type: recall_at_5
|
1805 |
-
value: 26.336
|
1806 |
- task:
|
1807 |
-
type:
|
1808 |
dataset:
|
1809 |
-
type:
|
1810 |
-
name: MTEB
|
1811 |
config: default
|
1812 |
split: test
|
1813 |
-
revision:
|
1814 |
metrics:
|
1815 |
-
- type:
|
1816 |
-
value:
|
1817 |
-
- type:
|
1818 |
-
value:
|
1819 |
-
- type: map_at_100
|
1820 |
-
value: 29.443
|
1821 |
-
- type: map_at_1000
|
1822 |
-
value: 29.56
|
1823 |
-
- type: map_at_3
|
1824 |
-
value: 26.501
|
1825 |
-
- type: map_at_5
|
1826 |
-
value: 27.375
|
1827 |
-
- type: mrr_at_1
|
1828 |
-
value: 25.28
|
1829 |
-
- type: mrr_at_10
|
1830 |
-
value: 32.102000000000004
|
1831 |
-
- type: mrr_at_100
|
1832 |
-
value: 33.005
|
1833 |
-
- type: mrr_at_1000
|
1834 |
-
value: 33.084
|
1835 |
-
- type: mrr_at_3
|
1836 |
-
value: 30.208000000000002
|
1837 |
-
- type: mrr_at_5
|
1838 |
-
value: 31.146
|
1839 |
-
- type: ndcg_at_1
|
1840 |
-
value: 25.28
|
1841 |
-
- type: ndcg_at_10
|
1842 |
-
value: 32.635
|
1843 |
-
- type: ndcg_at_100
|
1844 |
-
value: 37.672
|
1845 |
-
- type: ndcg_at_1000
|
1846 |
-
value: 40.602
|
1847 |
-
- type: ndcg_at_3
|
1848 |
-
value: 28.951999999999998
|
1849 |
-
- type: ndcg_at_5
|
1850 |
-
value: 30.336999999999996
|
1851 |
-
- type: precision_at_1
|
1852 |
-
value: 25.28
|
1853 |
-
- type: precision_at_10
|
1854 |
-
value: 5.3260000000000005
|
1855 |
-
- type: precision_at_100
|
1856 |
-
value: 0.8840000000000001
|
1857 |
-
- type: precision_at_1000
|
1858 |
-
value: 0.126
|
1859 |
-
- type: precision_at_3
|
1860 |
-
value: 12.687000000000001
|
1861 |
-
- type: precision_at_5
|
1862 |
-
value: 8.638
|
1863 |
-
- type: recall_at_1
|
1864 |
-
value: 21.52
|
1865 |
-
- type: recall_at_10
|
1866 |
-
value: 41.955
|
1867 |
-
- type: recall_at_100
|
1868 |
-
value: 64.21
|
1869 |
-
- type: recall_at_1000
|
1870 |
-
value: 85.28099999999999
|
1871 |
-
- type: recall_at_3
|
1872 |
-
value: 31.979999999999997
|
1873 |
-
- type: recall_at_5
|
1874 |
-
value: 35.406
|
1875 |
- task:
|
1876 |
-
type:
|
1877 |
dataset:
|
1878 |
-
type:
|
1879 |
-
name: MTEB
|
1880 |
config: default
|
1881 |
split: test
|
1882 |
-
revision:
|
1883 |
metrics:
|
1884 |
-
- type:
|
1885 |
-
value:
|
1886 |
-
- type:
|
1887 |
-
value:
|
1888 |
-
- type:
|
1889 |
-
value:
|
1890 |
-
- type:
|
1891 |
-
value:
|
1892 |
-
- type:
|
1893 |
-
value:
|
1894 |
-
- type:
|
1895 |
-
value:
|
1896 |
-
- type: mrr_at_1
|
1897 |
-
value: 25.296000000000003
|
1898 |
-
- type: mrr_at_10
|
1899 |
-
value: 32.751999999999995
|
1900 |
-
- type: mrr_at_100
|
1901 |
-
value: 33.705
|
1902 |
-
- type: mrr_at_1000
|
1903 |
-
value: 33.783
|
1904 |
-
- type: mrr_at_3
|
1905 |
-
value: 30.731
|
1906 |
-
- type: mrr_at_5
|
1907 |
-
value: 32.006
|
1908 |
-
- type: ndcg_at_1
|
1909 |
-
value: 25.296000000000003
|
1910 |
-
- type: ndcg_at_10
|
1911 |
-
value: 33.555
|
1912 |
-
- type: ndcg_at_100
|
1913 |
-
value: 38.891999999999996
|
1914 |
-
- type: ndcg_at_1000
|
1915 |
-
value: 42.088
|
1916 |
-
- type: ndcg_at_3
|
1917 |
-
value: 29.944
|
1918 |
-
- type: ndcg_at_5
|
1919 |
-
value: 31.997999999999998
|
1920 |
-
- type: precision_at_1
|
1921 |
-
value: 25.296000000000003
|
1922 |
-
- type: precision_at_10
|
1923 |
-
value: 6.542000000000001
|
1924 |
-
- type: precision_at_100
|
1925 |
-
value: 1.354
|
1926 |
-
- type: precision_at_1000
|
1927 |
-
value: 0.22599999999999998
|
1928 |
-
- type: precision_at_3
|
1929 |
-
value: 14.360999999999999
|
1930 |
-
- type: precision_at_5
|
1931 |
-
value: 10.593
|
1932 |
-
- type: recall_at_1
|
1933 |
-
value: 20.296
|
1934 |
-
- type: recall_at_10
|
1935 |
-
value: 42.742000000000004
|
1936 |
-
- type: recall_at_100
|
1937 |
-
value: 67.351
|
1938 |
-
- type: recall_at_1000
|
1939 |
-
value: 88.774
|
1940 |
-
- type: recall_at_3
|
1941 |
-
value: 32.117000000000004
|
1942 |
-
- type: recall_at_5
|
1943 |
-
value: 37.788
|
1944 |
- task:
|
1945 |
-
type:
|
1946 |
dataset:
|
1947 |
-
type:
|
1948 |
-
name: MTEB
|
1949 |
config: default
|
1950 |
split: test
|
1951 |
-
revision:
|
1952 |
metrics:
|
1953 |
-
- type:
|
1954 |
-
value:
|
1955 |
-
- type:
|
1956 |
-
value:
|
1957 |
-
|
1958 |
-
|
1959 |
-
|
1960 |
-
|
1961 |
-
|
1962 |
-
|
1963 |
-
|
1964 |
-
|
1965 |
-
|
1966 |
-
|
1967 |
-
|
1968 |
-
|
1969 |
-
|
1970 |
-
|
1971 |
-
|
1972 |
-
|
1973 |
-
|
1974 |
-
|
1975 |
-
|
1976 |
-
|
1977 |
-
- type:
|
1978 |
-
value:
|
1979 |
-
- type: ndcg_at_10
|
1980 |
-
value: 28.104000000000003
|
1981 |
-
- type: ndcg_at_100
|
1982 |
-
value: 32.87
|
1983 |
-
- type: ndcg_at_1000
|
1984 |
-
value: 35.858000000000004
|
1985 |
-
- type: ndcg_at_3
|
1986 |
-
value: 24.107
|
1987 |
-
- type: ndcg_at_5
|
1988 |
-
value: 26.007
|
1989 |
-
- type: precision_at_1
|
1990 |
-
value: 19.778000000000002
|
1991 |
-
- type: precision_at_10
|
1992 |
-
value: 4.417999999999999
|
1993 |
-
- type: precision_at_100
|
1994 |
-
value: 0.739
|
1995 |
-
- type: precision_at_1000
|
1996 |
-
value: 0.109
|
1997 |
-
- type: precision_at_3
|
1998 |
-
value: 10.228
|
1999 |
-
- type: precision_at_5
|
2000 |
-
value: 7.172000000000001
|
2001 |
-
- type: recall_at_1
|
2002 |
-
value: 18.157999999999998
|
2003 |
-
- type: recall_at_10
|
2004 |
-
value: 37.967
|
2005 |
-
- type: recall_at_100
|
2006 |
-
value: 60.806000000000004
|
2007 |
-
- type: recall_at_1000
|
2008 |
-
value: 83.097
|
2009 |
-
- type: recall_at_3
|
2010 |
-
value: 27.223999999999997
|
2011 |
-
- type: recall_at_5
|
2012 |
-
value: 31.968000000000004
|
2013 |
- task:
|
2014 |
type: Retrieval
|
2015 |
dataset:
|
@@ -2020,65 +1123,65 @@ model-index:
|
|
2020 |
revision: None
|
2021 |
metrics:
|
2022 |
- type: map_at_1
|
2023 |
-
value:
|
2024 |
- type: map_at_10
|
2025 |
-
value:
|
2026 |
- type: map_at_100
|
2027 |
-
value:
|
2028 |
- type: map_at_1000
|
2029 |
-
value:
|
2030 |
- type: map_at_3
|
2031 |
-
value:
|
2032 |
- type: map_at_5
|
2033 |
-
value:
|
2034 |
- type: mrr_at_1
|
2035 |
-
value:
|
2036 |
- type: mrr_at_10
|
2037 |
-
value:
|
2038 |
- type: mrr_at_100
|
2039 |
-
value:
|
2040 |
- type: mrr_at_1000
|
2041 |
-
value:
|
2042 |
- type: mrr_at_3
|
2043 |
-
value:
|
2044 |
- type: mrr_at_5
|
2045 |
-
value:
|
2046 |
- type: ndcg_at_1
|
2047 |
-
value:
|
2048 |
- type: ndcg_at_10
|
2049 |
-
value:
|
2050 |
- type: ndcg_at_100
|
2051 |
-
value:
|
2052 |
- type: ndcg_at_1000
|
2053 |
-
value:
|
2054 |
- type: ndcg_at_3
|
2055 |
-
value:
|
2056 |
- type: ndcg_at_5
|
2057 |
-
value:
|
2058 |
- type: precision_at_1
|
2059 |
-
value:
|
2060 |
- type: precision_at_10
|
2061 |
-
value:
|
2062 |
- type: precision_at_100
|
2063 |
-
value: 1.
|
2064 |
- type: precision_at_1000
|
2065 |
-
value: 0.
|
2066 |
- type: precision_at_3
|
2067 |
-
value:
|
2068 |
- type: precision_at_5
|
2069 |
-
value:
|
2070 |
- type: recall_at_1
|
2071 |
-
value:
|
2072 |
- type: recall_at_10
|
2073 |
-
value:
|
2074 |
- type: recall_at_100
|
2075 |
-
value:
|
2076 |
- type: recall_at_1000
|
2077 |
-
value:
|
2078 |
- type: recall_at_3
|
2079 |
-
value:
|
2080 |
- type: recall_at_5
|
2081 |
-
value:
|
2082 |
- task:
|
2083 |
type: Retrieval
|
2084 |
dataset:
|
@@ -2089,65 +1192,65 @@ model-index:
|
|
2089 |
revision: None
|
2090 |
metrics:
|
2091 |
- type: map_at_1
|
2092 |
-
value:
|
2093 |
- type: map_at_10
|
2094 |
-
value:
|
2095 |
- type: map_at_100
|
2096 |
-
value:
|
2097 |
- type: map_at_1000
|
2098 |
-
value:
|
2099 |
- type: map_at_3
|
2100 |
-
value: 10.
|
2101 |
- type: map_at_5
|
2102 |
-
value:
|
2103 |
- type: mrr_at_1
|
2104 |
-
value:
|
2105 |
- type: mrr_at_10
|
2106 |
-
value:
|
2107 |
- type: mrr_at_100
|
2108 |
-
value:
|
2109 |
- type: mrr_at_1000
|
2110 |
-
value:
|
2111 |
- type: mrr_at_3
|
2112 |
-
value:
|
2113 |
- type: mrr_at_5
|
2114 |
-
value:
|
2115 |
- type: ndcg_at_1
|
2116 |
-
value:
|
2117 |
- type: ndcg_at_10
|
2118 |
-
value:
|
2119 |
- type: ndcg_at_100
|
2120 |
-
value:
|
2121 |
- type: ndcg_at_1000
|
2122 |
-
value:
|
2123 |
- type: ndcg_at_3
|
2124 |
-
value:
|
2125 |
- type: ndcg_at_5
|
2126 |
-
value:
|
2127 |
- type: precision_at_1
|
2128 |
-
value:
|
2129 |
- type: precision_at_10
|
2130 |
-
value:
|
2131 |
- type: precision_at_100
|
2132 |
-
value:
|
2133 |
- type: precision_at_1000
|
2134 |
-
value: 1.
|
2135 |
- type: precision_at_3
|
2136 |
-
value:
|
2137 |
- type: precision_at_5
|
2138 |
-
value:
|
2139 |
- type: recall_at_1
|
2140 |
-
value:
|
2141 |
- type: recall_at_10
|
2142 |
-
value:
|
2143 |
- type: recall_at_100
|
2144 |
-
value:
|
2145 |
- type: recall_at_1000
|
2146 |
-
value:
|
2147 |
- type: recall_at_3
|
2148 |
-
value:
|
2149 |
- type: recall_at_5
|
2150 |
-
value:
|
2151 |
- task:
|
2152 |
type: Classification
|
2153 |
dataset:
|
@@ -2158,9 +1261,9 @@ model-index:
|
|
2158 |
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
2159 |
metrics:
|
2160 |
- type: accuracy
|
2161 |
-
value:
|
2162 |
- type: f1
|
2163 |
-
value:
|
2164 |
- task:
|
2165 |
type: Retrieval
|
2166 |
dataset:
|
@@ -2171,65 +1274,65 @@ model-index:
|
|
2171 |
revision: None
|
2172 |
metrics:
|
2173 |
- type: map_at_1
|
2174 |
-
value:
|
2175 |
- type: map_at_10
|
2176 |
-
value:
|
2177 |
- type: map_at_100
|
2178 |
-
value:
|
2179 |
- type: map_at_1000
|
2180 |
-
value:
|
2181 |
- type: map_at_3
|
2182 |
-
value:
|
2183 |
- type: map_at_5
|
2184 |
-
value:
|
2185 |
- type: mrr_at_1
|
2186 |
-
value:
|
2187 |
- type: mrr_at_10
|
2188 |
-
value:
|
2189 |
- type: mrr_at_100
|
2190 |
-
value:
|
2191 |
- type: mrr_at_1000
|
2192 |
-
value:
|
2193 |
- type: mrr_at_3
|
2194 |
-
value:
|
2195 |
- type: mrr_at_5
|
2196 |
-
value:
|
2197 |
- type: ndcg_at_1
|
2198 |
-
value:
|
2199 |
- type: ndcg_at_10
|
2200 |
-
value:
|
2201 |
- type: ndcg_at_100
|
2202 |
-
value:
|
2203 |
- type: ndcg_at_1000
|
2204 |
-
value:
|
2205 |
- type: ndcg_at_3
|
2206 |
-
value:
|
2207 |
- type: ndcg_at_5
|
2208 |
-
value:
|
2209 |
- type: precision_at_1
|
2210 |
-
value:
|
2211 |
- type: precision_at_10
|
2212 |
-
value: 9.
|
2213 |
- type: precision_at_100
|
2214 |
-
value:
|
2215 |
- type: precision_at_1000
|
2216 |
-
value: 0.
|
2217 |
- type: precision_at_3
|
2218 |
-
value: 25.
|
2219 |
- type: precision_at_5
|
2220 |
-
value: 16.
|
2221 |
- type: recall_at_1
|
2222 |
-
value:
|
2223 |
- type: recall_at_10
|
2224 |
-
value: 82.
|
2225 |
- type: recall_at_100
|
2226 |
-
value:
|
2227 |
- type: recall_at_1000
|
2228 |
-
value:
|
2229 |
- type: recall_at_3
|
2230 |
-
value:
|
2231 |
- type: recall_at_5
|
2232 |
-
value:
|
2233 |
- task:
|
2234 |
type: Retrieval
|
2235 |
dataset:
|
@@ -2240,65 +1343,65 @@ model-index:
|
|
2240 |
revision: None
|
2241 |
metrics:
|
2242 |
- type: map_at_1
|
2243 |
-
value:
|
2244 |
- type: map_at_10
|
2245 |
-
value:
|
2246 |
- type: map_at_100
|
2247 |
-
value:
|
2248 |
- type: map_at_1000
|
2249 |
-
value:
|
2250 |
- type: map_at_3
|
2251 |
-
value:
|
2252 |
- type: map_at_5
|
2253 |
-
value:
|
2254 |
- type: mrr_at_1
|
2255 |
-
value:
|
2256 |
- type: mrr_at_10
|
2257 |
-
value:
|
2258 |
- type: mrr_at_100
|
2259 |
-
value:
|
2260 |
- type: mrr_at_1000
|
2261 |
-
value:
|
2262 |
- type: mrr_at_3
|
2263 |
-
value:
|
2264 |
- type: mrr_at_5
|
2265 |
-
value:
|
2266 |
- type: ndcg_at_1
|
2267 |
-
value:
|
2268 |
- type: ndcg_at_10
|
2269 |
-
value:
|
2270 |
- type: ndcg_at_100
|
2271 |
-
value:
|
2272 |
- type: ndcg_at_1000
|
2273 |
-
value:
|
2274 |
- type: ndcg_at_3
|
2275 |
-
value:
|
2276 |
- type: ndcg_at_5
|
2277 |
-
value:
|
2278 |
- type: precision_at_1
|
2279 |
-
value:
|
2280 |
- type: precision_at_10
|
2281 |
-
value:
|
2282 |
- type: precision_at_100
|
2283 |
-
value: 1.
|
2284 |
- type: precision_at_1000
|
2285 |
-
value: 0.
|
2286 |
- type: precision_at_3
|
2287 |
-
value:
|
2288 |
- type: precision_at_5
|
2289 |
-
value:
|
2290 |
- type: recall_at_1
|
2291 |
-
value:
|
2292 |
- type: recall_at_10
|
2293 |
-
value:
|
2294 |
- type: recall_at_100
|
2295 |
-
value:
|
2296 |
- type: recall_at_1000
|
2297 |
-
value:
|
2298 |
- type: recall_at_3
|
2299 |
-
value:
|
2300 |
- type: recall_at_5
|
2301 |
-
value:
|
2302 |
- task:
|
2303 |
type: Retrieval
|
2304 |
dataset:
|
@@ -2309,65 +1412,65 @@ model-index:
|
|
2309 |
revision: None
|
2310 |
metrics:
|
2311 |
- type: map_at_1
|
2312 |
-
value: 29.
|
2313 |
- type: map_at_10
|
2314 |
-
value:
|
2315 |
- type: map_at_100
|
2316 |
-
value:
|
2317 |
- type: map_at_1000
|
2318 |
-
value:
|
2319 |
- type: map_at_3
|
2320 |
-
value:
|
2321 |
- type: map_at_5
|
2322 |
-
value:
|
2323 |
- type: mrr_at_1
|
2324 |
-
value:
|
2325 |
- type: mrr_at_10
|
2326 |
-
value:
|
2327 |
- type: mrr_at_100
|
2328 |
-
value:
|
2329 |
- type: mrr_at_1000
|
2330 |
-
value:
|
2331 |
- type: mrr_at_3
|
2332 |
-
value:
|
2333 |
- type: mrr_at_5
|
2334 |
-
value:
|
2335 |
- type: ndcg_at_1
|
2336 |
-
value:
|
2337 |
- type: ndcg_at_10
|
2338 |
-
value:
|
2339 |
- type: ndcg_at_100
|
2340 |
-
value:
|
2341 |
- type: ndcg_at_1000
|
2342 |
-
value:
|
2343 |
- type: ndcg_at_3
|
2344 |
-
value:
|
2345 |
- type: ndcg_at_5
|
2346 |
-
value:
|
2347 |
- type: precision_at_1
|
2348 |
-
value:
|
2349 |
- type: precision_at_10
|
2350 |
-
value:
|
2351 |
- type: precision_at_100
|
2352 |
-
value: 1.
|
2353 |
- type: precision_at_1000
|
2354 |
-
value: 0.
|
2355 |
- type: precision_at_3
|
2356 |
-
value:
|
2357 |
- type: precision_at_5
|
2358 |
-
value:
|
2359 |
- type: recall_at_1
|
2360 |
-
value: 29.
|
2361 |
- type: recall_at_10
|
2362 |
-
value:
|
2363 |
- type: recall_at_100
|
2364 |
-
value:
|
2365 |
- type: recall_at_1000
|
2366 |
-
value:
|
2367 |
- type: recall_at_3
|
2368 |
-
value:
|
2369 |
- type: recall_at_5
|
2370 |
-
value:
|
2371 |
- task:
|
2372 |
type: Classification
|
2373 |
dataset:
|
@@ -2378,11 +1481,11 @@ model-index:
|
|
2378 |
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
2379 |
metrics:
|
2380 |
- type: accuracy
|
2381 |
-
value:
|
2382 |
- type: ap
|
2383 |
-
value:
|
2384 |
- type: f1
|
2385 |
-
value:
|
2386 |
- task:
|
2387 |
type: Retrieval
|
2388 |
dataset:
|
@@ -2393,65 +1496,65 @@ model-index:
|
|
2393 |
revision: None
|
2394 |
metrics:
|
2395 |
- type: map_at_1
|
2396 |
-
value: 15.
|
2397 |
- type: map_at_10
|
2398 |
-
value:
|
2399 |
- type: map_at_100
|
2400 |
-
value: 27.
|
2401 |
- type: map_at_1000
|
2402 |
-
value:
|
2403 |
- type: map_at_3
|
2404 |
-
value:
|
2405 |
- type: map_at_5
|
2406 |
-
value:
|
2407 |
- type: mrr_at_1
|
2408 |
-
value: 16.
|
2409 |
- type: mrr_at_10
|
2410 |
-
value:
|
2411 |
- type: mrr_at_100
|
2412 |
-
value:
|
2413 |
- type: mrr_at_1000
|
2414 |
-
value:
|
2415 |
- type: mrr_at_3
|
2416 |
-
value: 23.
|
2417 |
- type: mrr_at_5
|
2418 |
-
value: 25.
|
2419 |
- type: ndcg_at_1
|
2420 |
-
value: 16.
|
2421 |
- type: ndcg_at_10
|
2422 |
-
value:
|
2423 |
- type: ndcg_at_100
|
2424 |
-
value:
|
2425 |
- type: ndcg_at_1000
|
2426 |
-
value:
|
2427 |
- type: ndcg_at_3
|
2428 |
-
value: 25.
|
2429 |
- type: ndcg_at_5
|
2430 |
-
value:
|
2431 |
- type: precision_at_1
|
2432 |
-
value: 16.
|
2433 |
- type: precision_at_10
|
2434 |
-
value: 5.
|
2435 |
- type: precision_at_100
|
2436 |
-
value: 0.
|
2437 |
- type: precision_at_1000
|
2438 |
-
value: 0.
|
2439 |
- type: precision_at_3
|
2440 |
-
value:
|
2441 |
- type: precision_at_5
|
2442 |
-
value: 8.
|
2443 |
- type: recall_at_1
|
2444 |
-
value: 15.
|
2445 |
- type: recall_at_10
|
2446 |
-
value:
|
2447 |
- type: recall_at_100
|
2448 |
-
value:
|
2449 |
- type: recall_at_1000
|
2450 |
-
value:
|
2451 |
- type: recall_at_3
|
2452 |
-
value:
|
2453 |
- type: recall_at_5
|
2454 |
-
value:
|
2455 |
- task:
|
2456 |
type: Classification
|
2457 |
dataset:
|
@@ -2462,9 +1565,9 @@ model-index:
|
|
2462 |
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
2463 |
metrics:
|
2464 |
- type: accuracy
|
2465 |
-
value:
|
2466 |
- type: f1
|
2467 |
-
value:
|
2468 |
- task:
|
2469 |
type: Classification
|
2470 |
dataset:
|
@@ -2475,9 +1578,9 @@ model-index:
|
|
2475 |
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
2476 |
metrics:
|
2477 |
- type: accuracy
|
2478 |
-
value:
|
2479 |
- type: f1
|
2480 |
-
value:
|
2481 |
- task:
|
2482 |
type: Classification
|
2483 |
dataset:
|
@@ -2488,9 +1591,9 @@ model-index:
|
|
2488 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
2489 |
metrics:
|
2490 |
- type: accuracy
|
2491 |
-
value:
|
2492 |
- type: f1
|
2493 |
-
value:
|
2494 |
- task:
|
2495 |
type: Classification
|
2496 |
dataset:
|
@@ -2501,9 +1604,9 @@ model-index:
|
|
2501 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
2502 |
metrics:
|
2503 |
- type: accuracy
|
2504 |
-
value:
|
2505 |
- type: f1
|
2506 |
-
value:
|
2507 |
- task:
|
2508 |
type: Clustering
|
2509 |
dataset:
|
@@ -2514,7 +1617,7 @@ model-index:
|
|
2514 |
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
2515 |
metrics:
|
2516 |
- type: v_measure
|
2517 |
-
value:
|
2518 |
- task:
|
2519 |
type: Clustering
|
2520 |
dataset:
|
@@ -2525,7 +1628,7 @@ model-index:
|
|
2525 |
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
2526 |
metrics:
|
2527 |
- type: v_measure
|
2528 |
-
value:
|
2529 |
- task:
|
2530 |
type: Reranking
|
2531 |
dataset:
|
@@ -2536,9 +1639,9 @@ model-index:
|
|
2536 |
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
2537 |
metrics:
|
2538 |
- type: map
|
2539 |
-
value:
|
2540 |
- type: mrr
|
2541 |
-
value: 31.
|
2542 |
- task:
|
2543 |
type: Retrieval
|
2544 |
dataset:
|
@@ -2549,65 +1652,65 @@ model-index:
|
|
2549 |
revision: None
|
2550 |
metrics:
|
2551 |
- type: map_at_1
|
2552 |
-
value: 4.
|
2553 |
- type: map_at_10
|
2554 |
-
value:
|
2555 |
- type: map_at_100
|
2556 |
-
value:
|
2557 |
- type: map_at_1000
|
2558 |
-
value:
|
2559 |
- type: map_at_3
|
2560 |
-
value:
|
2561 |
- type: map_at_5
|
2562 |
-
value:
|
2563 |
- type: mrr_at_1
|
2564 |
-
value:
|
2565 |
- type: mrr_at_10
|
2566 |
-
value:
|
2567 |
- type: mrr_at_100
|
2568 |
-
value:
|
2569 |
- type: mrr_at_1000
|
2570 |
-
value:
|
2571 |
- type: mrr_at_3
|
2572 |
-
value:
|
2573 |
- type: mrr_at_5
|
2574 |
-
value:
|
2575 |
- type: ndcg_at_1
|
2576 |
-
value: 36.
|
2577 |
- type: ndcg_at_10
|
2578 |
-
value:
|
2579 |
- type: ndcg_at_100
|
2580 |
-
value:
|
2581 |
- type: ndcg_at_1000
|
2582 |
-
value:
|
2583 |
- type: ndcg_at_3
|
2584 |
-
value:
|
2585 |
- type: ndcg_at_5
|
2586 |
-
value:
|
2587 |
- type: precision_at_1
|
2588 |
-
value:
|
2589 |
- type: precision_at_10
|
2590 |
-
value:
|
2591 |
- type: precision_at_100
|
2592 |
-
value:
|
2593 |
- type: precision_at_1000
|
2594 |
-
value: 1.
|
2595 |
- type: precision_at_3
|
2596 |
-
value:
|
2597 |
- type: precision_at_5
|
2598 |
-
value:
|
2599 |
- type: recall_at_1
|
2600 |
-
value: 4.
|
2601 |
- type: recall_at_10
|
2602 |
-
value:
|
2603 |
- type: recall_at_100
|
2604 |
-
value:
|
2605 |
- type: recall_at_1000
|
2606 |
-
value:
|
2607 |
- type: recall_at_3
|
2608 |
-
value:
|
2609 |
- type: recall_at_5
|
2610 |
-
value:
|
2611 |
- task:
|
2612 |
type: Retrieval
|
2613 |
dataset:
|
@@ -2618,65 +1721,65 @@ model-index:
|
|
2618 |
revision: None
|
2619 |
metrics:
|
2620 |
- type: map_at_1
|
2621 |
-
value:
|
2622 |
- type: map_at_10
|
2623 |
-
value:
|
2624 |
- type: map_at_100
|
2625 |
-
value:
|
2626 |
- type: map_at_1000
|
2627 |
-
value:
|
2628 |
- type: map_at_3
|
2629 |
-
value:
|
2630 |
- type: map_at_5
|
2631 |
-
value:
|
2632 |
- type: mrr_at_1
|
2633 |
-
value:
|
2634 |
- type: mrr_at_10
|
2635 |
-
value:
|
2636 |
- type: mrr_at_100
|
2637 |
-
value:
|
2638 |
- type: mrr_at_1000
|
2639 |
-
value:
|
2640 |
- type: mrr_at_3
|
2641 |
-
value:
|
2642 |
- type: mrr_at_5
|
2643 |
-
value:
|
2644 |
- type: ndcg_at_1
|
2645 |
-
value:
|
2646 |
- type: ndcg_at_10
|
2647 |
-
value:
|
2648 |
- type: ndcg_at_100
|
2649 |
-
value:
|
2650 |
- type: ndcg_at_1000
|
2651 |
-
value:
|
2652 |
- type: ndcg_at_3
|
2653 |
-
value:
|
2654 |
- type: ndcg_at_5
|
2655 |
-
value:
|
2656 |
- type: precision_at_1
|
2657 |
-
value:
|
2658 |
- type: precision_at_10
|
2659 |
-
value:
|
2660 |
- type: precision_at_100
|
2661 |
-
value:
|
2662 |
- type: precision_at_1000
|
2663 |
-
value: 0.
|
2664 |
- type: precision_at_3
|
2665 |
-
value:
|
2666 |
- type: precision_at_5
|
2667 |
-
value:
|
2668 |
- type: recall_at_1
|
2669 |
-
value:
|
2670 |
- type: recall_at_10
|
2671 |
-
value:
|
2672 |
- type: recall_at_100
|
2673 |
-
value:
|
2674 |
- type: recall_at_1000
|
2675 |
-
value:
|
2676 |
- type: recall_at_3
|
2677 |
-
value:
|
2678 |
- type: recall_at_5
|
2679 |
-
value:
|
2680 |
- task:
|
2681 |
type: Retrieval
|
2682 |
dataset:
|
@@ -2687,65 +1790,65 @@ model-index:
|
|
2687 |
revision: None
|
2688 |
metrics:
|
2689 |
- type: map_at_1
|
2690 |
-
value:
|
2691 |
- type: map_at_10
|
2692 |
-
value:
|
2693 |
- type: map_at_100
|
2694 |
-
value:
|
2695 |
- type: map_at_1000
|
2696 |
-
value:
|
2697 |
- type: map_at_3
|
2698 |
-
value:
|
2699 |
- type: map_at_5
|
2700 |
-
value:
|
2701 |
- type: mrr_at_1
|
2702 |
-
value:
|
2703 |
- type: mrr_at_10
|
2704 |
-
value:
|
2705 |
- type: mrr_at_100
|
2706 |
-
value:
|
2707 |
- type: mrr_at_1000
|
2708 |
-
value:
|
2709 |
- type: mrr_at_3
|
2710 |
-
value:
|
2711 |
- type: mrr_at_5
|
2712 |
-
value:
|
2713 |
- type: ndcg_at_1
|
2714 |
-
value:
|
2715 |
- type: ndcg_at_10
|
2716 |
-
value:
|
2717 |
- type: ndcg_at_100
|
2718 |
-
value:
|
2719 |
- type: ndcg_at_1000
|
2720 |
-
value:
|
2721 |
- type: ndcg_at_3
|
2722 |
-
value:
|
2723 |
- type: ndcg_at_5
|
2724 |
-
value:
|
2725 |
- type: precision_at_1
|
2726 |
-
value:
|
2727 |
- type: precision_at_10
|
2728 |
-
value:
|
2729 |
- type: precision_at_100
|
2730 |
-
value: 1.
|
2731 |
- type: precision_at_1000
|
2732 |
-
value: 0.
|
2733 |
- type: precision_at_3
|
2734 |
-
value: 36.
|
2735 |
- type: precision_at_5
|
2736 |
-
value:
|
2737 |
- type: recall_at_1
|
2738 |
-
value:
|
2739 |
- type: recall_at_10
|
2740 |
-
value:
|
2741 |
- type: recall_at_100
|
2742 |
-
value:
|
2743 |
- type: recall_at_1000
|
2744 |
-
value: 99.
|
2745 |
- type: recall_at_3
|
2746 |
-
value:
|
2747 |
- type: recall_at_5
|
2748 |
-
value:
|
2749 |
- task:
|
2750 |
type: Clustering
|
2751 |
dataset:
|
@@ -2756,7 +1859,7 @@ model-index:
|
|
2756 |
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
2757 |
metrics:
|
2758 |
- type: v_measure
|
2759 |
-
value:
|
2760 |
- task:
|
2761 |
type: Clustering
|
2762 |
dataset:
|
@@ -2767,7 +1870,7 @@ model-index:
|
|
2767 |
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
2768 |
metrics:
|
2769 |
- type: v_measure
|
2770 |
-
value:
|
2771 |
- task:
|
2772 |
type: Retrieval
|
2773 |
dataset:
|
@@ -2778,65 +1881,65 @@ model-index:
|
|
2778 |
revision: None
|
2779 |
metrics:
|
2780 |
- type: map_at_1
|
2781 |
-
value:
|
2782 |
- type: map_at_10
|
2783 |
-
value:
|
2784 |
- type: map_at_100
|
2785 |
-
value:
|
2786 |
- type: map_at_1000
|
2787 |
-
value:
|
2788 |
- type: map_at_3
|
2789 |
-
value:
|
2790 |
- type: map_at_5
|
2791 |
-
value:
|
2792 |
- type: mrr_at_1
|
2793 |
-
value:
|
2794 |
- type: mrr_at_10
|
2795 |
-
value:
|
2796 |
- type: mrr_at_100
|
2797 |
-
value:
|
2798 |
- type: mrr_at_1000
|
2799 |
-
value:
|
2800 |
- type: mrr_at_3
|
2801 |
-
value:
|
2802 |
- type: mrr_at_5
|
2803 |
-
value:
|
2804 |
- type: ndcg_at_1
|
2805 |
-
value:
|
2806 |
- type: ndcg_at_10
|
2807 |
-
value:
|
2808 |
- type: ndcg_at_100
|
2809 |
-
value:
|
2810 |
- type: ndcg_at_1000
|
2811 |
-
value:
|
2812 |
- type: ndcg_at_3
|
2813 |
-
value:
|
2814 |
- type: ndcg_at_5
|
2815 |
-
value:
|
2816 |
- type: precision_at_1
|
2817 |
-
value:
|
2818 |
- type: precision_at_10
|
2819 |
-
value:
|
2820 |
- type: precision_at_100
|
2821 |
-
value:
|
2822 |
- type: precision_at_1000
|
2823 |
-
value: 0.
|
2824 |
- type: precision_at_3
|
2825 |
-
value:
|
2826 |
- type: precision_at_5
|
2827 |
-
value:
|
2828 |
- type: recall_at_1
|
2829 |
-
value:
|
2830 |
- type: recall_at_10
|
2831 |
-
value:
|
2832 |
- type: recall_at_100
|
2833 |
-
value:
|
2834 |
- type: recall_at_1000
|
2835 |
-
value:
|
2836 |
- type: recall_at_3
|
2837 |
-
value:
|
2838 |
- type: recall_at_5
|
2839 |
-
value:
|
2840 |
- task:
|
2841 |
type: STS
|
2842 |
dataset:
|
@@ -2847,17 +1950,17 @@ model-index:
|
|
2847 |
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
2848 |
metrics:
|
2849 |
- type: cos_sim_pearson
|
2850 |
-
value:
|
2851 |
- type: cos_sim_spearman
|
2852 |
-
value:
|
2853 |
- type: euclidean_pearson
|
2854 |
-
value:
|
2855 |
- type: euclidean_spearman
|
2856 |
-
value:
|
2857 |
- type: manhattan_pearson
|
2858 |
-
value:
|
2859 |
- type: manhattan_spearman
|
2860 |
-
value:
|
2861 |
- task:
|
2862 |
type: STS
|
2863 |
dataset:
|
@@ -2868,17 +1971,17 @@ model-index:
|
|
2868 |
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
2869 |
metrics:
|
2870 |
- type: cos_sim_pearson
|
2871 |
-
value:
|
2872 |
- type: cos_sim_spearman
|
2873 |
-
value:
|
2874 |
- type: euclidean_pearson
|
2875 |
-
value:
|
2876 |
- type: euclidean_spearman
|
2877 |
-
value:
|
2878 |
- type: manhattan_pearson
|
2879 |
-
value:
|
2880 |
- type: manhattan_spearman
|
2881 |
-
value:
|
2882 |
- task:
|
2883 |
type: STS
|
2884 |
dataset:
|
@@ -2889,17 +1992,17 @@ model-index:
|
|
2889 |
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
2890 |
metrics:
|
2891 |
- type: cos_sim_pearson
|
2892 |
-
value: 77.
|
2893 |
- type: cos_sim_spearman
|
2894 |
-
value:
|
2895 |
- type: euclidean_pearson
|
2896 |
-
value:
|
2897 |
- type: euclidean_spearman
|
2898 |
-
value:
|
2899 |
- type: manhattan_pearson
|
2900 |
-
value:
|
2901 |
- type: manhattan_spearman
|
2902 |
-
value:
|
2903 |
- task:
|
2904 |
type: STS
|
2905 |
dataset:
|
@@ -2910,17 +2013,17 @@ model-index:
|
|
2910 |
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2911 |
metrics:
|
2912 |
- type: cos_sim_pearson
|
2913 |
-
value: 78.
|
2914 |
- type: cos_sim_spearman
|
2915 |
-
value:
|
2916 |
- type: euclidean_pearson
|
2917 |
-
value:
|
2918 |
- type: euclidean_spearman
|
2919 |
-
value:
|
2920 |
- type: manhattan_pearson
|
2921 |
-
value:
|
2922 |
- type: manhattan_spearman
|
2923 |
-
value: 64.
|
2924 |
- task:
|
2925 |
type: STS
|
2926 |
dataset:
|
@@ -2931,17 +2034,17 @@ model-index:
|
|
2931 |
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2932 |
metrics:
|
2933 |
- type: cos_sim_pearson
|
2934 |
-
value:
|
2935 |
- type: cos_sim_spearman
|
2936 |
-
value:
|
2937 |
- type: euclidean_pearson
|
2938 |
-
value:
|
2939 |
- type: euclidean_spearman
|
2940 |
-
value:
|
2941 |
- type: manhattan_pearson
|
2942 |
-
value:
|
2943 |
- type: manhattan_spearman
|
2944 |
-
value:
|
2945 |
- task:
|
2946 |
type: STS
|
2947 |
dataset:
|
@@ -2952,17 +2055,17 @@ model-index:
|
|
2952 |
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2953 |
metrics:
|
2954 |
- type: cos_sim_pearson
|
2955 |
-
value:
|
2956 |
- type: cos_sim_spearman
|
2957 |
-
value: 80.
|
2958 |
- type: euclidean_pearson
|
2959 |
-
value: 65.
|
2960 |
- type: euclidean_spearman
|
2961 |
-
value: 66.
|
2962 |
- type: manhattan_pearson
|
2963 |
-
value:
|
2964 |
- type: manhattan_spearman
|
2965 |
-
value: 66.
|
2966 |
- task:
|
2967 |
type: STS
|
2968 |
dataset:
|
@@ -2973,17 +2076,17 @@ model-index:
|
|
2973 |
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2974 |
metrics:
|
2975 |
- type: cos_sim_pearson
|
2976 |
-
value: 87.
|
2977 |
- type: cos_sim_spearman
|
2978 |
-
value: 87.
|
2979 |
- type: euclidean_pearson
|
2980 |
-
value:
|
2981 |
- type: euclidean_spearman
|
2982 |
-
value:
|
2983 |
- type: manhattan_pearson
|
2984 |
-
value:
|
2985 |
- type: manhattan_spearman
|
2986 |
-
value:
|
2987 |
- task:
|
2988 |
type: STS
|
2989 |
dataset:
|
@@ -2994,17 +2097,17 @@ model-index:
|
|
2994 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2995 |
metrics:
|
2996 |
- type: cos_sim_pearson
|
2997 |
-
value:
|
2998 |
- type: cos_sim_spearman
|
2999 |
-
value:
|
3000 |
- type: euclidean_pearson
|
3001 |
-
value:
|
3002 |
- type: euclidean_spearman
|
3003 |
-
value:
|
3004 |
- type: manhattan_pearson
|
3005 |
-
value:
|
3006 |
- type: manhattan_spearman
|
3007 |
-
value:
|
3008 |
- task:
|
3009 |
type: STS
|
3010 |
dataset:
|
@@ -3015,17 +2118,17 @@ model-index:
|
|
3015 |
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
3016 |
metrics:
|
3017 |
- type: cos_sim_pearson
|
3018 |
-
value:
|
3019 |
- type: cos_sim_spearman
|
3020 |
-
value:
|
3021 |
- type: euclidean_pearson
|
3022 |
-
value:
|
3023 |
- type: euclidean_spearman
|
3024 |
-
value:
|
3025 |
- type: manhattan_pearson
|
3026 |
-
value:
|
3027 |
- type: manhattan_spearman
|
3028 |
-
value:
|
3029 |
- task:
|
3030 |
type: Reranking
|
3031 |
dataset:
|
@@ -3036,9 +2139,9 @@ model-index:
|
|
3036 |
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
3037 |
metrics:
|
3038 |
- type: map
|
3039 |
-
value:
|
3040 |
- type: mrr
|
3041 |
-
value:
|
3042 |
- task:
|
3043 |
type: Retrieval
|
3044 |
dataset:
|
@@ -3049,65 +2152,65 @@ model-index:
|
|
3049 |
revision: None
|
3050 |
metrics:
|
3051 |
- type: map_at_1
|
3052 |
-
value:
|
3053 |
- type: map_at_10
|
3054 |
-
value:
|
3055 |
- type: map_at_100
|
3056 |
-
value:
|
3057 |
- type: map_at_1000
|
3058 |
-
value:
|
3059 |
- type: map_at_3
|
3060 |
-
value:
|
3061 |
- type: map_at_5
|
3062 |
-
value:
|
3063 |
- type: mrr_at_1
|
3064 |
-
value:
|
3065 |
- type: mrr_at_10
|
3066 |
-
value:
|
3067 |
- type: mrr_at_100
|
3068 |
-
value:
|
3069 |
- type: mrr_at_1000
|
3070 |
-
value:
|
3071 |
- type: mrr_at_3
|
3072 |
-
value:
|
3073 |
- type: mrr_at_5
|
3074 |
-
value:
|
3075 |
- type: ndcg_at_1
|
3076 |
-
value:
|
3077 |
- type: ndcg_at_10
|
3078 |
-
value:
|
3079 |
- type: ndcg_at_100
|
3080 |
-
value:
|
3081 |
- type: ndcg_at_1000
|
3082 |
-
value:
|
3083 |
- type: ndcg_at_3
|
3084 |
-
value:
|
3085 |
- type: ndcg_at_5
|
3086 |
-
value:
|
3087 |
- type: precision_at_1
|
3088 |
-
value:
|
3089 |
- type: precision_at_10
|
3090 |
-
value:
|
3091 |
- type: precision_at_100
|
3092 |
-
value: 0.
|
3093 |
- type: precision_at_1000
|
3094 |
-
value: 0.
|
3095 |
- type: precision_at_3
|
3096 |
-
value:
|
3097 |
- type: precision_at_5
|
3098 |
-
value:
|
3099 |
- type: recall_at_1
|
3100 |
-
value:
|
3101 |
- type: recall_at_10
|
3102 |
-
value:
|
3103 |
- type: recall_at_100
|
3104 |
-
value:
|
3105 |
- type: recall_at_1000
|
3106 |
-
value:
|
3107 |
- type: recall_at_3
|
3108 |
-
value:
|
3109 |
- type: recall_at_5
|
3110 |
-
value:
|
3111 |
- task:
|
3112 |
type: PairClassification
|
3113 |
dataset:
|
@@ -3118,51 +2221,51 @@ model-index:
|
|
3118 |
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
3119 |
metrics:
|
3120 |
- type: cos_sim_accuracy
|
3121 |
-
value: 99.
|
3122 |
- type: cos_sim_ap
|
3123 |
-
value:
|
3124 |
- type: cos_sim_f1
|
3125 |
-
value:
|
3126 |
- type: cos_sim_precision
|
3127 |
-
value:
|
3128 |
- type: cos_sim_recall
|
3129 |
-
value:
|
3130 |
- type: dot_accuracy
|
3131 |
-
value: 99.
|
3132 |
- type: dot_ap
|
3133 |
-
value:
|
3134 |
- type: dot_f1
|
3135 |
-
value:
|
3136 |
- type: dot_precision
|
3137 |
-
value:
|
3138 |
- type: dot_recall
|
3139 |
-
value:
|
3140 |
- type: euclidean_accuracy
|
3141 |
-
value: 99.
|
3142 |
- type: euclidean_ap
|
3143 |
-
value:
|
3144 |
- type: euclidean_f1
|
3145 |
-
value:
|
3146 |
- type: euclidean_precision
|
3147 |
-
value: 86.
|
3148 |
- type: euclidean_recall
|
3149 |
-
value:
|
3150 |
- type: manhattan_accuracy
|
3151 |
-
value: 99.
|
3152 |
- type: manhattan_ap
|
3153 |
-
value:
|
3154 |
- type: manhattan_f1
|
3155 |
-
value:
|
3156 |
- type: manhattan_precision
|
3157 |
-
value: 85.
|
3158 |
- type: manhattan_recall
|
3159 |
-
value:
|
3160 |
- type: max_accuracy
|
3161 |
-
value: 99.
|
3162 |
- type: max_ap
|
3163 |
-
value:
|
3164 |
- type: max_f1
|
3165 |
-
value:
|
3166 |
- task:
|
3167 |
type: Clustering
|
3168 |
dataset:
|
@@ -3173,7 +2276,7 @@ model-index:
|
|
3173 |
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
3174 |
metrics:
|
3175 |
- type: v_measure
|
3176 |
-
value:
|
3177 |
- task:
|
3178 |
type: Clustering
|
3179 |
dataset:
|
@@ -3184,7 +2287,7 @@ model-index:
|
|
3184 |
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
3185 |
metrics:
|
3186 |
- type: v_measure
|
3187 |
-
value: 31.
|
3188 |
- task:
|
3189 |
type: Reranking
|
3190 |
dataset:
|
@@ -3195,9 +2298,9 @@ model-index:
|
|
3195 |
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
3196 |
metrics:
|
3197 |
- type: map
|
3198 |
-
value:
|
3199 |
- type: mrr
|
3200 |
-
value:
|
3201 |
- task:
|
3202 |
type: Summarization
|
3203 |
dataset:
|
@@ -3208,13 +2311,13 @@ model-index:
|
|
3208 |
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
3209 |
metrics:
|
3210 |
- type: cos_sim_pearson
|
3211 |
-
value: 30.
|
3212 |
- type: cos_sim_spearman
|
3213 |
-
value:
|
3214 |
- type: dot_pearson
|
3215 |
-
value:
|
3216 |
- type: dot_spearman
|
3217 |
-
value:
|
3218 |
- task:
|
3219 |
type: Retrieval
|
3220 |
dataset:
|
@@ -3225,65 +2328,65 @@ model-index:
|
|
3225 |
revision: None
|
3226 |
metrics:
|
3227 |
- type: map_at_1
|
3228 |
-
value: 0.
|
3229 |
- type: map_at_10
|
3230 |
-
value: 1.
|
3231 |
- type: map_at_100
|
3232 |
-
value:
|
3233 |
- type: map_at_1000
|
3234 |
-
value:
|
3235 |
- type: map_at_3
|
3236 |
-
value: 0.
|
3237 |
- type: map_at_5
|
3238 |
-
value: 0.
|
3239 |
- type: mrr_at_1
|
3240 |
-
value:
|
3241 |
- type: mrr_at_10
|
3242 |
-
value: 79.
|
3243 |
- type: mrr_at_100
|
3244 |
-
value: 79.
|
3245 |
- type: mrr_at_1000
|
3246 |
-
value: 79.
|
3247 |
- type: mrr_at_3
|
3248 |
-
value: 77.
|
3249 |
- type: mrr_at_5
|
3250 |
-
value:
|
3251 |
- type: ndcg_at_1
|
3252 |
-
value:
|
3253 |
- type: ndcg_at_10
|
3254 |
-
value:
|
3255 |
- type: ndcg_at_100
|
3256 |
-
value:
|
3257 |
- type: ndcg_at_1000
|
3258 |
-
value:
|
3259 |
- type: ndcg_at_3
|
3260 |
-
value: 58.
|
3261 |
- type: ndcg_at_5
|
3262 |
-
value:
|
3263 |
- type: precision_at_1
|
3264 |
-
value:
|
3265 |
- type: precision_at_10
|
3266 |
-
value:
|
3267 |
- type: precision_at_100
|
3268 |
-
value:
|
3269 |
- type: precision_at_1000
|
3270 |
-
value:
|
3271 |
- type: precision_at_3
|
3272 |
-
value:
|
3273 |
- type: precision_at_5
|
3274 |
-
value:
|
3275 |
- type: recall_at_1
|
3276 |
-
value: 0.
|
3277 |
- type: recall_at_10
|
3278 |
-
value: 1.
|
3279 |
- type: recall_at_100
|
3280 |
-
value:
|
3281 |
- type: recall_at_1000
|
3282 |
-
value:
|
3283 |
- type: recall_at_3
|
3284 |
-
value: 0.
|
3285 |
- type: recall_at_5
|
3286 |
-
value: 0.
|
3287 |
- task:
|
3288 |
type: Retrieval
|
3289 |
dataset:
|
@@ -3294,65 +2397,65 @@ model-index:
|
|
3294 |
revision: None
|
3295 |
metrics:
|
3296 |
- type: map_at_1
|
3297 |
-
value: 1.
|
3298 |
- type: map_at_10
|
3299 |
-
value: 7.
|
3300 |
- type: map_at_100
|
3301 |
-
value: 11.
|
3302 |
- type: map_at_1000
|
3303 |
-
value:
|
3304 |
- type: map_at_3
|
3305 |
-
value: 3.
|
3306 |
- type: map_at_5
|
3307 |
-
value: 4.
|
3308 |
- type: mrr_at_1
|
3309 |
-
value:
|
3310 |
- type: mrr_at_10
|
3311 |
-
value:
|
3312 |
- type: mrr_at_100
|
3313 |
-
value:
|
3314 |
- type: mrr_at_1000
|
3315 |
-
value:
|
3316 |
- type: mrr_at_3
|
3317 |
-
value:
|
3318 |
- type: mrr_at_5
|
3319 |
-
value:
|
3320 |
- type: ndcg_at_1
|
3321 |
-
value:
|
3322 |
- type: ndcg_at_10
|
3323 |
-
value:
|
3324 |
- type: ndcg_at_100
|
3325 |
-
value: 28.
|
3326 |
- type: ndcg_at_1000
|
3327 |
-
value:
|
3328 |
- type: ndcg_at_3
|
3329 |
-
value:
|
3330 |
- type: ndcg_at_5
|
3331 |
-
value:
|
3332 |
- type: precision_at_1
|
3333 |
-
value:
|
3334 |
- type: precision_at_10
|
3335 |
-
value:
|
3336 |
- type: precision_at_100
|
3337 |
-
value: 6.
|
3338 |
- type: precision_at_1000
|
3339 |
-
value: 1.
|
3340 |
- type: precision_at_3
|
3341 |
-
value:
|
3342 |
- type: precision_at_5
|
3343 |
-
value:
|
3344 |
- type: recall_at_1
|
3345 |
-
value: 1.
|
3346 |
- type: recall_at_10
|
3347 |
-
value:
|
3348 |
- type: recall_at_100
|
3349 |
-
value:
|
3350 |
- type: recall_at_1000
|
3351 |
-
value:
|
3352 |
- type: recall_at_3
|
3353 |
-
value: 4.
|
3354 |
- type: recall_at_5
|
3355 |
-
value:
|
3356 |
- task:
|
3357 |
type: Classification
|
3358 |
dataset:
|
@@ -3363,11 +2466,11 @@ model-index:
|
|
3363 |
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
3364 |
metrics:
|
3365 |
- type: accuracy
|
3366 |
-
value:
|
3367 |
- type: ap
|
3368 |
-
value:
|
3369 |
- type: f1
|
3370 |
-
value:
|
3371 |
- task:
|
3372 |
type: Classification
|
3373 |
dataset:
|
@@ -3378,9 +2481,9 @@ model-index:
|
|
3378 |
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
3379 |
metrics:
|
3380 |
- type: accuracy
|
3381 |
-
value:
|
3382 |
- type: f1
|
3383 |
-
value:
|
3384 |
- task:
|
3385 |
type: Clustering
|
3386 |
dataset:
|
@@ -3391,7 +2494,7 @@ model-index:
|
|
3391 |
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
3392 |
metrics:
|
3393 |
- type: v_measure
|
3394 |
-
value:
|
3395 |
- task:
|
3396 |
type: PairClassification
|
3397 |
dataset:
|
@@ -3402,51 +2505,51 @@ model-index:
|
|
3402 |
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
3403 |
metrics:
|
3404 |
- type: cos_sim_accuracy
|
3405 |
-
value:
|
3406 |
- type: cos_sim_ap
|
3407 |
-
value:
|
3408 |
- type: cos_sim_f1
|
3409 |
-
value:
|
3410 |
- type: cos_sim_precision
|
3411 |
-
value:
|
3412 |
- type: cos_sim_recall
|
3413 |
-
value:
|
3414 |
- type: dot_accuracy
|
3415 |
-
value: 77.
|
3416 |
- type: dot_ap
|
3417 |
-
value:
|
3418 |
- type: dot_f1
|
3419 |
-
value:
|
3420 |
- type: dot_precision
|
3421 |
-
value:
|
3422 |
- type: dot_recall
|
3423 |
-
value:
|
3424 |
- type: euclidean_accuracy
|
3425 |
-
value:
|
3426 |
- type: euclidean_ap
|
3427 |
-
value:
|
3428 |
- type: euclidean_f1
|
3429 |
-
value:
|
3430 |
- type: euclidean_precision
|
3431 |
-
value:
|
3432 |
- type: euclidean_recall
|
3433 |
-
value:
|
3434 |
- type: manhattan_accuracy
|
3435 |
-
value:
|
3436 |
- type: manhattan_ap
|
3437 |
-
value:
|
3438 |
- type: manhattan_f1
|
3439 |
-
value:
|
3440 |
- type: manhattan_precision
|
3441 |
-
value:
|
3442 |
- type: manhattan_recall
|
3443 |
-
value:
|
3444 |
- type: max_accuracy
|
3445 |
-
value:
|
3446 |
- type: max_ap
|
3447 |
-
value:
|
3448 |
- type: max_f1
|
3449 |
-
value:
|
3450 |
- task:
|
3451 |
type: PairClassification
|
3452 |
dataset:
|
@@ -3457,51 +2560,51 @@ model-index:
|
|
3457 |
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
3458 |
metrics:
|
3459 |
- type: cos_sim_accuracy
|
3460 |
-
value:
|
3461 |
- type: cos_sim_ap
|
3462 |
-
value:
|
3463 |
- type: cos_sim_f1
|
3464 |
-
value:
|
3465 |
- type: cos_sim_precision
|
3466 |
-
value: 73.
|
3467 |
- type: cos_sim_recall
|
3468 |
-
value:
|
3469 |
- type: dot_accuracy
|
3470 |
-
value: 81.
|
3471 |
- type: dot_ap
|
3472 |
-
value: 67.
|
3473 |
- type: dot_f1
|
3474 |
-
value: 64.
|
3475 |
- type: dot_precision
|
3476 |
-
value: 56.
|
3477 |
- type: dot_recall
|
3478 |
-
value:
|
3479 |
- type: euclidean_accuracy
|
3480 |
-
value:
|
3481 |
- type: euclidean_ap
|
3482 |
-
value:
|
3483 |
- type: euclidean_f1
|
3484 |
-
value:
|
3485 |
- type: euclidean_precision
|
3486 |
-
value:
|
3487 |
- type: euclidean_recall
|
3488 |
-
value:
|
3489 |
- type: manhattan_accuracy
|
3490 |
-
value: 82.
|
3491 |
- type: manhattan_ap
|
3492 |
-
value:
|
3493 |
- type: manhattan_f1
|
3494 |
-
value:
|
3495 |
- type: manhattan_precision
|
3496 |
-
value:
|
3497 |
- type: manhattan_recall
|
3498 |
-
value:
|
3499 |
- type: max_accuracy
|
3500 |
-
value:
|
3501 |
- type: max_ap
|
3502 |
-
value:
|
3503 |
- type: max_f1
|
3504 |
-
value:
|
3505 |
---
|
3506 |
---
|
3507 |
|
|
|
11 |
language: en
|
12 |
license: apache-2.0
|
13 |
model-index:
|
14 |
+
- name: jina-embedding-b-en-v1
|
15 |
results:
|
16 |
- task:
|
17 |
type: Classification
|
|
|
23 |
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
24 |
metrics:
|
25 |
- type: accuracy
|
26 |
+
value: 66.58208955223881
|
27 |
- type: ap
|
28 |
+
value: 28.455148149555754
|
29 |
- type: f1
|
30 |
+
value: 59.973775371110385
|
31 |
- task:
|
32 |
type: Classification
|
33 |
dataset:
|
|
|
38 |
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
39 |
metrics:
|
40 |
- type: accuracy
|
41 |
+
value: 65.09505
|
42 |
- type: ap
|
43 |
+
value: 61.387245649832614
|
44 |
- type: f1
|
45 |
+
value: 62.96831291412068
|
46 |
- task:
|
47 |
type: Classification
|
48 |
dataset:
|
|
|
53 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
54 |
metrics:
|
55 |
- type: accuracy
|
56 |
+
value: 30.633999999999993
|
57 |
- type: f1
|
58 |
+
value: 29.638828990078647
|
59 |
- task:
|
60 |
type: Retrieval
|
61 |
dataset:
|
|
|
963 |
revision: None
|
964 |
metrics:
|
965 |
- type: map_at_1
|
966 |
+
value: 25.889
|
967 |
- type: map_at_10
|
968 |
+
value: 40.604
|
969 |
- type: map_at_100
|
970 |
+
value: 41.697
|
971 |
- type: map_at_1000
|
972 |
+
value: 41.705999999999996
|
973 |
- type: map_at_3
|
974 |
+
value: 35.217999999999996
|
975 |
- type: map_at_5
|
976 |
+
value: 38.326
|
977 |
- type: mrr_at_1
|
978 |
+
value: 26.245
|
979 |
- type: mrr_at_10
|
980 |
+
value: 40.736
|
981 |
- type: mrr_at_100
|
982 |
+
value: 41.829
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
983 |
- type: mrr_at_1000
|
984 |
+
value: 41.837999999999994
|
985 |
- type: mrr_at_3
|
986 |
+
value: 35.349000000000004
|
987 |
- type: mrr_at_5
|
988 |
+
value: 38.425
|
989 |
- type: ndcg_at_1
|
990 |
+
value: 25.889
|
991 |
- type: ndcg_at_10
|
992 |
+
value: 49.347
|
993 |
- type: ndcg_at_100
|
994 |
+
value: 53.956
|
995 |
- type: ndcg_at_1000
|
996 |
+
value: 54.2
|
997 |
- type: ndcg_at_3
|
998 |
+
value: 38.282
|
999 |
- type: ndcg_at_5
|
1000 |
+
value: 43.895
|
1001 |
- type: precision_at_1
|
1002 |
+
value: 25.889
|
1003 |
- type: precision_at_10
|
1004 |
+
value: 7.752000000000001
|
1005 |
- type: precision_at_100
|
1006 |
+
value: 0.976
|
1007 |
- type: precision_at_1000
|
1008 |
+
value: 0.1
|
1009 |
- type: precision_at_3
|
1010 |
+
value: 15.717999999999998
|
1011 |
- type: precision_at_5
|
1012 |
+
value: 12.162
|
1013 |
- type: recall_at_1
|
1014 |
+
value: 25.889
|
1015 |
- type: recall_at_10
|
1016 |
+
value: 77.525
|
1017 |
- type: recall_at_100
|
1018 |
+
value: 97.58200000000001
|
1019 |
- type: recall_at_1000
|
1020 |
+
value: 99.502
|
1021 |
- type: recall_at_3
|
1022 |
+
value: 47.155
|
1023 |
- type: recall_at_5
|
1024 |
+
value: 60.81100000000001
|
1025 |
- task:
|
1026 |
+
type: Clustering
|
1027 |
dataset:
|
1028 |
+
type: mteb/arxiv-clustering-p2p
|
1029 |
+
name: MTEB ArxivClusteringP2P
|
1030 |
config: default
|
1031 |
split: test
|
1032 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
1033 |
metrics:
|
1034 |
+
- type: v_measure
|
1035 |
+
value: 39.2179862062943
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1036 |
- task:
|
1037 |
+
type: Clustering
|
1038 |
dataset:
|
1039 |
+
type: mteb/arxiv-clustering-s2s
|
1040 |
+
name: MTEB ArxivClusteringS2S
|
1041 |
config: default
|
1042 |
split: test
|
1043 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
1044 |
metrics:
|
1045 |
+
- type: v_measure
|
1046 |
+
value: 29.87826673088078
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1047 |
- task:
|
1048 |
+
type: Reranking
|
1049 |
dataset:
|
1050 |
+
type: mteb/askubuntudupquestions-reranking
|
1051 |
+
name: MTEB AskUbuntuDupQuestions
|
1052 |
config: default
|
1053 |
split: test
|
1054 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
1055 |
metrics:
|
1056 |
+
- type: map
|
1057 |
+
value: 62.72401299412015
|
1058 |
+
- type: mrr
|
1059 |
+
value: 75.45167743921206
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1060 |
- task:
|
1061 |
+
type: STS
|
1062 |
dataset:
|
1063 |
+
type: mteb/biosses-sts
|
1064 |
+
name: MTEB BIOSSES
|
1065 |
config: default
|
1066 |
split: test
|
1067 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
1068 |
metrics:
|
1069 |
+
- type: cos_sim_pearson
|
1070 |
+
value: 85.96510928112639
|
1071 |
+
- type: cos_sim_spearman
|
1072 |
+
value: 82.64224450538681
|
1073 |
+
- type: euclidean_pearson
|
1074 |
+
value: 52.03458755006108
|
1075 |
+
- type: euclidean_spearman
|
1076 |
+
value: 52.83192670285616
|
1077 |
+
- type: manhattan_pearson
|
1078 |
+
value: 52.14561955040935
|
1079 |
+
- type: manhattan_spearman
|
1080 |
+
value: 52.9584356095438
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1081 |
- task:
|
1082 |
+
type: Classification
|
1083 |
dataset:
|
1084 |
+
type: mteb/banking77
|
1085 |
+
name: MTEB Banking77Classification
|
1086 |
config: default
|
1087 |
split: test
|
1088 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
1089 |
metrics:
|
1090 |
+
- type: accuracy
|
1091 |
+
value: 84.11363636363636
|
1092 |
+
- type: f1
|
1093 |
+
value: 84.01098114920124
|
1094 |
+
- task:
|
1095 |
+
type: Clustering
|
1096 |
+
dataset:
|
1097 |
+
type: mteb/biorxiv-clustering-p2p
|
1098 |
+
name: MTEB BiorxivClusteringP2P
|
1099 |
+
config: default
|
1100 |
+
split: test
|
1101 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
1102 |
+
metrics:
|
1103 |
+
- type: v_measure
|
1104 |
+
value: 32.991971466919026
|
1105 |
+
- task:
|
1106 |
+
type: Clustering
|
1107 |
+
dataset:
|
1108 |
+
type: mteb/biorxiv-clustering-s2s
|
1109 |
+
name: MTEB BiorxivClusteringS2S
|
1110 |
+
config: default
|
1111 |
+
split: test
|
1112 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
1113 |
+
metrics:
|
1114 |
+
- type: v_measure
|
1115 |
+
value: 26.48807922559519
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1116 |
- task:
|
1117 |
type: Retrieval
|
1118 |
dataset:
|
|
|
1123 |
revision: None
|
1124 |
metrics:
|
1125 |
- type: map_at_1
|
1126 |
+
value: 8.014000000000001
|
1127 |
- type: map_at_10
|
1128 |
+
value: 14.149999999999999
|
1129 |
- type: map_at_100
|
1130 |
+
value: 15.539
|
1131 |
- type: map_at_1000
|
1132 |
+
value: 15.711
|
1133 |
- type: map_at_3
|
1134 |
+
value: 11.913
|
1135 |
- type: map_at_5
|
1136 |
+
value: 12.982
|
1137 |
- type: mrr_at_1
|
1138 |
+
value: 18.046
|
1139 |
- type: mrr_at_10
|
1140 |
+
value: 28.224
|
1141 |
- type: mrr_at_100
|
1142 |
+
value: 29.293000000000003
|
1143 |
- type: mrr_at_1000
|
1144 |
+
value: 29.348999999999997
|
1145 |
- type: mrr_at_3
|
1146 |
+
value: 25.179000000000002
|
1147 |
- type: mrr_at_5
|
1148 |
+
value: 26.827
|
1149 |
- type: ndcg_at_1
|
1150 |
+
value: 18.046
|
1151 |
- type: ndcg_at_10
|
1152 |
+
value: 20.784
|
1153 |
- type: ndcg_at_100
|
1154 |
+
value: 26.939999999999998
|
1155 |
- type: ndcg_at_1000
|
1156 |
+
value: 30.453999999999997
|
1157 |
- type: ndcg_at_3
|
1158 |
+
value: 16.694
|
1159 |
- type: ndcg_at_5
|
1160 |
+
value: 18.049
|
1161 |
- type: precision_at_1
|
1162 |
+
value: 18.046
|
1163 |
- type: precision_at_10
|
1164 |
+
value: 6.5280000000000005
|
1165 |
- type: precision_at_100
|
1166 |
+
value: 1.2959999999999998
|
1167 |
- type: precision_at_1000
|
1168 |
+
value: 0.19499999999999998
|
1169 |
- type: precision_at_3
|
1170 |
+
value: 12.465
|
1171 |
- type: precision_at_5
|
1172 |
+
value: 9.511
|
1173 |
- type: recall_at_1
|
1174 |
+
value: 8.014000000000001
|
1175 |
- type: recall_at_10
|
1176 |
+
value: 26.021
|
1177 |
- type: recall_at_100
|
1178 |
+
value: 47.692
|
1179 |
- type: recall_at_1000
|
1180 |
+
value: 67.63
|
1181 |
- type: recall_at_3
|
1182 |
+
value: 16.122
|
1183 |
- type: recall_at_5
|
1184 |
+
value: 19.817
|
1185 |
- task:
|
1186 |
type: Retrieval
|
1187 |
dataset:
|
|
|
1192 |
revision: None
|
1193 |
metrics:
|
1194 |
- type: map_at_1
|
1195 |
+
value: 7.396
|
1196 |
- type: map_at_10
|
1197 |
+
value: 14.543000000000001
|
1198 |
- type: map_at_100
|
1199 |
+
value: 19.235
|
1200 |
- type: map_at_1000
|
1201 |
+
value: 20.384
|
1202 |
- type: map_at_3
|
1203 |
+
value: 10.886
|
1204 |
- type: map_at_5
|
1205 |
+
value: 12.61
|
1206 |
- type: mrr_at_1
|
1207 |
+
value: 55.50000000000001
|
1208 |
- type: mrr_at_10
|
1209 |
+
value: 63.731
|
1210 |
- type: mrr_at_100
|
1211 |
+
value: 64.256
|
1212 |
- type: mrr_at_1000
|
1213 |
+
value: 64.27000000000001
|
1214 |
- type: mrr_at_3
|
1215 |
+
value: 61.583
|
1216 |
- type: mrr_at_5
|
1217 |
+
value: 62.92100000000001
|
1218 |
- type: ndcg_at_1
|
1219 |
+
value: 43.375
|
1220 |
- type: ndcg_at_10
|
1221 |
+
value: 31.352000000000004
|
1222 |
- type: ndcg_at_100
|
1223 |
+
value: 34.717999999999996
|
1224 |
- type: ndcg_at_1000
|
1225 |
+
value: 41.959
|
1226 |
- type: ndcg_at_3
|
1227 |
+
value: 35.319
|
1228 |
- type: ndcg_at_5
|
1229 |
+
value: 33.222
|
1230 |
- type: precision_at_1
|
1231 |
+
value: 55.50000000000001
|
1232 |
- type: precision_at_10
|
1233 |
+
value: 24.15
|
1234 |
- type: precision_at_100
|
1235 |
+
value: 7.42
|
1236 |
- type: precision_at_1000
|
1237 |
+
value: 1.66
|
1238 |
- type: precision_at_3
|
1239 |
+
value: 37.917
|
1240 |
- type: precision_at_5
|
1241 |
+
value: 31.900000000000002
|
1242 |
- type: recall_at_1
|
1243 |
+
value: 7.396
|
1244 |
- type: recall_at_10
|
1245 |
+
value: 19.686999999999998
|
1246 |
- type: recall_at_100
|
1247 |
+
value: 40.465
|
1248 |
- type: recall_at_1000
|
1249 |
+
value: 63.79899999999999
|
1250 |
- type: recall_at_3
|
1251 |
+
value: 12.124
|
1252 |
- type: recall_at_5
|
1253 |
+
value: 15.28
|
1254 |
- task:
|
1255 |
type: Classification
|
1256 |
dataset:
|
|
|
1261 |
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1262 |
metrics:
|
1263 |
- type: accuracy
|
1264 |
+
value: 41.33
|
1265 |
- type: f1
|
1266 |
+
value: 37.682972473685496
|
1267 |
- task:
|
1268 |
type: Retrieval
|
1269 |
dataset:
|
|
|
1274 |
revision: None
|
1275 |
metrics:
|
1276 |
- type: map_at_1
|
1277 |
+
value: 49.019
|
1278 |
- type: map_at_10
|
1279 |
+
value: 61.219
|
1280 |
- type: map_at_100
|
1281 |
+
value: 61.753
|
1282 |
- type: map_at_1000
|
1283 |
+
value: 61.771
|
1284 |
- type: map_at_3
|
1285 |
+
value: 58.952000000000005
|
1286 |
- type: map_at_5
|
1287 |
+
value: 60.239
|
1288 |
- type: mrr_at_1
|
1289 |
+
value: 53
|
1290 |
- type: mrr_at_10
|
1291 |
+
value: 65.678
|
1292 |
- type: mrr_at_100
|
1293 |
+
value: 66.147
|
1294 |
- type: mrr_at_1000
|
1295 |
+
value: 66.155
|
1296 |
- type: mrr_at_3
|
1297 |
+
value: 63.495999999999995
|
1298 |
- type: mrr_at_5
|
1299 |
+
value: 64.75800000000001
|
1300 |
- type: ndcg_at_1
|
1301 |
+
value: 53
|
1302 |
- type: ndcg_at_10
|
1303 |
+
value: 67.587
|
1304 |
- type: ndcg_at_100
|
1305 |
+
value: 69.877
|
1306 |
- type: ndcg_at_1000
|
1307 |
+
value: 70.25200000000001
|
1308 |
- type: ndcg_at_3
|
1309 |
+
value: 63.174
|
1310 |
- type: ndcg_at_5
|
1311 |
+
value: 65.351
|
1312 |
- type: precision_at_1
|
1313 |
+
value: 53
|
1314 |
- type: precision_at_10
|
1315 |
+
value: 9.067
|
1316 |
- type: precision_at_100
|
1317 |
+
value: 1.026
|
1318 |
- type: precision_at_1000
|
1319 |
+
value: 0.107
|
1320 |
- type: precision_at_3
|
1321 |
+
value: 25.728
|
1322 |
- type: precision_at_5
|
1323 |
+
value: 16.637
|
1324 |
- type: recall_at_1
|
1325 |
+
value: 49.019
|
1326 |
- type: recall_at_10
|
1327 |
+
value: 82.962
|
1328 |
- type: recall_at_100
|
1329 |
+
value: 92.917
|
1330 |
- type: recall_at_1000
|
1331 |
+
value: 95.511
|
1332 |
- type: recall_at_3
|
1333 |
+
value: 70.838
|
1334 |
- type: recall_at_5
|
1335 |
+
value: 76.201
|
1336 |
- task:
|
1337 |
type: Retrieval
|
1338 |
dataset:
|
|
|
1343 |
revision: None
|
1344 |
metrics:
|
1345 |
- type: map_at_1
|
1346 |
+
value: 16.714000000000002
|
1347 |
- type: map_at_10
|
1348 |
+
value: 28.041
|
1349 |
- type: map_at_100
|
1350 |
+
value: 29.75
|
1351 |
- type: map_at_1000
|
1352 |
+
value: 29.944
|
1353 |
- type: map_at_3
|
1354 |
+
value: 23.884
|
1355 |
- type: map_at_5
|
1356 |
+
value: 26.468000000000004
|
1357 |
- type: mrr_at_1
|
1358 |
+
value: 33.796
|
1359 |
- type: mrr_at_10
|
1360 |
+
value: 42.757
|
1361 |
- type: mrr_at_100
|
1362 |
+
value: 43.705
|
1363 |
- type: mrr_at_1000
|
1364 |
+
value: 43.751
|
1365 |
- type: mrr_at_3
|
1366 |
+
value: 40.406
|
1367 |
- type: mrr_at_5
|
1368 |
+
value: 41.88
|
1369 |
- type: ndcg_at_1
|
1370 |
+
value: 33.796
|
1371 |
- type: ndcg_at_10
|
1372 |
+
value: 35.482
|
1373 |
- type: ndcg_at_100
|
1374 |
+
value: 42.44
|
1375 |
- type: ndcg_at_1000
|
1376 |
+
value: 45.903
|
1377 |
- type: ndcg_at_3
|
1378 |
+
value: 31.922
|
1379 |
- type: ndcg_at_5
|
1380 |
+
value: 33.516
|
1381 |
- type: precision_at_1
|
1382 |
+
value: 33.796
|
1383 |
- type: precision_at_10
|
1384 |
+
value: 10.108
|
1385 |
- type: precision_at_100
|
1386 |
+
value: 1.735
|
1387 |
- type: precision_at_1000
|
1388 |
+
value: 0.23500000000000001
|
1389 |
- type: precision_at_3
|
1390 |
+
value: 21.759
|
1391 |
- type: precision_at_5
|
1392 |
+
value: 16.605
|
1393 |
- type: recall_at_1
|
1394 |
+
value: 16.714000000000002
|
1395 |
- type: recall_at_10
|
1396 |
+
value: 42.38
|
1397 |
- type: recall_at_100
|
1398 |
+
value: 68.84700000000001
|
1399 |
- type: recall_at_1000
|
1400 |
+
value: 90.036
|
1401 |
- type: recall_at_3
|
1402 |
+
value: 28.776000000000003
|
1403 |
- type: recall_at_5
|
1404 |
+
value: 35.606
|
1405 |
- task:
|
1406 |
type: Retrieval
|
1407 |
dataset:
|
|
|
1412 |
revision: None
|
1413 |
metrics:
|
1414 |
- type: map_at_1
|
1415 |
+
value: 29.534
|
1416 |
- type: map_at_10
|
1417 |
+
value: 40.857
|
1418 |
- type: map_at_100
|
1419 |
+
value: 41.715999999999994
|
1420 |
- type: map_at_1000
|
1421 |
+
value: 41.795
|
1422 |
- type: map_at_3
|
1423 |
+
value: 38.415
|
1424 |
- type: map_at_5
|
1425 |
+
value: 39.833
|
1426 |
- type: mrr_at_1
|
1427 |
+
value: 59.068
|
1428 |
- type: mrr_at_10
|
1429 |
+
value: 66.034
|
1430 |
- type: mrr_at_100
|
1431 |
+
value: 66.479
|
1432 |
- type: mrr_at_1000
|
1433 |
+
value: 66.50399999999999
|
1434 |
- type: mrr_at_3
|
1435 |
+
value: 64.38000000000001
|
1436 |
- type: mrr_at_5
|
1437 |
+
value: 65.40599999999999
|
1438 |
- type: ndcg_at_1
|
1439 |
+
value: 59.068
|
1440 |
- type: ndcg_at_10
|
1441 |
+
value: 49.638
|
1442 |
- type: ndcg_at_100
|
1443 |
+
value: 53.093999999999994
|
1444 |
- type: ndcg_at_1000
|
1445 |
+
value: 54.813
|
1446 |
- type: ndcg_at_3
|
1447 |
+
value: 45.537
|
1448 |
- type: ndcg_at_5
|
1449 |
+
value: 47.671
|
1450 |
- type: precision_at_1
|
1451 |
+
value: 59.068
|
1452 |
- type: precision_at_10
|
1453 |
+
value: 10.313
|
1454 |
- type: precision_at_100
|
1455 |
+
value: 1.304
|
1456 |
- type: precision_at_1000
|
1457 |
+
value: 0.153
|
1458 |
- type: precision_at_3
|
1459 |
+
value: 28.278
|
1460 |
- type: precision_at_5
|
1461 |
+
value: 18.658
|
1462 |
- type: recall_at_1
|
1463 |
+
value: 29.534
|
1464 |
- type: recall_at_10
|
1465 |
+
value: 51.56699999999999
|
1466 |
- type: recall_at_100
|
1467 |
+
value: 65.199
|
1468 |
- type: recall_at_1000
|
1469 |
+
value: 76.678
|
1470 |
- type: recall_at_3
|
1471 |
+
value: 42.417
|
1472 |
- type: recall_at_5
|
1473 |
+
value: 46.644000000000005
|
1474 |
- task:
|
1475 |
type: Classification
|
1476 |
dataset:
|
|
|
1481 |
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1482 |
metrics:
|
1483 |
- type: accuracy
|
1484 |
+
value: 65.74719999999999
|
1485 |
- type: ap
|
1486 |
+
value: 60.57322504947344
|
1487 |
- type: f1
|
1488 |
+
value: 65.37875006542282
|
1489 |
- task:
|
1490 |
type: Retrieval
|
1491 |
dataset:
|
|
|
1496 |
revision: None
|
1497 |
metrics:
|
1498 |
- type: map_at_1
|
1499 |
+
value: 15.695999999999998
|
1500 |
- type: map_at_10
|
1501 |
+
value: 26.661
|
1502 |
- type: map_at_100
|
1503 |
+
value: 27.982000000000003
|
1504 |
- type: map_at_1000
|
1505 |
+
value: 28.049000000000003
|
1506 |
- type: map_at_3
|
1507 |
+
value: 23.057
|
1508 |
- type: map_at_5
|
1509 |
+
value: 25.079
|
1510 |
- type: mrr_at_1
|
1511 |
+
value: 16.16
|
1512 |
- type: mrr_at_10
|
1513 |
+
value: 27.150999999999996
|
1514 |
- type: mrr_at_100
|
1515 |
+
value: 28.423
|
1516 |
- type: mrr_at_1000
|
1517 |
+
value: 28.483999999999998
|
1518 |
- type: mrr_at_3
|
1519 |
+
value: 23.577
|
1520 |
- type: mrr_at_5
|
1521 |
+
value: 25.585
|
1522 |
- type: ndcg_at_1
|
1523 |
+
value: 16.16
|
1524 |
- type: ndcg_at_10
|
1525 |
+
value: 33.017
|
1526 |
- type: ndcg_at_100
|
1527 |
+
value: 39.582
|
1528 |
- type: ndcg_at_1000
|
1529 |
+
value: 41.28
|
1530 |
- type: ndcg_at_3
|
1531 |
+
value: 25.607000000000003
|
1532 |
- type: ndcg_at_5
|
1533 |
+
value: 29.214000000000002
|
1534 |
- type: precision_at_1
|
1535 |
+
value: 16.16
|
1536 |
- type: precision_at_10
|
1537 |
+
value: 5.506
|
1538 |
- type: precision_at_100
|
1539 |
+
value: 0.882
|
1540 |
- type: precision_at_1000
|
1541 |
+
value: 0.10300000000000001
|
1542 |
- type: precision_at_3
|
1543 |
+
value: 11.199
|
1544 |
- type: precision_at_5
|
1545 |
+
value: 8.55
|
1546 |
- type: recall_at_1
|
1547 |
+
value: 15.695999999999998
|
1548 |
- type: recall_at_10
|
1549 |
+
value: 52.736000000000004
|
1550 |
- type: recall_at_100
|
1551 |
+
value: 83.523
|
1552 |
- type: recall_at_1000
|
1553 |
+
value: 96.588
|
1554 |
- type: recall_at_3
|
1555 |
+
value: 32.484
|
1556 |
- type: recall_at_5
|
1557 |
+
value: 41.117
|
1558 |
- task:
|
1559 |
type: Classification
|
1560 |
dataset:
|
|
|
1565 |
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1566 |
metrics:
|
1567 |
- type: accuracy
|
1568 |
+
value: 91.71682626538988
|
1569 |
- type: f1
|
1570 |
+
value: 91.60647677401211
|
1571 |
- task:
|
1572 |
type: Classification
|
1573 |
dataset:
|
|
|
1578 |
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1579 |
metrics:
|
1580 |
- type: accuracy
|
1581 |
+
value: 74.94756041951665
|
1582 |
- type: f1
|
1583 |
+
value: 57.26936028487369
|
1584 |
- task:
|
1585 |
type: Classification
|
1586 |
dataset:
|
|
|
1591 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1592 |
metrics:
|
1593 |
- type: accuracy
|
1594 |
+
value: 71.43241425689307
|
1595 |
- type: f1
|
1596 |
+
value: 68.80370629448252
|
1597 |
- task:
|
1598 |
type: Classification
|
1599 |
dataset:
|
|
|
1604 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1605 |
metrics:
|
1606 |
- type: accuracy
|
1607 |
+
value: 77.04774714189642
|
1608 |
- type: f1
|
1609 |
+
value: 76.93545888412446
|
1610 |
- task:
|
1611 |
type: Clustering
|
1612 |
dataset:
|
|
|
1617 |
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1618 |
metrics:
|
1619 |
- type: v_measure
|
1620 |
+
value: 30.009784989313765
|
1621 |
- task:
|
1622 |
type: Clustering
|
1623 |
dataset:
|
|
|
1628 |
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1629 |
metrics:
|
1630 |
- type: v_measure
|
1631 |
+
value: 25.568442512328872
|
1632 |
- task:
|
1633 |
type: Reranking
|
1634 |
dataset:
|
|
|
1639 |
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1640 |
metrics:
|
1641 |
- type: map
|
1642 |
+
value: 31.013959341949697
|
1643 |
- type: mrr
|
1644 |
+
value: 31.998487836684575
|
1645 |
- task:
|
1646 |
type: Retrieval
|
1647 |
dataset:
|
|
|
1652 |
revision: None
|
1653 |
metrics:
|
1654 |
- type: map_at_1
|
1655 |
+
value: 4.316
|
1656 |
- type: map_at_10
|
1657 |
+
value: 10.287
|
1658 |
- type: map_at_100
|
1659 |
+
value: 12.817
|
1660 |
- type: map_at_1000
|
1661 |
+
value: 14.141
|
1662 |
- type: map_at_3
|
1663 |
+
value: 7.728
|
1664 |
- type: map_at_5
|
1665 |
+
value: 8.876000000000001
|
1666 |
- type: mrr_at_1
|
1667 |
+
value: 39.628
|
1668 |
- type: mrr_at_10
|
1669 |
+
value: 48.423
|
1670 |
- type: mrr_at_100
|
1671 |
+
value: 49.153999999999996
|
1672 |
- type: mrr_at_1000
|
1673 |
+
value: 49.198
|
1674 |
- type: mrr_at_3
|
1675 |
+
value: 45.666000000000004
|
1676 |
- type: mrr_at_5
|
1677 |
+
value: 47.477000000000004
|
1678 |
- type: ndcg_at_1
|
1679 |
+
value: 36.533
|
1680 |
- type: ndcg_at_10
|
1681 |
+
value: 29.304000000000002
|
1682 |
- type: ndcg_at_100
|
1683 |
+
value: 27.078000000000003
|
1684 |
- type: ndcg_at_1000
|
1685 |
+
value: 36.221
|
1686 |
- type: ndcg_at_3
|
1687 |
+
value: 33.256
|
1688 |
- type: ndcg_at_5
|
1689 |
+
value: 31.465
|
1690 |
- type: precision_at_1
|
1691 |
+
value: 39.009
|
1692 |
- type: precision_at_10
|
1693 |
+
value: 22.043
|
1694 |
- type: precision_at_100
|
1695 |
+
value: 7.115
|
1696 |
- type: precision_at_1000
|
1697 |
+
value: 1.991
|
1698 |
- type: precision_at_3
|
1699 |
+
value: 31.476
|
1700 |
- type: precision_at_5
|
1701 |
+
value: 27.616000000000003
|
1702 |
- type: recall_at_1
|
1703 |
+
value: 4.316
|
1704 |
- type: recall_at_10
|
1705 |
+
value: 14.507
|
1706 |
- type: recall_at_100
|
1707 |
+
value: 28.847
|
1708 |
- type: recall_at_1000
|
1709 |
+
value: 61.758
|
1710 |
- type: recall_at_3
|
1711 |
+
value: 8.753
|
1712 |
- type: recall_at_5
|
1713 |
+
value: 11.153
|
1714 |
- task:
|
1715 |
type: Retrieval
|
1716 |
dataset:
|
|
|
1721 |
revision: None
|
1722 |
metrics:
|
1723 |
- type: map_at_1
|
1724 |
+
value: 22.374
|
1725 |
- type: map_at_10
|
1726 |
+
value: 36.095
|
1727 |
- type: map_at_100
|
1728 |
+
value: 37.413999999999994
|
1729 |
- type: map_at_1000
|
1730 |
+
value: 37.46
|
1731 |
- type: map_at_3
|
1732 |
+
value: 31.711
|
1733 |
- type: map_at_5
|
1734 |
+
value: 34.294999999999995
|
1735 |
- type: mrr_at_1
|
1736 |
+
value: 25.406000000000002
|
1737 |
- type: mrr_at_10
|
1738 |
+
value: 38.424
|
1739 |
- type: mrr_at_100
|
1740 |
+
value: 39.456
|
1741 |
- type: mrr_at_1000
|
1742 |
+
value: 39.488
|
1743 |
- type: mrr_at_3
|
1744 |
+
value: 34.613
|
1745 |
- type: mrr_at_5
|
1746 |
+
value: 36.864999999999995
|
1747 |
- type: ndcg_at_1
|
1748 |
+
value: 25.406000000000002
|
1749 |
- type: ndcg_at_10
|
1750 |
+
value: 43.614000000000004
|
1751 |
- type: ndcg_at_100
|
1752 |
+
value: 49.166
|
1753 |
- type: ndcg_at_1000
|
1754 |
+
value: 50.212
|
1755 |
- type: ndcg_at_3
|
1756 |
+
value: 35.221999999999994
|
1757 |
- type: ndcg_at_5
|
1758 |
+
value: 39.571
|
1759 |
- type: precision_at_1
|
1760 |
+
value: 25.406000000000002
|
1761 |
- type: precision_at_10
|
1762 |
+
value: 7.654
|
1763 |
- type: precision_at_100
|
1764 |
+
value: 1.0699999999999998
|
1765 |
- type: precision_at_1000
|
1766 |
+
value: 0.117
|
1767 |
- type: precision_at_3
|
1768 |
+
value: 16.425
|
1769 |
- type: precision_at_5
|
1770 |
+
value: 12.352
|
1771 |
- type: recall_at_1
|
1772 |
+
value: 22.374
|
1773 |
- type: recall_at_10
|
1774 |
+
value: 64.337
|
1775 |
- type: recall_at_100
|
1776 |
+
value: 88.374
|
1777 |
- type: recall_at_1000
|
1778 |
+
value: 96.101
|
1779 |
- type: recall_at_3
|
1780 |
+
value: 42.5
|
1781 |
- type: recall_at_5
|
1782 |
+
value: 52.556000000000004
|
1783 |
- task:
|
1784 |
type: Retrieval
|
1785 |
dataset:
|
|
|
1790 |
revision: None
|
1791 |
metrics:
|
1792 |
- type: map_at_1
|
1793 |
+
value: 69.301
|
1794 |
- type: map_at_10
|
1795 |
+
value: 83.128
|
1796 |
- type: map_at_100
|
1797 |
+
value: 83.779
|
1798 |
- type: map_at_1000
|
1799 |
+
value: 83.798
|
1800 |
- type: map_at_3
|
1801 |
+
value: 80.11399999999999
|
1802 |
- type: map_at_5
|
1803 |
+
value: 82.00699999999999
|
1804 |
- type: mrr_at_1
|
1805 |
+
value: 79.81
|
1806 |
- type: mrr_at_10
|
1807 |
+
value: 86.28
|
1808 |
- type: mrr_at_100
|
1809 |
+
value: 86.399
|
1810 |
- type: mrr_at_1000
|
1811 |
+
value: 86.401
|
1812 |
- type: mrr_at_3
|
1813 |
+
value: 85.26
|
1814 |
- type: mrr_at_5
|
1815 |
+
value: 85.93499999999999
|
1816 |
- type: ndcg_at_1
|
1817 |
+
value: 79.80000000000001
|
1818 |
- type: ndcg_at_10
|
1819 |
+
value: 87.06700000000001
|
1820 |
- type: ndcg_at_100
|
1821 |
+
value: 88.41799999999999
|
1822 |
- type: ndcg_at_1000
|
1823 |
+
value: 88.554
|
1824 |
- type: ndcg_at_3
|
1825 |
+
value: 84.052
|
1826 |
- type: ndcg_at_5
|
1827 |
+
value: 85.711
|
1828 |
- type: precision_at_1
|
1829 |
+
value: 79.80000000000001
|
1830 |
- type: precision_at_10
|
1831 |
+
value: 13.224
|
1832 |
- type: precision_at_100
|
1833 |
+
value: 1.5230000000000001
|
1834 |
- type: precision_at_1000
|
1835 |
+
value: 0.157
|
1836 |
- type: precision_at_3
|
1837 |
+
value: 36.723
|
1838 |
- type: precision_at_5
|
1839 |
+
value: 24.192
|
1840 |
- type: recall_at_1
|
1841 |
+
value: 69.301
|
1842 |
- type: recall_at_10
|
1843 |
+
value: 94.589
|
1844 |
- type: recall_at_100
|
1845 |
+
value: 99.29299999999999
|
1846 |
- type: recall_at_1000
|
1847 |
+
value: 99.965
|
1848 |
- type: recall_at_3
|
1849 |
+
value: 86.045
|
1850 |
- type: recall_at_5
|
1851 |
+
value: 90.656
|
1852 |
- task:
|
1853 |
type: Clustering
|
1854 |
dataset:
|
|
|
1859 |
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1860 |
metrics:
|
1861 |
- type: v_measure
|
1862 |
+
value: 43.09903181165838
|
1863 |
- task:
|
1864 |
type: Clustering
|
1865 |
dataset:
|
|
|
1870 |
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1871 |
metrics:
|
1872 |
- type: v_measure
|
1873 |
+
value: 51.710378422887594
|
1874 |
- task:
|
1875 |
type: Retrieval
|
1876 |
dataset:
|
|
|
1881 |
revision: None
|
1882 |
metrics:
|
1883 |
- type: map_at_1
|
1884 |
+
value: 4.138
|
1885 |
- type: map_at_10
|
1886 |
+
value: 10.419
|
1887 |
- type: map_at_100
|
1888 |
+
value: 12.321
|
1889 |
- type: map_at_1000
|
1890 |
+
value: 12.605
|
1891 |
- type: map_at_3
|
1892 |
+
value: 7.445
|
1893 |
- type: map_at_5
|
1894 |
+
value: 8.859
|
1895 |
- type: mrr_at_1
|
1896 |
+
value: 20.4
|
1897 |
- type: mrr_at_10
|
1898 |
+
value: 30.148999999999997
|
1899 |
- type: mrr_at_100
|
1900 |
+
value: 31.357000000000003
|
1901 |
- type: mrr_at_1000
|
1902 |
+
value: 31.424999999999997
|
1903 |
- type: mrr_at_3
|
1904 |
+
value: 26.983
|
1905 |
- type: mrr_at_5
|
1906 |
+
value: 28.883
|
1907 |
- type: ndcg_at_1
|
1908 |
+
value: 20.4
|
1909 |
- type: ndcg_at_10
|
1910 |
+
value: 17.713
|
1911 |
- type: ndcg_at_100
|
1912 |
+
value: 25.221
|
1913 |
- type: ndcg_at_1000
|
1914 |
+
value: 30.381999999999998
|
1915 |
- type: ndcg_at_3
|
1916 |
+
value: 16.607
|
1917 |
- type: ndcg_at_5
|
1918 |
+
value: 14.559
|
1919 |
- type: precision_at_1
|
1920 |
+
value: 20.4
|
1921 |
- type: precision_at_10
|
1922 |
+
value: 9.3
|
1923 |
- type: precision_at_100
|
1924 |
+
value: 2.0060000000000002
|
1925 |
- type: precision_at_1000
|
1926 |
+
value: 0.32399999999999995
|
1927 |
- type: precision_at_3
|
1928 |
+
value: 15.5
|
1929 |
- type: precision_at_5
|
1930 |
+
value: 12.839999999999998
|
1931 |
- type: recall_at_1
|
1932 |
+
value: 4.138
|
1933 |
- type: recall_at_10
|
1934 |
+
value: 18.813
|
1935 |
- type: recall_at_100
|
1936 |
+
value: 40.692
|
1937 |
- type: recall_at_1000
|
1938 |
+
value: 65.835
|
1939 |
- type: recall_at_3
|
1940 |
+
value: 9.418
|
1941 |
- type: recall_at_5
|
1942 |
+
value: 12.983
|
1943 |
- task:
|
1944 |
type: STS
|
1945 |
dataset:
|
|
|
1950 |
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1951 |
metrics:
|
1952 |
- type: cos_sim_pearson
|
1953 |
+
value: 83.25944192442188
|
1954 |
- type: cos_sim_spearman
|
1955 |
+
value: 75.04296759426568
|
1956 |
- type: euclidean_pearson
|
1957 |
+
value: 74.8130340249869
|
1958 |
- type: euclidean_spearman
|
1959 |
+
value: 68.40180320816793
|
1960 |
- type: manhattan_pearson
|
1961 |
+
value: 74.9149619199144
|
1962 |
- type: manhattan_spearman
|
1963 |
+
value: 68.52380798258379
|
1964 |
- task:
|
1965 |
type: STS
|
1966 |
dataset:
|
|
|
1971 |
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1972 |
metrics:
|
1973 |
- type: cos_sim_pearson
|
1974 |
+
value: 81.91983072545858
|
1975 |
- type: cos_sim_spearman
|
1976 |
+
value: 73.5129498787296
|
1977 |
- type: euclidean_pearson
|
1978 |
+
value: 66.76535523270856
|
1979 |
- type: euclidean_spearman
|
1980 |
+
value: 56.64797879544097
|
1981 |
- type: manhattan_pearson
|
1982 |
+
value: 66.12191731384162
|
1983 |
- type: manhattan_spearman
|
1984 |
+
value: 56.37753861965956
|
1985 |
- task:
|
1986 |
type: STS
|
1987 |
dataset:
|
|
|
1992 |
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1993 |
metrics:
|
1994 |
- type: cos_sim_pearson
|
1995 |
+
value: 77.71164758747632
|
1996 |
- type: cos_sim_spearman
|
1997 |
+
value: 79.1530762030973
|
1998 |
- type: euclidean_pearson
|
1999 |
+
value: 69.50621786400177
|
2000 |
- type: euclidean_spearman
|
2001 |
+
value: 70.44898083428744
|
2002 |
- type: manhattan_pearson
|
2003 |
+
value: 69.04018458995307
|
2004 |
- type: manhattan_spearman
|
2005 |
+
value: 70.00888532086853
|
2006 |
- task:
|
2007 |
type: STS
|
2008 |
dataset:
|
|
|
2013 |
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2014 |
metrics:
|
2015 |
- type: cos_sim_pearson
|
2016 |
+
value: 78.90774995778577
|
2017 |
- type: cos_sim_spearman
|
2018 |
+
value: 75.24229403562713
|
2019 |
- type: euclidean_pearson
|
2020 |
+
value: 68.5838924571539
|
2021 |
- type: euclidean_spearman
|
2022 |
+
value: 65.06652398167358
|
2023 |
- type: manhattan_pearson
|
2024 |
+
value: 68.23143277902628
|
2025 |
- type: manhattan_spearman
|
2026 |
+
value: 64.79624516012709
|
2027 |
- task:
|
2028 |
type: STS
|
2029 |
dataset:
|
|
|
2034 |
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2035 |
metrics:
|
2036 |
- type: cos_sim_pearson
|
2037 |
+
value: 83.78074322110155
|
2038 |
- type: cos_sim_spearman
|
2039 |
+
value: 85.12071478276958
|
2040 |
- type: euclidean_pearson
|
2041 |
+
value: 65.00147804089737
|
2042 |
- type: euclidean_spearman
|
2043 |
+
value: 66.02559342831921
|
2044 |
- type: manhattan_pearson
|
2045 |
+
value: 65.01270190203297
|
2046 |
- type: manhattan_spearman
|
2047 |
+
value: 66.13038450207748
|
2048 |
- task:
|
2049 |
type: STS
|
2050 |
dataset:
|
|
|
2055 |
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2056 |
metrics:
|
2057 |
- type: cos_sim_pearson
|
2058 |
+
value: 77.29395327338185
|
2059 |
- type: cos_sim_spearman
|
2060 |
+
value: 80.07128686563352
|
2061 |
- type: euclidean_pearson
|
2062 |
+
value: 65.97939065455975
|
2063 |
- type: euclidean_spearman
|
2064 |
+
value: 66.80283051081129
|
2065 |
- type: manhattan_pearson
|
2066 |
+
value: 65.6750450606584
|
2067 |
- type: manhattan_spearman
|
2068 |
+
value: 66.55805829330733
|
2069 |
- task:
|
2070 |
type: STS
|
2071 |
dataset:
|
|
|
2076 |
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2077 |
metrics:
|
2078 |
- type: cos_sim_pearson
|
2079 |
+
value: 87.64956503192369
|
2080 |
- type: cos_sim_spearman
|
2081 |
+
value: 87.95719598052727
|
2082 |
- type: euclidean_pearson
|
2083 |
+
value: 73.35178669405819
|
2084 |
- type: euclidean_spearman
|
2085 |
+
value: 71.58959083579994
|
2086 |
- type: manhattan_pearson
|
2087 |
+
value: 73.24156949179472
|
2088 |
- type: manhattan_spearman
|
2089 |
+
value: 71.35933730170666
|
2090 |
- task:
|
2091 |
type: STS
|
2092 |
dataset:
|
|
|
2097 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2098 |
metrics:
|
2099 |
- type: cos_sim_pearson
|
2100 |
+
value: 66.61640922485357
|
2101 |
- type: cos_sim_spearman
|
2102 |
+
value: 66.08406266387749
|
2103 |
- type: euclidean_pearson
|
2104 |
+
value: 43.684972836995776
|
2105 |
- type: euclidean_spearman
|
2106 |
+
value: 60.26686390609082
|
2107 |
- type: manhattan_pearson
|
2108 |
+
value: 43.694268683941154
|
2109 |
- type: manhattan_spearman
|
2110 |
+
value: 59.61419719435629
|
2111 |
- task:
|
2112 |
type: STS
|
2113 |
dataset:
|
|
|
2118 |
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2119 |
metrics:
|
2120 |
- type: cos_sim_pearson
|
2121 |
+
value: 81.73624666044613
|
2122 |
- type: cos_sim_spearman
|
2123 |
+
value: 81.68869881979401
|
2124 |
- type: euclidean_pearson
|
2125 |
+
value: 72.47205990508046
|
2126 |
- type: euclidean_spearman
|
2127 |
+
value: 71.02381428101695
|
2128 |
- type: manhattan_pearson
|
2129 |
+
value: 72.4947870027535
|
2130 |
- type: manhattan_spearman
|
2131 |
+
value: 71.0789806652577
|
2132 |
- task:
|
2133 |
type: Reranking
|
2134 |
dataset:
|
|
|
2139 |
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2140 |
metrics:
|
2141 |
- type: map
|
2142 |
+
value: 79.53671929012175
|
2143 |
- type: mrr
|
2144 |
+
value: 93.96566033820936
|
2145 |
- task:
|
2146 |
type: Retrieval
|
2147 |
dataset:
|
|
|
2152 |
revision: None
|
2153 |
metrics:
|
2154 |
- type: map_at_1
|
2155 |
+
value: 43.761
|
2156 |
- type: map_at_10
|
2157 |
+
value: 53.846000000000004
|
2158 |
- type: map_at_100
|
2159 |
+
value: 54.55799999999999
|
2160 |
- type: map_at_1000
|
2161 |
+
value: 54.620999999999995
|
2162 |
- type: map_at_3
|
2163 |
+
value: 51.513
|
2164 |
- type: map_at_5
|
2165 |
+
value: 52.591
|
2166 |
- type: mrr_at_1
|
2167 |
+
value: 46.666999999999994
|
2168 |
- type: mrr_at_10
|
2169 |
+
value: 55.461000000000006
|
2170 |
- type: mrr_at_100
|
2171 |
+
value: 56.008
|
2172 |
- type: mrr_at_1000
|
2173 |
+
value: 56.069
|
2174 |
- type: mrr_at_3
|
2175 |
+
value: 53.5
|
2176 |
- type: mrr_at_5
|
2177 |
+
value: 54.417
|
2178 |
- type: ndcg_at_1
|
2179 |
+
value: 46.666999999999994
|
2180 |
- type: ndcg_at_10
|
2181 |
+
value: 58.599000000000004
|
2182 |
- type: ndcg_at_100
|
2183 |
+
value: 61.538000000000004
|
2184 |
- type: ndcg_at_1000
|
2185 |
+
value: 63.22
|
2186 |
- type: ndcg_at_3
|
2187 |
+
value: 54.254999999999995
|
2188 |
- type: ndcg_at_5
|
2189 |
+
value: 55.861000000000004
|
2190 |
- type: precision_at_1
|
2191 |
+
value: 46.666999999999994
|
2192 |
- type: precision_at_10
|
2193 |
+
value: 8.033
|
2194 |
- type: precision_at_100
|
2195 |
+
value: 0.963
|
2196 |
- type: precision_at_1000
|
2197 |
+
value: 0.11
|
2198 |
- type: precision_at_3
|
2199 |
+
value: 21.667
|
2200 |
- type: precision_at_5
|
2201 |
+
value: 14.066999999999998
|
2202 |
- type: recall_at_1
|
2203 |
+
value: 43.761
|
2204 |
- type: recall_at_10
|
2205 |
+
value: 71.65599999999999
|
2206 |
- type: recall_at_100
|
2207 |
+
value: 84.433
|
2208 |
- type: recall_at_1000
|
2209 |
+
value: 97.5
|
2210 |
- type: recall_at_3
|
2211 |
+
value: 59.522
|
2212 |
- type: recall_at_5
|
2213 |
+
value: 63.632999999999996
|
2214 |
- task:
|
2215 |
type: PairClassification
|
2216 |
dataset:
|
|
|
2221 |
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2222 |
metrics:
|
2223 |
- type: cos_sim_accuracy
|
2224 |
+
value: 99.68811881188118
|
2225 |
- type: cos_sim_ap
|
2226 |
+
value: 91.08077352794682
|
2227 |
- type: cos_sim_f1
|
2228 |
+
value: 84.38570729319628
|
2229 |
- type: cos_sim_precision
|
2230 |
+
value: 82.64621284755513
|
2231 |
- type: cos_sim_recall
|
2232 |
+
value: 86.2
|
2233 |
- type: dot_accuracy
|
2234 |
+
value: 99.14653465346535
|
2235 |
- type: dot_ap
|
2236 |
+
value: 45.24942149367904
|
2237 |
- type: dot_f1
|
2238 |
+
value: 46.470062555853445
|
2239 |
- type: dot_precision
|
2240 |
+
value: 42.003231017770595
|
2241 |
- type: dot_recall
|
2242 |
+
value: 52
|
2243 |
- type: euclidean_accuracy
|
2244 |
+
value: 99.56930693069307
|
2245 |
- type: euclidean_ap
|
2246 |
+
value: 80.28575652582506
|
2247 |
- type: euclidean_f1
|
2248 |
+
value: 75.52054023635341
|
2249 |
- type: euclidean_precision
|
2250 |
+
value: 86.35778635778635
|
2251 |
- type: euclidean_recall
|
2252 |
+
value: 67.10000000000001
|
2253 |
- type: manhattan_accuracy
|
2254 |
+
value: 99.56039603960396
|
2255 |
- type: manhattan_ap
|
2256 |
+
value: 79.74630510301085
|
2257 |
- type: manhattan_f1
|
2258 |
+
value: 74.67569091934575
|
2259 |
- type: manhattan_precision
|
2260 |
+
value: 85.64036222509702
|
2261 |
- type: manhattan_recall
|
2262 |
+
value: 66.2
|
2263 |
- type: max_accuracy
|
2264 |
+
value: 99.68811881188118
|
2265 |
- type: max_ap
|
2266 |
+
value: 91.08077352794682
|
2267 |
- type: max_f1
|
2268 |
+
value: 84.38570729319628
|
2269 |
- task:
|
2270 |
type: Clustering
|
2271 |
dataset:
|
|
|
2276 |
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2277 |
metrics:
|
2278 |
- type: v_measure
|
2279 |
+
value: 52.0788049295693
|
2280 |
- task:
|
2281 |
type: Clustering
|
2282 |
dataset:
|
|
|
2287 |
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2288 |
metrics:
|
2289 |
- type: v_measure
|
2290 |
+
value: 31.606006030205545
|
2291 |
- task:
|
2292 |
type: Reranking
|
2293 |
dataset:
|
|
|
2298 |
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2299 |
metrics:
|
2300 |
- type: map
|
2301 |
+
value: 50.87384988372756
|
2302 |
- type: mrr
|
2303 |
+
value: 51.62476922587217
|
2304 |
- task:
|
2305 |
type: Summarization
|
2306 |
dataset:
|
|
|
2311 |
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2312 |
metrics:
|
2313 |
- type: cos_sim_pearson
|
2314 |
+
value: 30.355859978837156
|
2315 |
- type: cos_sim_spearman
|
2316 |
+
value: 30.0847548337847
|
2317 |
- type: dot_pearson
|
2318 |
+
value: 19.391736817587557
|
2319 |
- type: dot_spearman
|
2320 |
+
value: 20.732256259543014
|
2321 |
- task:
|
2322 |
type: Retrieval
|
2323 |
dataset:
|
|
|
2328 |
revision: None
|
2329 |
metrics:
|
2330 |
- type: map_at_1
|
2331 |
+
value: 0.19
|
2332 |
- type: map_at_10
|
2333 |
+
value: 1.2850000000000001
|
2334 |
- type: map_at_100
|
2335 |
+
value: 6.376999999999999
|
2336 |
- type: map_at_1000
|
2337 |
+
value: 15.21
|
2338 |
- type: map_at_3
|
2339 |
+
value: 0.492
|
2340 |
- type: map_at_5
|
2341 |
+
value: 0.776
|
2342 |
- type: mrr_at_1
|
2343 |
+
value: 68
|
2344 |
- type: mrr_at_10
|
2345 |
+
value: 79.783
|
2346 |
- type: mrr_at_100
|
2347 |
+
value: 79.783
|
2348 |
- type: mrr_at_1000
|
2349 |
+
value: 79.783
|
2350 |
- type: mrr_at_3
|
2351 |
+
value: 77.333
|
2352 |
- type: mrr_at_5
|
2353 |
+
value: 79.533
|
2354 |
- type: ndcg_at_1
|
2355 |
+
value: 62
|
2356 |
- type: ndcg_at_10
|
2357 |
+
value: 54.635
|
2358 |
- type: ndcg_at_100
|
2359 |
+
value: 40.939
|
2360 |
- type: ndcg_at_1000
|
2361 |
+
value: 37.716
|
2362 |
- type: ndcg_at_3
|
2363 |
+
value: 58.531
|
2364 |
- type: ndcg_at_5
|
2365 |
+
value: 58.762
|
2366 |
- type: precision_at_1
|
2367 |
+
value: 68
|
2368 |
- type: precision_at_10
|
2369 |
+
value: 58.8
|
2370 |
- type: precision_at_100
|
2371 |
+
value: 41.74
|
2372 |
- type: precision_at_1000
|
2373 |
+
value: 16.938
|
2374 |
- type: precision_at_3
|
2375 |
+
value: 64
|
2376 |
- type: precision_at_5
|
2377 |
+
value: 64.8
|
2378 |
- type: recall_at_1
|
2379 |
+
value: 0.19
|
2380 |
- type: recall_at_10
|
2381 |
+
value: 1.547
|
2382 |
- type: recall_at_100
|
2383 |
+
value: 9.739
|
2384 |
- type: recall_at_1000
|
2385 |
+
value: 35.815000000000005
|
2386 |
- type: recall_at_3
|
2387 |
+
value: 0.528
|
2388 |
- type: recall_at_5
|
2389 |
+
value: 0.894
|
2390 |
- task:
|
2391 |
type: Retrieval
|
2392 |
dataset:
|
|
|
2397 |
revision: None
|
2398 |
metrics:
|
2399 |
- type: map_at_1
|
2400 |
+
value: 1.514
|
2401 |
- type: map_at_10
|
2402 |
+
value: 7.163
|
2403 |
- type: map_at_100
|
2404 |
+
value: 11.623999999999999
|
2405 |
- type: map_at_1000
|
2406 |
+
value: 13.062999999999999
|
2407 |
- type: map_at_3
|
2408 |
+
value: 3.51
|
2409 |
- type: map_at_5
|
2410 |
+
value: 4.661
|
2411 |
- type: mrr_at_1
|
2412 |
+
value: 20.408
|
2413 |
- type: mrr_at_10
|
2414 |
+
value: 33.993
|
2415 |
- type: mrr_at_100
|
2416 |
+
value: 35.257
|
2417 |
- type: mrr_at_1000
|
2418 |
+
value: 35.313
|
2419 |
- type: mrr_at_3
|
2420 |
+
value: 30.272
|
2421 |
- type: mrr_at_5
|
2422 |
+
value: 31.701
|
2423 |
- type: ndcg_at_1
|
2424 |
+
value: 18.367
|
2425 |
- type: ndcg_at_10
|
2426 |
+
value: 18.062
|
2427 |
- type: ndcg_at_100
|
2428 |
+
value: 28.441
|
2429 |
- type: ndcg_at_1000
|
2430 |
+
value: 40.748
|
2431 |
- type: ndcg_at_3
|
2432 |
+
value: 18.651999999999997
|
2433 |
- type: ndcg_at_5
|
2434 |
+
value: 17.055
|
2435 |
- type: precision_at_1
|
2436 |
+
value: 20.408
|
2437 |
- type: precision_at_10
|
2438 |
+
value: 17.551
|
2439 |
- type: precision_at_100
|
2440 |
+
value: 6.223999999999999
|
2441 |
- type: precision_at_1000
|
2442 |
+
value: 1.427
|
2443 |
- type: precision_at_3
|
2444 |
+
value: 20.408
|
2445 |
- type: precision_at_5
|
2446 |
+
value: 17.959
|
2447 |
- type: recall_at_1
|
2448 |
+
value: 1.514
|
2449 |
- type: recall_at_10
|
2450 |
+
value: 13.447000000000001
|
2451 |
- type: recall_at_100
|
2452 |
+
value: 39.77
|
2453 |
- type: recall_at_1000
|
2454 |
+
value: 76.95
|
2455 |
- type: recall_at_3
|
2456 |
+
value: 4.806
|
2457 |
- type: recall_at_5
|
2458 |
+
value: 6.873
|
2459 |
- task:
|
2460 |
type: Classification
|
2461 |
dataset:
|
|
|
2466 |
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2467 |
metrics:
|
2468 |
- type: accuracy
|
2469 |
+
value: 65.53179999999999
|
2470 |
- type: ap
|
2471 |
+
value: 11.504743595308318
|
2472 |
- type: f1
|
2473 |
+
value: 49.74264614001562
|
2474 |
- task:
|
2475 |
type: Classification
|
2476 |
dataset:
|
|
|
2481 |
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2482 |
metrics:
|
2483 |
- type: accuracy
|
2484 |
+
value: 56.47425014148275
|
2485 |
- type: f1
|
2486 |
+
value: 56.555750746223346
|
2487 |
- task:
|
2488 |
type: Clustering
|
2489 |
dataset:
|
|
|
2494 |
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2495 |
metrics:
|
2496 |
- type: v_measure
|
2497 |
+
value: 39.27004599453324
|
2498 |
- task:
|
2499 |
type: PairClassification
|
2500 |
dataset:
|
|
|
2505 |
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2506 |
metrics:
|
2507 |
- type: cos_sim_accuracy
|
2508 |
+
value: 84.47875067056088
|
2509 |
- type: cos_sim_ap
|
2510 |
+
value: 68.630858164926
|
2511 |
- type: cos_sim_f1
|
2512 |
+
value: 64.5112402121748
|
2513 |
- type: cos_sim_precision
|
2514 |
+
value: 61.87015503875969
|
2515 |
- type: cos_sim_recall
|
2516 |
+
value: 67.38786279683377
|
2517 |
- type: dot_accuracy
|
2518 |
+
value: 77.68969422423557
|
2519 |
- type: dot_ap
|
2520 |
+
value: 37.28838556128439
|
2521 |
- type: dot_f1
|
2522 |
+
value: 43.27918525376652
|
2523 |
- type: dot_precision
|
2524 |
+
value: 31.776047460140898
|
2525 |
- type: dot_recall
|
2526 |
+
value: 67.83641160949868
|
2527 |
- type: euclidean_accuracy
|
2528 |
+
value: 82.67866722298385
|
2529 |
- type: euclidean_ap
|
2530 |
+
value: 62.72011158877603
|
2531 |
- type: euclidean_f1
|
2532 |
+
value: 60.39579770339605
|
2533 |
- type: euclidean_precision
|
2534 |
+
value: 56.23293903548681
|
2535 |
- type: euclidean_recall
|
2536 |
+
value: 65.22427440633246
|
2537 |
- type: manhattan_accuracy
|
2538 |
+
value: 82.67866722298385
|
2539 |
- type: manhattan_ap
|
2540 |
+
value: 62.80364769571995
|
2541 |
- type: manhattan_f1
|
2542 |
+
value: 60.413827282864574
|
2543 |
- type: manhattan_precision
|
2544 |
+
value: 56.94931090866619
|
2545 |
- type: manhattan_recall
|
2546 |
+
value: 64.32717678100263
|
2547 |
- type: max_accuracy
|
2548 |
+
value: 84.47875067056088
|
2549 |
- type: max_ap
|
2550 |
+
value: 68.630858164926
|
2551 |
- type: max_f1
|
2552 |
+
value: 64.5112402121748
|
2553 |
- task:
|
2554 |
type: PairClassification
|
2555 |
dataset:
|
|
|
2560 |
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2561 |
metrics:
|
2562 |
- type: cos_sim_accuracy
|
2563 |
+
value: 88.4192959987581
|
2564 |
- type: cos_sim_ap
|
2565 |
+
value: 84.81803796578367
|
2566 |
- type: cos_sim_f1
|
2567 |
+
value: 77.1643709825528
|
2568 |
- type: cos_sim_precision
|
2569 |
+
value: 73.77958839643183
|
2570 |
- type: cos_sim_recall
|
2571 |
+
value: 80.874653526332
|
2572 |
- type: dot_accuracy
|
2573 |
+
value: 81.99441145651414
|
2574 |
- type: dot_ap
|
2575 |
+
value: 67.908510950511
|
2576 |
- type: dot_f1
|
2577 |
+
value: 64.4734255193656
|
2578 |
- type: dot_precision
|
2579 |
+
value: 56.120935539075866
|
2580 |
- type: dot_recall
|
2581 |
+
value: 75.74684323991376
|
2582 |
- type: euclidean_accuracy
|
2583 |
+
value: 82.67163426087632
|
2584 |
- type: euclidean_ap
|
2585 |
+
value: 70.1466353903414
|
2586 |
- type: euclidean_f1
|
2587 |
+
value: 62.686024087617795
|
2588 |
- type: euclidean_precision
|
2589 |
+
value: 59.42738875474301
|
2590 |
- type: euclidean_recall
|
2591 |
+
value: 66.32275947028026
|
2592 |
- type: manhattan_accuracy
|
2593 |
+
value: 82.6483486630186
|
2594 |
- type: manhattan_ap
|
2595 |
+
value: 70.12958345267741
|
2596 |
- type: manhattan_f1
|
2597 |
+
value: 62.5966218150587
|
2598 |
- type: manhattan_precision
|
2599 |
+
value: 58.47820272800214
|
2600 |
- type: manhattan_recall
|
2601 |
+
value: 67.33908222975053
|
2602 |
- type: max_accuracy
|
2603 |
+
value: 88.4192959987581
|
2604 |
- type: max_ap
|
2605 |
+
value: 84.81803796578367
|
2606 |
- type: max_f1
|
2607 |
+
value: 77.1643709825528
|
2608 |
---
|
2609 |
---
|
2610 |
|