lmilliken commited on
Commit
c120a00
1 Parent(s): d4d3e66

revert to previous scores

Browse files
Files changed (1) hide show
  1. README.md +653 -1550
README.md CHANGED
@@ -11,7 +11,7 @@ datasets:
11
  language: en
12
  license: apache-2.0
13
  model-index:
14
- - name: jina-embedding-s-en-v1
15
  results:
16
  - task:
17
  type: Classification
@@ -23,11 +23,11 @@ model-index:
23
  revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
  metrics:
25
  - type: accuracy
26
- value: 64.82089552238806
27
  - type: ap
28
- value: 27.100981946230778
29
  - type: f1
30
- value: 58.3354886367184
31
  - task:
32
  type: Classification
33
  dataset:
@@ -38,11 +38,11 @@ model-index:
38
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
  metrics:
40
  - type: accuracy
41
- value: 64.282775
42
  - type: ap
43
- value: 60.350688924943796
44
  - type: f1
45
- value: 62.06346948494396
46
  - task:
47
  type: Classification
48
  dataset:
@@ -53,9 +53,9 @@ model-index:
53
  revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
  metrics:
55
  - type: accuracy
56
- value: 30.623999999999995
57
  - type: f1
58
- value: 29.427789186742153
59
  - task:
60
  type: Retrieval
61
  dataset:
@@ -963,1053 +963,156 @@ model-index:
963
  revision: None
964
  metrics:
965
  - type: map_at_1
966
- value: 22.119
967
  - type: map_at_10
968
- value: 35.609
969
  - type: map_at_100
970
- value: 36.935
971
  - type: map_at_1000
972
- value: 36.957
973
  - type: map_at_3
974
- value: 31.046000000000003
975
  - type: map_at_5
976
- value: 33.574
977
  - type: mrr_at_1
978
- value: 22.404
979
  - type: mrr_at_10
980
- value: 35.695
981
  - type: mrr_at_100
982
- value: 37.021
983
- - type: mrr_at_1000
984
- value: 37.043
985
- - type: mrr_at_3
986
- value: 31.093
987
- - type: mrr_at_5
988
- value: 33.635999999999996
989
- - type: ndcg_at_1
990
- value: 22.119
991
- - type: ndcg_at_10
992
- value: 43.566
993
- - type: ndcg_at_100
994
- value: 49.370000000000005
995
- - type: ndcg_at_1000
996
- value: 49.901
997
- - type: ndcg_at_3
998
- value: 34.06
999
- - type: ndcg_at_5
1000
- value: 38.653999999999996
1001
- - type: precision_at_1
1002
- value: 22.119
1003
- - type: precision_at_10
1004
- value: 6.92
1005
- - type: precision_at_100
1006
- value: 0.95
1007
- - type: precision_at_1000
1008
- value: 0.099
1009
- - type: precision_at_3
1010
- value: 14.272000000000002
1011
- - type: precision_at_5
1012
- value: 10.811
1013
- - type: recall_at_1
1014
- value: 22.119
1015
- - type: recall_at_10
1016
- value: 69.203
1017
- - type: recall_at_100
1018
- value: 95.021
1019
- - type: recall_at_1000
1020
- value: 99.075
1021
- - type: recall_at_3
1022
- value: 42.817
1023
- - type: recall_at_5
1024
- value: 54.054
1025
- - task:
1026
- type: Clustering
1027
- dataset:
1028
- type: mteb/arxiv-clustering-p2p
1029
- name: MTEB ArxivClusteringP2P
1030
- config: default
1031
- split: test
1032
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
1033
- metrics:
1034
- - type: v_measure
1035
- value: 34.1740289109719
1036
- - task:
1037
- type: Clustering
1038
- dataset:
1039
- type: mteb/arxiv-clustering-s2s
1040
- name: MTEB ArxivClusteringS2S
1041
- config: default
1042
- split: test
1043
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
1044
- metrics:
1045
- - type: v_measure
1046
- value: 23.985251383455463
1047
- - task:
1048
- type: Reranking
1049
- dataset:
1050
- type: mteb/askubuntudupquestions-reranking
1051
- name: MTEB AskUbuntuDupQuestions
1052
- config: default
1053
- split: test
1054
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
1055
- metrics:
1056
- - type: map
1057
- value: 60.24873612289029
1058
- - type: mrr
1059
- value: 74.65692740623489
1060
- - task:
1061
- type: STS
1062
- dataset:
1063
- type: mteb/biosses-sts
1064
- name: MTEB BIOSSES
1065
- config: default
1066
- split: test
1067
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
1068
- metrics:
1069
- - type: cos_sim_pearson
1070
- value: 86.22415390332444
1071
- - type: cos_sim_spearman
1072
- value: 82.9591191954711
1073
- - type: euclidean_pearson
1074
- value: 44.096317524324945
1075
- - type: euclidean_spearman
1076
- value: 42.95218351391625
1077
- - type: manhattan_pearson
1078
- value: 44.07766490545065
1079
- - type: manhattan_spearman
1080
- value: 42.78350497166606
1081
- - task:
1082
- type: Classification
1083
- dataset:
1084
- type: mteb/banking77
1085
- name: MTEB Banking77Classification
1086
- config: default
1087
- split: test
1088
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
1089
- metrics:
1090
- - type: accuracy
1091
- value: 74.64285714285714
1092
- - type: f1
1093
- value: 73.53680835577447
1094
- - task:
1095
- type: Clustering
1096
- dataset:
1097
- type: mteb/biorxiv-clustering-p2p
1098
- name: MTEB BiorxivClusteringP2P
1099
- config: default
1100
- split: test
1101
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
1102
- metrics:
1103
- - type: v_measure
1104
- value: 28.512813238490164
1105
- - task:
1106
- type: Clustering
1107
- dataset:
1108
- type: mteb/biorxiv-clustering-s2s
1109
- name: MTEB BiorxivClusteringS2S
1110
- config: default
1111
- split: test
1112
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
1113
- metrics:
1114
- - type: v_measure
1115
- value: 20.942214972649488
1116
- - task:
1117
- type: Retrieval
1118
- dataset:
1119
- type: BeIR/cqadupstack
1120
- name: MTEB CQADupstackAndroidRetrieval
1121
- config: default
1122
- split: test
1123
- revision: None
1124
- metrics:
1125
- - type: map_at_1
1126
- value: 28.255999999999997
1127
- - type: map_at_10
1128
- value: 37.091
1129
- - type: map_at_100
1130
- value: 38.428000000000004
1131
- - type: map_at_1000
1132
- value: 38.559
1133
- - type: map_at_3
1134
- value: 34.073
1135
- - type: map_at_5
1136
- value: 35.739
1137
- - type: mrr_at_1
1138
- value: 34.907
1139
- - type: mrr_at_10
1140
- value: 42.769
1141
- - type: mrr_at_100
1142
- value: 43.607
1143
- - type: mrr_at_1000
1144
- value: 43.656
1145
- - type: mrr_at_3
1146
- value: 39.986
1147
- - type: mrr_at_5
1148
- value: 41.581
1149
- - type: ndcg_at_1
1150
- value: 34.907
1151
- - type: ndcg_at_10
1152
- value: 42.681000000000004
1153
- - type: ndcg_at_100
1154
- value: 48.213
1155
- - type: ndcg_at_1000
1156
- value: 50.464
1157
- - type: ndcg_at_3
1158
- value: 37.813
1159
- - type: ndcg_at_5
1160
- value: 39.936
1161
- - type: precision_at_1
1162
- value: 34.907
1163
- - type: precision_at_10
1164
- value: 7.911
1165
- - type: precision_at_100
1166
- value: 1.349
1167
- - type: precision_at_1000
1168
- value: 0.184
1169
- - type: precision_at_3
1170
- value: 17.93
1171
- - type: precision_at_5
1172
- value: 12.732
1173
- - type: recall_at_1
1174
- value: 28.255999999999997
1175
- - type: recall_at_10
1176
- value: 53.49699999999999
1177
- - type: recall_at_100
1178
- value: 77.288
1179
- - type: recall_at_1000
1180
- value: 91.776
1181
- - type: recall_at_3
1182
- value: 39.18
1183
- - type: recall_at_5
1184
- value: 45.365
1185
- - task:
1186
- type: Retrieval
1187
- dataset:
1188
- type: BeIR/cqadupstack
1189
- name: MTEB CQADupstackEnglishRetrieval
1190
- config: default
1191
- split: test
1192
- revision: None
1193
- metrics:
1194
- - type: map_at_1
1195
- value: 25.563999999999997
1196
- - type: map_at_10
1197
- value: 33.913
1198
- - type: map_at_100
1199
- value: 34.966
1200
- - type: map_at_1000
1201
- value: 35.104
1202
- - type: map_at_3
1203
- value: 31.413000000000004
1204
- - type: map_at_5
1205
- value: 32.854
1206
- - type: mrr_at_1
1207
- value: 31.72
1208
- - type: mrr_at_10
1209
- value: 39.391
1210
- - type: mrr_at_100
1211
- value: 40.02
1212
- - type: mrr_at_1000
1213
- value: 40.076
1214
- - type: mrr_at_3
1215
- value: 37.314
1216
- - type: mrr_at_5
1217
- value: 38.507999999999996
1218
- - type: ndcg_at_1
1219
- value: 31.72
1220
- - type: ndcg_at_10
1221
- value: 38.933
1222
- - type: ndcg_at_100
1223
- value: 43.024
1224
- - type: ndcg_at_1000
1225
- value: 45.556999999999995
1226
- - type: ndcg_at_3
1227
- value: 35.225
1228
- - type: ndcg_at_5
1229
- value: 36.984
1230
- - type: precision_at_1
1231
- value: 31.72
1232
- - type: precision_at_10
1233
- value: 7.248
1234
- - type: precision_at_100
1235
- value: 1.192
1236
- - type: precision_at_1000
1237
- value: 0.16999999999999998
1238
- - type: precision_at_3
1239
- value: 16.943
1240
- - type: precision_at_5
1241
- value: 11.975
1242
- - type: recall_at_1
1243
- value: 25.563999999999997
1244
- - type: recall_at_10
1245
- value: 47.808
1246
- - type: recall_at_100
1247
- value: 65.182
1248
- - type: recall_at_1000
1249
- value: 81.831
1250
- - type: recall_at_3
1251
- value: 36.889
1252
- - type: recall_at_5
1253
- value: 41.829
1254
- - task:
1255
- type: Retrieval
1256
- dataset:
1257
- type: BeIR/cqadupstack
1258
- name: MTEB CQADupstackGamingRetrieval
1259
- config: default
1260
- split: test
1261
- revision: None
1262
- metrics:
1263
- - type: map_at_1
1264
- value: 33.662
1265
- - type: map_at_10
1266
- value: 44.096999999999994
1267
- - type: map_at_100
1268
- value: 45.153999999999996
1269
- - type: map_at_1000
1270
- value: 45.223
1271
- - type: map_at_3
1272
- value: 41.377
1273
- - type: map_at_5
1274
- value: 42.935
1275
- - type: mrr_at_1
1276
- value: 38.997
1277
- - type: mrr_at_10
1278
- value: 47.675
1279
- - type: mrr_at_100
1280
- value: 48.476
1281
- - type: mrr_at_1000
1282
- value: 48.519
1283
- - type: mrr_at_3
1284
- value: 45.549
1285
- - type: mrr_at_5
1286
- value: 46.884
1287
- - type: ndcg_at_1
1288
- value: 38.997
1289
- - type: ndcg_at_10
1290
- value: 49.196
1291
- - type: ndcg_at_100
1292
- value: 53.788000000000004
1293
- - type: ndcg_at_1000
1294
- value: 55.393
1295
- - type: ndcg_at_3
1296
- value: 44.67
1297
- - type: ndcg_at_5
1298
- value: 46.991
1299
- - type: precision_at_1
1300
- value: 38.997
1301
- - type: precision_at_10
1302
- value: 7.875
1303
- - type: precision_at_100
1304
- value: 1.102
1305
- - type: precision_at_1000
1306
- value: 0.13
1307
- - type: precision_at_3
1308
- value: 19.854
1309
- - type: precision_at_5
1310
- value: 13.605
1311
- - type: recall_at_1
1312
- value: 33.662
1313
- - type: recall_at_10
1314
- value: 60.75899999999999
1315
- - type: recall_at_100
1316
- value: 81.11699999999999
1317
- - type: recall_at_1000
1318
- value: 92.805
1319
- - type: recall_at_3
1320
- value: 48.577999999999996
1321
- - type: recall_at_5
1322
- value: 54.384
1323
- - task:
1324
- type: Retrieval
1325
- dataset:
1326
- type: BeIR/cqadupstack
1327
- name: MTEB CQADupstackGisRetrieval
1328
- config: default
1329
- split: test
1330
- revision: None
1331
- metrics:
1332
- - type: map_at_1
1333
- value: 21.313
1334
- - type: map_at_10
1335
- value: 29.036
1336
- - type: map_at_100
1337
- value: 29.975
1338
- - type: map_at_1000
1339
- value: 30.063000000000002
1340
- - type: map_at_3
1341
- value: 26.878999999999998
1342
- - type: map_at_5
1343
- value: 28.005999999999997
1344
- - type: mrr_at_1
1345
- value: 23.39
1346
- - type: mrr_at_10
1347
- value: 31.072
1348
- - type: mrr_at_100
1349
- value: 31.922
1350
- - type: mrr_at_1000
1351
- value: 31.995
1352
- - type: mrr_at_3
1353
- value: 28.908
1354
- - type: mrr_at_5
1355
- value: 30.104999999999997
1356
- - type: ndcg_at_1
1357
- value: 23.39
1358
- - type: ndcg_at_10
1359
- value: 33.448
1360
- - type: ndcg_at_100
1361
- value: 38.255
1362
- - type: ndcg_at_1000
1363
- value: 40.542
1364
- - type: ndcg_at_3
1365
- value: 29.060000000000002
1366
- - type: ndcg_at_5
1367
- value: 31.023
1368
- - type: precision_at_1
1369
- value: 23.39
1370
- - type: precision_at_10
1371
- value: 5.175
1372
- - type: precision_at_100
1373
- value: 0.8049999999999999
1374
- - type: precision_at_1000
1375
- value: 0.10300000000000001
1376
- - type: precision_at_3
1377
- value: 12.504999999999999
1378
- - type: precision_at_5
1379
- value: 8.61
1380
- - type: recall_at_1
1381
- value: 21.313
1382
- - type: recall_at_10
1383
- value: 45.345
1384
- - type: recall_at_100
1385
- value: 67.752
1386
- - type: recall_at_1000
1387
- value: 84.937
1388
- - type: recall_at_3
1389
- value: 33.033
1390
- - type: recall_at_5
1391
- value: 37.929
1392
- - task:
1393
- type: Retrieval
1394
- dataset:
1395
- type: BeIR/cqadupstack
1396
- name: MTEB CQADupstackMathematicaRetrieval
1397
- config: default
1398
- split: test
1399
- revision: None
1400
- metrics:
1401
- - type: map_at_1
1402
- value: 14.255999999999998
1403
- - type: map_at_10
1404
- value: 20.339
1405
- - type: map_at_100
1406
- value: 21.491
1407
- - type: map_at_1000
1408
- value: 21.616
1409
- - type: map_at_3
1410
- value: 18.481
1411
- - type: map_at_5
1412
- value: 19.594
1413
- - type: mrr_at_1
1414
- value: 17.413
1415
- - type: mrr_at_10
1416
- value: 24.146
1417
- - type: mrr_at_100
1418
- value: 25.188
1419
- - type: mrr_at_1000
1420
- value: 25.273
1421
- - type: mrr_at_3
1422
- value: 22.264
1423
- - type: mrr_at_5
1424
- value: 23.302
1425
- - type: ndcg_at_1
1426
- value: 17.413
1427
- - type: ndcg_at_10
1428
- value: 24.272
1429
- - type: ndcg_at_100
1430
- value: 29.82
1431
- - type: ndcg_at_1000
1432
- value: 33.072
1433
- - type: ndcg_at_3
1434
- value: 20.826
1435
- - type: ndcg_at_5
1436
- value: 22.535
1437
- - type: precision_at_1
1438
- value: 17.413
1439
- - type: precision_at_10
1440
- value: 4.366
1441
- - type: precision_at_100
1442
- value: 0.818
1443
- - type: precision_at_1000
1444
- value: 0.124
1445
- - type: precision_at_3
1446
- value: 9.866999999999999
1447
- - type: precision_at_5
1448
- value: 7.164
1449
- - type: recall_at_1
1450
- value: 14.255999999999998
1451
- - type: recall_at_10
1452
- value: 32.497
1453
- - type: recall_at_100
1454
- value: 56.592
1455
- - type: recall_at_1000
1456
- value: 80.17699999999999
1457
- - type: recall_at_3
1458
- value: 23.195
1459
- - type: recall_at_5
1460
- value: 27.392
1461
- - task:
1462
- type: Retrieval
1463
- dataset:
1464
- type: BeIR/cqadupstack
1465
- name: MTEB CQADupstackPhysicsRetrieval
1466
- config: default
1467
- split: test
1468
- revision: None
1469
- metrics:
1470
- - type: map_at_1
1471
- value: 22.709
1472
- - type: map_at_10
1473
- value: 31.377
1474
- - type: map_at_100
1475
- value: 32.536
1476
- - type: map_at_1000
1477
- value: 32.669
1478
- - type: map_at_3
1479
- value: 28.572999999999997
1480
- - type: map_at_5
1481
- value: 30.205
1482
- - type: mrr_at_1
1483
- value: 27.815
1484
- - type: mrr_at_10
1485
- value: 36.452
1486
- - type: mrr_at_100
1487
- value: 37.302
1488
- - type: mrr_at_1000
1489
- value: 37.364000000000004
1490
- - type: mrr_at_3
1491
- value: 33.75
1492
- - type: mrr_at_5
1493
- value: 35.43
1494
- - type: ndcg_at_1
1495
- value: 27.815
1496
- - type: ndcg_at_10
1497
- value: 36.84
1498
- - type: ndcg_at_100
1499
- value: 42.092
1500
- - type: ndcg_at_1000
1501
- value: 44.727
1502
- - type: ndcg_at_3
1503
- value: 31.964
1504
- - type: ndcg_at_5
1505
- value: 34.428
1506
- - type: precision_at_1
1507
- value: 27.815
1508
- - type: precision_at_10
1509
- value: 6.67
1510
- - type: precision_at_100
1511
- value: 1.093
1512
- - type: precision_at_1000
1513
- value: 0.151
1514
- - type: precision_at_3
1515
- value: 14.982000000000001
1516
- - type: precision_at_5
1517
- value: 10.857
1518
- - type: recall_at_1
1519
- value: 22.709
1520
- - type: recall_at_10
1521
- value: 48.308
1522
- - type: recall_at_100
1523
- value: 70.866
1524
- - type: recall_at_1000
1525
- value: 88.236
1526
- - type: recall_at_3
1527
- value: 34.709
1528
- - type: recall_at_5
1529
- value: 40.996
1530
- - task:
1531
- type: Retrieval
1532
- dataset:
1533
- type: BeIR/cqadupstack
1534
- name: MTEB CQADupstackProgrammersRetrieval
1535
- config: default
1536
- split: test
1537
- revision: None
1538
- metrics:
1539
- - type: map_at_1
1540
- value: 22.348000000000003
1541
- - type: map_at_10
1542
- value: 29.427999999999997
1543
- - type: map_at_100
1544
- value: 30.499
1545
- - type: map_at_1000
1546
- value: 30.631999999999998
1547
- - type: map_at_3
1548
- value: 27.035999999999998
1549
- - type: map_at_5
1550
- value: 28.351
1551
- - type: mrr_at_1
1552
- value: 27.74
1553
- - type: mrr_at_10
1554
- value: 34.424
1555
- - type: mrr_at_100
1556
- value: 35.341
1557
- - type: mrr_at_1000
1558
- value: 35.419
1559
- - type: mrr_at_3
1560
- value: 32.401
1561
- - type: mrr_at_5
1562
- value: 33.497
1563
- - type: ndcg_at_1
1564
- value: 27.74
1565
- - type: ndcg_at_10
1566
- value: 34.136
1567
- - type: ndcg_at_100
1568
- value: 39.269
1569
- - type: ndcg_at_1000
1570
- value: 42.263
1571
- - type: ndcg_at_3
1572
- value: 30.171999999999997
1573
- - type: ndcg_at_5
1574
- value: 31.956
1575
- - type: precision_at_1
1576
- value: 27.74
1577
- - type: precision_at_10
1578
- value: 6.062
1579
- - type: precision_at_100
1580
- value: 1.014
1581
- - type: precision_at_1000
1582
- value: 0.146
1583
- - type: precision_at_3
1584
- value: 14.079
1585
- - type: precision_at_5
1586
- value: 9.977
1587
- - type: recall_at_1
1588
- value: 22.348000000000003
1589
- - type: recall_at_10
1590
- value: 43.477
1591
- - type: recall_at_100
1592
- value: 65.945
1593
- - type: recall_at_1000
1594
- value: 86.587
1595
- - type: recall_at_3
1596
- value: 32.107
1597
- - type: recall_at_5
1598
- value: 36.974000000000004
1599
- - task:
1600
- type: Retrieval
1601
- dataset:
1602
- type: BeIR/cqadupstack
1603
- name: MTEB CQADupstackRetrieval
1604
- config: default
1605
- split: test
1606
- revision: None
1607
- metrics:
1608
- - type: map_at_1
1609
- value: 21.688499999999998
1610
- - type: map_at_10
1611
- value: 29.164666666666665
1612
- - type: map_at_100
1613
- value: 30.22575
1614
- - type: map_at_1000
1615
- value: 30.350833333333334
1616
- - type: map_at_3
1617
- value: 26.82025
1618
- - type: map_at_5
1619
- value: 28.14966666666667
1620
- - type: mrr_at_1
1621
- value: 25.779249999999998
1622
- - type: mrr_at_10
1623
- value: 32.969
1624
- - type: mrr_at_100
1625
- value: 33.81725
1626
  - type: mrr_at_1000
1627
- value: 33.88825
1628
  - type: mrr_at_3
1629
- value: 30.831250000000004
1630
  - type: mrr_at_5
1631
- value: 32.065000000000005
1632
  - type: ndcg_at_1
1633
- value: 25.779249999999998
1634
  - type: ndcg_at_10
1635
- value: 33.73675
1636
  - type: ndcg_at_100
1637
- value: 38.635666666666665
1638
  - type: ndcg_at_1000
1639
- value: 41.353500000000004
1640
  - type: ndcg_at_3
1641
- value: 29.66283333333333
1642
  - type: ndcg_at_5
1643
- value: 31.607249999999997
1644
  - type: precision_at_1
1645
- value: 25.779249999999998
1646
  - type: precision_at_10
1647
- value: 5.861416666666667
1648
  - type: precision_at_100
1649
- value: 0.9852500000000002
1650
  - type: precision_at_1000
1651
- value: 0.14108333333333334
1652
  - type: precision_at_3
1653
- value: 13.563583333333332
1654
  - type: precision_at_5
1655
- value: 9.630333333333335
1656
  - type: recall_at_1
1657
- value: 21.688499999999998
1658
  - type: recall_at_10
1659
- value: 43.605
1660
  - type: recall_at_100
1661
- value: 65.52366666666667
1662
  - type: recall_at_1000
1663
- value: 84.69683333333332
1664
  - type: recall_at_3
1665
- value: 32.195499999999996
1666
  - type: recall_at_5
1667
- value: 37.25325
1668
  - task:
1669
- type: Retrieval
1670
  dataset:
1671
- type: BeIR/cqadupstack
1672
- name: MTEB CQADupstackStatsRetrieval
1673
  config: default
1674
  split: test
1675
- revision: None
1676
  metrics:
1677
- - type: map_at_1
1678
- value: 17.279
1679
- - type: map_at_10
1680
- value: 23.238
1681
- - type: map_at_100
1682
- value: 24.026
1683
- - type: map_at_1000
1684
- value: 24.13
1685
- - type: map_at_3
1686
- value: 20.730999999999998
1687
- - type: map_at_5
1688
- value: 22.278000000000002
1689
- - type: mrr_at_1
1690
- value: 19.017999999999997
1691
- - type: mrr_at_10
1692
- value: 25.188
1693
- - type: mrr_at_100
1694
- value: 25.918999999999997
1695
- - type: mrr_at_1000
1696
- value: 25.996999999999996
1697
- - type: mrr_at_3
1698
- value: 22.776
1699
- - type: mrr_at_5
1700
- value: 24.256
1701
- - type: ndcg_at_1
1702
- value: 19.017999999999997
1703
- - type: ndcg_at_10
1704
- value: 27.171
1705
- - type: ndcg_at_100
1706
- value: 31.274
1707
- - type: ndcg_at_1000
1708
- value: 34.016000000000005
1709
- - type: ndcg_at_3
1710
- value: 22.442
1711
- - type: ndcg_at_5
1712
- value: 24.955
1713
- - type: precision_at_1
1714
- value: 19.017999999999997
1715
- - type: precision_at_10
1716
- value: 4.494
1717
- - type: precision_at_100
1718
- value: 0.712
1719
- - type: precision_at_1000
1720
- value: 0.10300000000000001
1721
- - type: precision_at_3
1722
- value: 9.611
1723
- - type: precision_at_5
1724
- value: 7.331
1725
- - type: recall_at_1
1726
- value: 17.279
1727
- - type: recall_at_10
1728
- value: 37.464999999999996
1729
- - type: recall_at_100
1730
- value: 56.458
1731
- - type: recall_at_1000
1732
- value: 76.759
1733
- - type: recall_at_3
1734
- value: 24.659
1735
- - type: recall_at_5
1736
- value: 30.672
1737
  - task:
1738
- type: Retrieval
1739
  dataset:
1740
- type: BeIR/cqadupstack
1741
- name: MTEB CQADupstackTexRetrieval
1742
  config: default
1743
  split: test
1744
- revision: None
1745
  metrics:
1746
- - type: map_at_1
1747
- value: 14.901
1748
- - type: map_at_10
1749
- value: 20.268
1750
- - type: map_at_100
1751
- value: 21.143
1752
- - type: map_at_1000
1753
- value: 21.264
1754
- - type: map_at_3
1755
- value: 18.557000000000002
1756
- - type: map_at_5
1757
- value: 19.483
1758
- - type: mrr_at_1
1759
- value: 17.997
1760
- - type: mrr_at_10
1761
- value: 23.591
1762
- - type: mrr_at_100
1763
- value: 24.387
1764
- - type: mrr_at_1000
1765
- value: 24.471
1766
- - type: mrr_at_3
1767
- value: 21.874
1768
- - type: mrr_at_5
1769
- value: 22.797
1770
- - type: ndcg_at_1
1771
- value: 17.997
1772
- - type: ndcg_at_10
1773
- value: 23.87
1774
- - type: ndcg_at_100
1775
- value: 28.459
1776
- - type: ndcg_at_1000
1777
- value: 31.66
1778
- - type: ndcg_at_3
1779
- value: 20.779
1780
- - type: ndcg_at_5
1781
- value: 22.137
1782
- - type: precision_at_1
1783
- value: 17.997
1784
- - type: precision_at_10
1785
- value: 4.25
1786
- - type: precision_at_100
1787
- value: 0.761
1788
- - type: precision_at_1000
1789
- value: 0.121
1790
- - type: precision_at_3
1791
- value: 9.716
1792
- - type: precision_at_5
1793
- value: 6.909999999999999
1794
- - type: recall_at_1
1795
- value: 14.901
1796
- - type: recall_at_10
1797
- value: 31.44
1798
- - type: recall_at_100
1799
- value: 52.717000000000006
1800
- - type: recall_at_1000
1801
- value: 76.102
1802
- - type: recall_at_3
1803
- value: 22.675
1804
- - type: recall_at_5
1805
- value: 26.336
1806
  - task:
1807
- type: Retrieval
1808
  dataset:
1809
- type: BeIR/cqadupstack
1810
- name: MTEB CQADupstackUnixRetrieval
1811
  config: default
1812
  split: test
1813
- revision: None
1814
  metrics:
1815
- - type: map_at_1
1816
- value: 21.52
1817
- - type: map_at_10
1818
- value: 28.397
1819
- - type: map_at_100
1820
- value: 29.443
1821
- - type: map_at_1000
1822
- value: 29.56
1823
- - type: map_at_3
1824
- value: 26.501
1825
- - type: map_at_5
1826
- value: 27.375
1827
- - type: mrr_at_1
1828
- value: 25.28
1829
- - type: mrr_at_10
1830
- value: 32.102000000000004
1831
- - type: mrr_at_100
1832
- value: 33.005
1833
- - type: mrr_at_1000
1834
- value: 33.084
1835
- - type: mrr_at_3
1836
- value: 30.208000000000002
1837
- - type: mrr_at_5
1838
- value: 31.146
1839
- - type: ndcg_at_1
1840
- value: 25.28
1841
- - type: ndcg_at_10
1842
- value: 32.635
1843
- - type: ndcg_at_100
1844
- value: 37.672
1845
- - type: ndcg_at_1000
1846
- value: 40.602
1847
- - type: ndcg_at_3
1848
- value: 28.951999999999998
1849
- - type: ndcg_at_5
1850
- value: 30.336999999999996
1851
- - type: precision_at_1
1852
- value: 25.28
1853
- - type: precision_at_10
1854
- value: 5.3260000000000005
1855
- - type: precision_at_100
1856
- value: 0.8840000000000001
1857
- - type: precision_at_1000
1858
- value: 0.126
1859
- - type: precision_at_3
1860
- value: 12.687000000000001
1861
- - type: precision_at_5
1862
- value: 8.638
1863
- - type: recall_at_1
1864
- value: 21.52
1865
- - type: recall_at_10
1866
- value: 41.955
1867
- - type: recall_at_100
1868
- value: 64.21
1869
- - type: recall_at_1000
1870
- value: 85.28099999999999
1871
- - type: recall_at_3
1872
- value: 31.979999999999997
1873
- - type: recall_at_5
1874
- value: 35.406
1875
  - task:
1876
- type: Retrieval
1877
  dataset:
1878
- type: BeIR/cqadupstack
1879
- name: MTEB CQADupstackWebmastersRetrieval
1880
  config: default
1881
  split: test
1882
- revision: None
1883
  metrics:
1884
- - type: map_at_1
1885
- value: 20.296
1886
- - type: map_at_10
1887
- value: 28.449999999999996
1888
- - type: map_at_100
1889
- value: 29.847
1890
- - type: map_at_1000
1891
- value: 30.073
1892
- - type: map_at_3
1893
- value: 25.995
1894
- - type: map_at_5
1895
- value: 27.603
1896
- - type: mrr_at_1
1897
- value: 25.296000000000003
1898
- - type: mrr_at_10
1899
- value: 32.751999999999995
1900
- - type: mrr_at_100
1901
- value: 33.705
1902
- - type: mrr_at_1000
1903
- value: 33.783
1904
- - type: mrr_at_3
1905
- value: 30.731
1906
- - type: mrr_at_5
1907
- value: 32.006
1908
- - type: ndcg_at_1
1909
- value: 25.296000000000003
1910
- - type: ndcg_at_10
1911
- value: 33.555
1912
- - type: ndcg_at_100
1913
- value: 38.891999999999996
1914
- - type: ndcg_at_1000
1915
- value: 42.088
1916
- - type: ndcg_at_3
1917
- value: 29.944
1918
- - type: ndcg_at_5
1919
- value: 31.997999999999998
1920
- - type: precision_at_1
1921
- value: 25.296000000000003
1922
- - type: precision_at_10
1923
- value: 6.542000000000001
1924
- - type: precision_at_100
1925
- value: 1.354
1926
- - type: precision_at_1000
1927
- value: 0.22599999999999998
1928
- - type: precision_at_3
1929
- value: 14.360999999999999
1930
- - type: precision_at_5
1931
- value: 10.593
1932
- - type: recall_at_1
1933
- value: 20.296
1934
- - type: recall_at_10
1935
- value: 42.742000000000004
1936
- - type: recall_at_100
1937
- value: 67.351
1938
- - type: recall_at_1000
1939
- value: 88.774
1940
- - type: recall_at_3
1941
- value: 32.117000000000004
1942
- - type: recall_at_5
1943
- value: 37.788
1944
  - task:
1945
- type: Retrieval
1946
  dataset:
1947
- type: BeIR/cqadupstack
1948
- name: MTEB CQADupstackWordpressRetrieval
1949
  config: default
1950
  split: test
1951
- revision: None
1952
  metrics:
1953
- - type: map_at_1
1954
- value: 18.157999999999998
1955
- - type: map_at_10
1956
- value: 24.342
1957
- - type: map_at_100
1958
- value: 25.201
1959
- - type: map_at_1000
1960
- value: 25.317
1961
- - type: map_at_3
1962
- value: 22.227
1963
- - type: map_at_5
1964
- value: 23.372999999999998
1965
- - type: mrr_at_1
1966
- value: 19.778000000000002
1967
- - type: mrr_at_10
1968
- value: 26.066
1969
- - type: mrr_at_100
1970
- value: 26.935
1971
- - type: mrr_at_1000
1972
- value: 27.022000000000002
1973
- - type: mrr_at_3
1974
- value: 24.214
1975
- - type: mrr_at_5
1976
- value: 25.268
1977
- - type: ndcg_at_1
1978
- value: 19.778000000000002
1979
- - type: ndcg_at_10
1980
- value: 28.104000000000003
1981
- - type: ndcg_at_100
1982
- value: 32.87
1983
- - type: ndcg_at_1000
1984
- value: 35.858000000000004
1985
- - type: ndcg_at_3
1986
- value: 24.107
1987
- - type: ndcg_at_5
1988
- value: 26.007
1989
- - type: precision_at_1
1990
- value: 19.778000000000002
1991
- - type: precision_at_10
1992
- value: 4.417999999999999
1993
- - type: precision_at_100
1994
- value: 0.739
1995
- - type: precision_at_1000
1996
- value: 0.109
1997
- - type: precision_at_3
1998
- value: 10.228
1999
- - type: precision_at_5
2000
- value: 7.172000000000001
2001
- - type: recall_at_1
2002
- value: 18.157999999999998
2003
- - type: recall_at_10
2004
- value: 37.967
2005
- - type: recall_at_100
2006
- value: 60.806000000000004
2007
- - type: recall_at_1000
2008
- value: 83.097
2009
- - type: recall_at_3
2010
- value: 27.223999999999997
2011
- - type: recall_at_5
2012
- value: 31.968000000000004
2013
  - task:
2014
  type: Retrieval
2015
  dataset:
@@ -2020,65 +1123,65 @@ model-index:
2020
  revision: None
2021
  metrics:
2022
  - type: map_at_1
2023
- value: 7.055
2024
  - type: map_at_10
2025
- value: 11.609
2026
  - type: map_at_100
2027
- value: 12.83
2028
  - type: map_at_1000
2029
- value: 12.995000000000001
2030
  - type: map_at_3
2031
- value: 9.673
2032
  - type: map_at_5
2033
- value: 10.761999999999999
2034
  - type: mrr_at_1
2035
- value: 15.309000000000001
2036
  - type: mrr_at_10
2037
- value: 23.655
2038
  - type: mrr_at_100
2039
- value: 24.785
2040
  - type: mrr_at_1000
2041
- value: 24.856
2042
  - type: mrr_at_3
2043
- value: 20.499000000000002
2044
  - type: mrr_at_5
2045
- value: 22.425
2046
  - type: ndcg_at_1
2047
- value: 15.309000000000001
2048
  - type: ndcg_at_10
2049
- value: 17.252000000000002
2050
  - type: ndcg_at_100
2051
- value: 22.976
2052
  - type: ndcg_at_1000
2053
- value: 26.480999999999998
2054
  - type: ndcg_at_3
2055
- value: 13.418
2056
  - type: ndcg_at_5
2057
- value: 15.084
2058
  - type: precision_at_1
2059
- value: 15.309000000000001
2060
  - type: precision_at_10
2061
- value: 5.309
2062
  - type: precision_at_100
2063
- value: 1.1320000000000001
2064
  - type: precision_at_1000
2065
- value: 0.17600000000000002
2066
  - type: precision_at_3
2067
- value: 9.62
2068
  - type: precision_at_5
2069
- value: 7.883
2070
  - type: recall_at_1
2071
- value: 7.055
2072
  - type: recall_at_10
2073
- value: 21.891
2074
  - type: recall_at_100
2075
- value: 41.979
2076
  - type: recall_at_1000
2077
- value: 62.239999999999995
2078
  - type: recall_at_3
2079
- value: 12.722
2080
  - type: recall_at_5
2081
- value: 16.81
2082
  - task:
2083
  type: Retrieval
2084
  dataset:
@@ -2089,65 +1192,65 @@ model-index:
2089
  revision: None
2090
  metrics:
2091
  - type: map_at_1
2092
- value: 6.909
2093
  - type: map_at_10
2094
- value: 12.844
2095
  - type: map_at_100
2096
- value: 16.435
2097
  - type: map_at_1000
2098
- value: 17.262
2099
  - type: map_at_3
2100
- value: 10.131
2101
  - type: map_at_5
2102
- value: 11.269
2103
  - type: mrr_at_1
2104
- value: 54.50000000000001
2105
  - type: mrr_at_10
2106
- value: 62.202
2107
  - type: mrr_at_100
2108
- value: 62.81
2109
  - type: mrr_at_1000
2110
- value: 62.824000000000005
2111
  - type: mrr_at_3
2112
- value: 60.5
2113
  - type: mrr_at_5
2114
- value: 61.324999999999996
2115
  - type: ndcg_at_1
2116
- value: 42.125
2117
  - type: ndcg_at_10
2118
- value: 28.284
2119
  - type: ndcg_at_100
2120
- value: 30.444
2121
  - type: ndcg_at_1000
2122
- value: 36.397
2123
  - type: ndcg_at_3
2124
- value: 33.439
2125
  - type: ndcg_at_5
2126
- value: 30.473
2127
  - type: precision_at_1
2128
- value: 54.50000000000001
2129
  - type: precision_at_10
2130
- value: 21.4
2131
  - type: precision_at_100
2132
- value: 6.192
2133
  - type: precision_at_1000
2134
- value: 1.398
2135
  - type: precision_at_3
2136
- value: 36.583
2137
  - type: precision_at_5
2138
- value: 28.799999999999997
2139
  - type: recall_at_1
2140
- value: 6.909
2141
  - type: recall_at_10
2142
- value: 17.296
2143
  - type: recall_at_100
2144
- value: 33.925
2145
  - type: recall_at_1000
2146
- value: 53.786
2147
  - type: recall_at_3
2148
- value: 11.333
2149
  - type: recall_at_5
2150
- value: 13.529
2151
  - task:
2152
  type: Classification
2153
  dataset:
@@ -2158,9 +1261,9 @@ model-index:
2158
  revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
2159
  metrics:
2160
  - type: accuracy
2161
- value: 36.08
2162
  - type: f1
2163
- value: 33.016420191943766
2164
  - task:
2165
  type: Retrieval
2166
  dataset:
@@ -2171,65 +1274,65 @@ model-index:
2171
  revision: None
2172
  metrics:
2173
  - type: map_at_1
2174
- value: 52.605000000000004
2175
  - type: map_at_10
2176
- value: 63.31400000000001
2177
  - type: map_at_100
2178
- value: 63.678000000000004
2179
  - type: map_at_1000
2180
- value: 63.699
2181
  - type: map_at_3
2182
- value: 61.141
2183
  - type: map_at_5
2184
- value: 62.517999999999994
2185
  - type: mrr_at_1
2186
- value: 56.871
2187
  - type: mrr_at_10
2188
- value: 67.915
2189
  - type: mrr_at_100
2190
- value: 68.24900000000001
2191
  - type: mrr_at_1000
2192
- value: 68.262
2193
  - type: mrr_at_3
2194
- value: 65.809
2195
  - type: mrr_at_5
2196
- value: 67.171
2197
  - type: ndcg_at_1
2198
- value: 56.871
2199
  - type: ndcg_at_10
2200
- value: 69.122
2201
  - type: ndcg_at_100
2202
- value: 70.855
2203
  - type: ndcg_at_1000
2204
- value: 71.368
2205
  - type: ndcg_at_3
2206
- value: 64.974
2207
  - type: ndcg_at_5
2208
- value: 67.318
2209
  - type: precision_at_1
2210
- value: 56.871
2211
  - type: precision_at_10
2212
- value: 9.029
2213
  - type: precision_at_100
2214
- value: 0.996
2215
  - type: precision_at_1000
2216
- value: 0.105
2217
  - type: precision_at_3
2218
- value: 25.893
2219
  - type: precision_at_5
2220
- value: 16.838
2221
  - type: recall_at_1
2222
- value: 52.605000000000004
2223
  - type: recall_at_10
2224
- value: 82.679
2225
  - type: recall_at_100
2226
- value: 90.586
2227
  - type: recall_at_1000
2228
- value: 94.38
2229
  - type: recall_at_3
2230
- value: 71.447
2231
  - type: recall_at_5
2232
- value: 77.218
2233
  - task:
2234
  type: Retrieval
2235
  dataset:
@@ -2240,65 +1343,65 @@ model-index:
2240
  revision: None
2241
  metrics:
2242
  - type: map_at_1
2243
- value: 10.759
2244
  - type: map_at_10
2245
- value: 18.877
2246
  - type: map_at_100
2247
- value: 20.498
2248
  - type: map_at_1000
2249
- value: 20.682000000000002
2250
  - type: map_at_3
2251
- value: 16.159000000000002
2252
  - type: map_at_5
2253
- value: 17.575
2254
  - type: mrr_at_1
2255
- value: 22.531000000000002
2256
  - type: mrr_at_10
2257
- value: 31.155
2258
  - type: mrr_at_100
2259
- value: 32.188
2260
  - type: mrr_at_1000
2261
- value: 32.245000000000005
2262
  - type: mrr_at_3
2263
- value: 28.781000000000002
2264
  - type: mrr_at_5
2265
- value: 30.054
2266
  - type: ndcg_at_1
2267
- value: 22.531000000000002
2268
  - type: ndcg_at_10
2269
- value: 25.189
2270
  - type: ndcg_at_100
2271
- value: 31.958
2272
  - type: ndcg_at_1000
2273
- value: 35.693999999999996
2274
  - type: ndcg_at_3
2275
- value: 22.235
2276
  - type: ndcg_at_5
2277
- value: 23.044999999999998
2278
  - type: precision_at_1
2279
- value: 22.531000000000002
2280
  - type: precision_at_10
2281
- value: 7.438000000000001
2282
  - type: precision_at_100
2283
- value: 1.418
2284
  - type: precision_at_1000
2285
- value: 0.208
2286
  - type: precision_at_3
2287
- value: 15.329
2288
  - type: precision_at_5
2289
- value: 11.451
2290
  - type: recall_at_1
2291
- value: 10.759
2292
  - type: recall_at_10
2293
- value: 31.416
2294
  - type: recall_at_100
2295
- value: 56.989000000000004
2296
  - type: recall_at_1000
2297
- value: 80.33200000000001
2298
  - type: recall_at_3
2299
- value: 20.61
2300
  - type: recall_at_5
2301
- value: 24.903
2302
  - task:
2303
  type: Retrieval
2304
  dataset:
@@ -2309,65 +1412,65 @@ model-index:
2309
  revision: None
2310
  metrics:
2311
  - type: map_at_1
2312
- value: 29.21
2313
  - type: map_at_10
2314
- value: 38.765
2315
  - type: map_at_100
2316
- value: 39.498
2317
  - type: map_at_1000
2318
- value: 39.568
2319
  - type: map_at_3
2320
- value: 36.699
2321
  - type: map_at_5
2322
- value: 37.925
2323
  - type: mrr_at_1
2324
- value: 58.42
2325
  - type: mrr_at_10
2326
- value: 65.137
2327
  - type: mrr_at_100
2328
- value: 65.542
2329
  - type: mrr_at_1000
2330
- value: 65.568
2331
  - type: mrr_at_3
2332
- value: 63.698
2333
  - type: mrr_at_5
2334
- value: 64.575
2335
  - type: ndcg_at_1
2336
- value: 58.42
2337
  - type: ndcg_at_10
2338
- value: 47.476
2339
  - type: ndcg_at_100
2340
- value: 50.466
2341
  - type: ndcg_at_1000
2342
- value: 52.064
2343
  - type: ndcg_at_3
2344
- value: 43.986
2345
  - type: ndcg_at_5
2346
- value: 45.824
2347
  - type: precision_at_1
2348
- value: 58.42
2349
  - type: precision_at_10
2350
- value: 9.649000000000001
2351
  - type: precision_at_100
2352
- value: 1.201
2353
  - type: precision_at_1000
2354
- value: 0.14100000000000001
2355
  - type: precision_at_3
2356
- value: 26.977
2357
  - type: precision_at_5
2358
- value: 17.642
2359
  - type: recall_at_1
2360
- value: 29.21
2361
  - type: recall_at_10
2362
- value: 48.244
2363
  - type: recall_at_100
2364
- value: 60.041
2365
  - type: recall_at_1000
2366
- value: 70.743
2367
  - type: recall_at_3
2368
- value: 40.466
2369
  - type: recall_at_5
2370
- value: 44.105
2371
  - task:
2372
  type: Classification
2373
  dataset:
@@ -2378,11 +1481,11 @@ model-index:
2378
  revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
2379
  metrics:
2380
  - type: accuracy
2381
- value: 58.7064
2382
  - type: ap
2383
- value: 55.36326227125519
2384
  - type: f1
2385
- value: 57.46763115215848
2386
  - task:
2387
  type: Retrieval
2388
  dataset:
@@ -2393,65 +1496,65 @@ model-index:
2393
  revision: None
2394
  metrics:
2395
  - type: map_at_1
2396
- value: 15.889000000000001
2397
  - type: map_at_10
2398
- value: 25.979000000000003
2399
  - type: map_at_100
2400
- value: 27.21
2401
  - type: map_at_1000
2402
- value: 27.284000000000002
2403
  - type: map_at_3
2404
- value: 22.665
2405
  - type: map_at_5
2406
- value: 24.578
2407
  - type: mrr_at_1
2408
- value: 16.39
2409
  - type: mrr_at_10
2410
- value: 26.504
2411
  - type: mrr_at_100
2412
- value: 27.689999999999998
2413
  - type: mrr_at_1000
2414
- value: 27.758
2415
  - type: mrr_at_3
2416
- value: 23.24
2417
  - type: mrr_at_5
2418
- value: 25.108000000000004
2419
  - type: ndcg_at_1
2420
- value: 16.39
2421
  - type: ndcg_at_10
2422
- value: 31.799
2423
  - type: ndcg_at_100
2424
- value: 38.034
2425
  - type: ndcg_at_1000
2426
- value: 39.979
2427
  - type: ndcg_at_3
2428
- value: 25.054
2429
  - type: ndcg_at_5
2430
- value: 28.463
2431
  - type: precision_at_1
2432
- value: 16.39
2433
  - type: precision_at_10
2434
- value: 5.189
2435
  - type: precision_at_100
2436
- value: 0.835
2437
  - type: precision_at_1000
2438
- value: 0.1
2439
  - type: precision_at_3
2440
- value: 10.84
2441
  - type: precision_at_5
2442
- value: 8.238
2443
  - type: recall_at_1
2444
- value: 15.889000000000001
2445
  - type: recall_at_10
2446
- value: 49.739
2447
  - type: recall_at_100
2448
- value: 79.251
2449
  - type: recall_at_1000
2450
- value: 94.298
2451
  - type: recall_at_3
2452
- value: 31.427
2453
  - type: recall_at_5
2454
- value: 39.623000000000005
2455
  - task:
2456
  type: Classification
2457
  dataset:
@@ -2462,9 +1565,9 @@ model-index:
2462
  revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
2463
  metrics:
2464
  - type: accuracy
2465
- value: 88.81668946648426
2466
  - type: f1
2467
- value: 88.55200075528438
2468
  - task:
2469
  type: Classification
2470
  dataset:
@@ -2475,9 +1578,9 @@ model-index:
2475
  revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
2476
  metrics:
2477
  - type: accuracy
2478
- value: 58.611491108071135
2479
  - type: f1
2480
- value: 42.12391403999353
2481
  - task:
2482
  type: Classification
2483
  dataset:
@@ -2488,9 +1591,9 @@ model-index:
2488
  revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2489
  metrics:
2490
  - type: accuracy
2491
- value: 64.67047747141896
2492
  - type: f1
2493
- value: 62.88410885922258
2494
  - task:
2495
  type: Classification
2496
  dataset:
@@ -2501,9 +1604,9 @@ model-index:
2501
  revision: 7d571f92784cd94a019292a1f45445077d0ef634
2502
  metrics:
2503
  - type: accuracy
2504
- value: 71.78547410894419
2505
  - type: f1
2506
- value: 71.69467869218154
2507
  - task:
2508
  type: Clustering
2509
  dataset:
@@ -2514,7 +1617,7 @@ model-index:
2514
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
2515
  metrics:
2516
  - type: v_measure
2517
- value: 27.23799937752035
2518
  - task:
2519
  type: Clustering
2520
  dataset:
@@ -2525,7 +1628,7 @@ model-index:
2525
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
2526
  metrics:
2527
  - type: v_measure
2528
- value: 23.26502601343789
2529
  - task:
2530
  type: Reranking
2531
  dataset:
@@ -2536,9 +1639,9 @@ model-index:
2536
  revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
2537
  metrics:
2538
  - type: map
2539
- value: 30.680711484149832
2540
  - type: mrr
2541
- value: 31.705059795117307
2542
  - task:
2543
  type: Retrieval
2544
  dataset:
@@ -2549,65 +1652,65 @@ model-index:
2549
  revision: None
2550
  metrics:
2551
  - type: map_at_1
2552
- value: 4.077
2553
  - type: map_at_10
2554
- value: 8.657
2555
  - type: map_at_100
2556
- value: 10.753
2557
  - type: map_at_1000
2558
- value: 11.885
2559
  - type: map_at_3
2560
- value: 6.5089999999999995
2561
  - type: map_at_5
2562
- value: 7.405
2563
  - type: mrr_at_1
2564
- value: 38.7
2565
  - type: mrr_at_10
2566
- value: 46.065
2567
  - type: mrr_at_100
2568
- value: 46.772000000000006
2569
  - type: mrr_at_1000
2570
- value: 46.83
2571
  - type: mrr_at_3
2572
- value: 44.118
2573
  - type: mrr_at_5
2574
- value: 45.015
2575
  - type: ndcg_at_1
2576
- value: 36.997
2577
  - type: ndcg_at_10
2578
- value: 25.96
2579
  - type: ndcg_at_100
2580
- value: 23.607
2581
  - type: ndcg_at_1000
2582
- value: 32.317
2583
  - type: ndcg_at_3
2584
- value: 31.06
2585
  - type: ndcg_at_5
2586
- value: 28.921000000000003
2587
  - type: precision_at_1
2588
- value: 38.7
2589
  - type: precision_at_10
2590
- value: 19.195
2591
  - type: precision_at_100
2592
- value: 6.164
2593
  - type: precision_at_1000
2594
- value: 1.839
2595
  - type: precision_at_3
2596
- value: 28.999000000000002
2597
  - type: precision_at_5
2598
- value: 25.014999999999997
2599
  - type: recall_at_1
2600
- value: 4.077
2601
  - type: recall_at_10
2602
- value: 11.802
2603
  - type: recall_at_100
2604
- value: 24.365000000000002
2605
  - type: recall_at_1000
2606
- value: 55.277
2607
  - type: recall_at_3
2608
- value: 7.435
2609
  - type: recall_at_5
2610
- value: 8.713999999999999
2611
  - task:
2612
  type: Retrieval
2613
  dataset:
@@ -2618,65 +1721,65 @@ model-index:
2618
  revision: None
2619
  metrics:
2620
  - type: map_at_1
2621
- value: 19.588
2622
  - type: map_at_10
2623
- value: 32.08
2624
  - type: map_at_100
2625
- value: 33.32
2626
  - type: map_at_1000
2627
- value: 33.377
2628
  - type: map_at_3
2629
- value: 28.166000000000004
2630
  - type: map_at_5
2631
- value: 30.383
2632
  - type: mrr_at_1
2633
- value: 22.161
2634
  - type: mrr_at_10
2635
- value: 34.121
2636
  - type: mrr_at_100
2637
- value: 35.171
2638
  - type: mrr_at_1000
2639
- value: 35.214
2640
  - type: mrr_at_3
2641
- value: 30.692000000000004
2642
  - type: mrr_at_5
2643
- value: 32.706
2644
  - type: ndcg_at_1
2645
- value: 22.131999999999998
2646
  - type: ndcg_at_10
2647
- value: 38.887
2648
  - type: ndcg_at_100
2649
- value: 44.433
2650
  - type: ndcg_at_1000
2651
- value: 45.823
2652
  - type: ndcg_at_3
2653
- value: 31.35
2654
  - type: ndcg_at_5
2655
- value: 35.144
2656
  - type: precision_at_1
2657
- value: 22.131999999999998
2658
  - type: precision_at_10
2659
- value: 6.8629999999999995
2660
  - type: precision_at_100
2661
- value: 0.993
2662
  - type: precision_at_1000
2663
- value: 0.11199999999999999
2664
  - type: precision_at_3
2665
- value: 14.706
2666
  - type: precision_at_5
2667
- value: 10.972999999999999
2668
  - type: recall_at_1
2669
- value: 19.588
2670
  - type: recall_at_10
2671
- value: 57.703
2672
  - type: recall_at_100
2673
- value: 82.194
2674
  - type: recall_at_1000
2675
- value: 92.623
2676
  - type: recall_at_3
2677
- value: 38.012
2678
  - type: recall_at_5
2679
- value: 46.847
2680
  - task:
2681
  type: Retrieval
2682
  dataset:
@@ -2687,65 +1790,65 @@ model-index:
2687
  revision: None
2688
  metrics:
2689
  - type: map_at_1
2690
- value: 68.038
2691
  - type: map_at_10
2692
- value: 81.572
2693
  - type: map_at_100
2694
- value: 82.25200000000001
2695
  - type: map_at_1000
2696
- value: 82.27600000000001
2697
  - type: map_at_3
2698
- value: 78.618
2699
  - type: map_at_5
2700
- value: 80.449
2701
  - type: mrr_at_1
2702
- value: 78.31
2703
  - type: mrr_at_10
2704
- value: 84.98
2705
  - type: mrr_at_100
2706
- value: 85.122
2707
  - type: mrr_at_1000
2708
- value: 85.124
2709
  - type: mrr_at_3
2710
- value: 83.852
2711
  - type: mrr_at_5
2712
- value: 84.6
2713
  - type: ndcg_at_1
2714
- value: 78.31
2715
  - type: ndcg_at_10
2716
- value: 85.693
2717
  - type: ndcg_at_100
2718
- value: 87.191
2719
  - type: ndcg_at_1000
2720
- value: 87.386
2721
  - type: ndcg_at_3
2722
- value: 82.585
2723
  - type: ndcg_at_5
2724
- value: 84.255
2725
  - type: precision_at_1
2726
- value: 78.31
2727
  - type: precision_at_10
2728
- value: 12.986
2729
  - type: precision_at_100
2730
- value: 1.505
2731
  - type: precision_at_1000
2732
- value: 0.156
2733
  - type: precision_at_3
2734
- value: 36.007
2735
  - type: precision_at_5
2736
- value: 23.735999999999997
2737
  - type: recall_at_1
2738
- value: 68.038
2739
  - type: recall_at_10
2740
- value: 93.598
2741
  - type: recall_at_100
2742
- value: 98.869
2743
  - type: recall_at_1000
2744
- value: 99.86500000000001
2745
  - type: recall_at_3
2746
- value: 84.628
2747
  - type: recall_at_5
2748
- value: 89.316
2749
  - task:
2750
  type: Clustering
2751
  dataset:
@@ -2756,7 +1859,7 @@ model-index:
2756
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2757
  metrics:
2758
  - type: v_measure
2759
- value: 37.948231664922865
2760
  - task:
2761
  type: Clustering
2762
  dataset:
@@ -2767,7 +1870,7 @@ model-index:
2767
  revision: 282350215ef01743dc01b456c7f5241fa8937f16
2768
  metrics:
2769
  - type: v_measure
2770
- value: 49.90597913763894
2771
  - task:
2772
  type: Retrieval
2773
  dataset:
@@ -2778,65 +1881,65 @@ model-index:
2778
  revision: None
2779
  metrics:
2780
  - type: map_at_1
2781
- value: 3.753
2782
  - type: map_at_10
2783
- value: 8.915
2784
  - type: map_at_100
2785
- value: 10.374
2786
  - type: map_at_1000
2787
- value: 10.612
2788
  - type: map_at_3
2789
- value: 6.577
2790
  - type: map_at_5
2791
- value: 7.8
2792
  - type: mrr_at_1
2793
- value: 18.4
2794
  - type: mrr_at_10
2795
- value: 27.325
2796
  - type: mrr_at_100
2797
- value: 28.419
2798
  - type: mrr_at_1000
2799
- value: 28.494000000000003
2800
  - type: mrr_at_3
2801
- value: 24.349999999999998
2802
  - type: mrr_at_5
2803
- value: 26.205000000000002
2804
  - type: ndcg_at_1
2805
- value: 18.4
2806
  - type: ndcg_at_10
2807
- value: 15.293000000000001
2808
  - type: ndcg_at_100
2809
- value: 21.592
2810
  - type: ndcg_at_1000
2811
- value: 26.473000000000003
2812
  - type: ndcg_at_3
2813
- value: 14.748
2814
  - type: ndcg_at_5
2815
- value: 12.98
2816
  - type: precision_at_1
2817
- value: 18.4
2818
  - type: precision_at_10
2819
- value: 7.779999999999999
2820
  - type: precision_at_100
2821
- value: 1.693
2822
  - type: precision_at_1000
2823
- value: 0.28800000000000003
2824
  - type: precision_at_3
2825
- value: 13.700000000000001
2826
  - type: precision_at_5
2827
- value: 11.379999999999999
2828
  - type: recall_at_1
2829
- value: 3.753
2830
  - type: recall_at_10
2831
- value: 15.806999999999999
2832
  - type: recall_at_100
2833
- value: 34.37
2834
  - type: recall_at_1000
2835
- value: 58.463
2836
  - type: recall_at_3
2837
- value: 8.338
2838
  - type: recall_at_5
2839
- value: 11.538
2840
  - task:
2841
  type: STS
2842
  dataset:
@@ -2847,17 +1950,17 @@ model-index:
2847
  revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
2848
  metrics:
2849
  - type: cos_sim_pearson
2850
- value: 82.58843987639705
2851
  - type: cos_sim_spearman
2852
- value: 76.33071660715956
2853
  - type: euclidean_pearson
2854
- value: 72.8029921002978
2855
  - type: euclidean_spearman
2856
- value: 69.34534284782808
2857
  - type: manhattan_pearson
2858
- value: 72.49781034973653
2859
  - type: manhattan_spearman
2860
- value: 69.24754112621694
2861
  - task:
2862
  type: STS
2863
  dataset:
@@ -2868,17 +1971,17 @@ model-index:
2868
  revision: a0d554a64d88156834ff5ae9920b964011b16384
2869
  metrics:
2870
  - type: cos_sim_pearson
2871
- value: 83.31673079903189
2872
  - type: cos_sim_spearman
2873
- value: 74.27699263517789
2874
  - type: euclidean_pearson
2875
- value: 69.4008910999579
2876
  - type: euclidean_spearman
2877
- value: 59.0716984643048
2878
  - type: manhattan_pearson
2879
- value: 68.87342686919199
2880
  - type: manhattan_spearman
2881
- value: 58.904612865335025
2882
  - task:
2883
  type: STS
2884
  dataset:
@@ -2889,17 +1992,17 @@ model-index:
2889
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2890
  metrics:
2891
  - type: cos_sim_pearson
2892
- value: 77.59122302327788
2893
  - type: cos_sim_spearman
2894
- value: 78.55383586979005
2895
  - type: euclidean_pearson
2896
- value: 68.18338642204289
2897
  - type: euclidean_spearman
2898
- value: 68.95092864180276
2899
  - type: manhattan_pearson
2900
- value: 68.08807059822706
2901
  - type: manhattan_spearman
2902
- value: 68.86135938270193
2903
  - task:
2904
  type: STS
2905
  dataset:
@@ -2910,17 +2013,17 @@ model-index:
2910
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2911
  metrics:
2912
  - type: cos_sim_pearson
2913
- value: 78.51766841424501
2914
  - type: cos_sim_spearman
2915
- value: 73.84318001499558
2916
  - type: euclidean_pearson
2917
- value: 67.2007138855177
2918
  - type: euclidean_spearman
2919
- value: 63.98672842723766
2920
  - type: manhattan_pearson
2921
- value: 67.17773810895949
2922
  - type: manhattan_spearman
2923
- value: 64.07359154832962
2924
  - task:
2925
  type: STS
2926
  dataset:
@@ -2931,17 +2034,17 @@ model-index:
2931
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2932
  metrics:
2933
  - type: cos_sim_pearson
2934
- value: 82.73438541570299
2935
  - type: cos_sim_spearman
2936
- value: 83.71357922283677
2937
  - type: euclidean_pearson
2938
- value: 57.50131347498546
2939
  - type: euclidean_spearman
2940
- value: 57.73623619252132
2941
  - type: manhattan_pearson
2942
- value: 58.082992079000725
2943
  - type: manhattan_spearman
2944
- value: 58.42728201167522
2945
  - task:
2946
  type: STS
2947
  dataset:
@@ -2952,17 +2055,17 @@ model-index:
2952
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2953
  metrics:
2954
  - type: cos_sim_pearson
2955
- value: 78.14794654172421
2956
  - type: cos_sim_spearman
2957
- value: 80.025736165043
2958
  - type: euclidean_pearson
2959
- value: 65.87773913985473
2960
  - type: euclidean_spearman
2961
- value: 66.69337751784794
2962
  - type: manhattan_pearson
2963
- value: 66.01039761004415
2964
  - type: manhattan_spearman
2965
- value: 66.89215027952318
2966
  - task:
2967
  type: STS
2968
  dataset:
@@ -2973,17 +2076,17 @@ model-index:
2973
  revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2974
  metrics:
2975
  - type: cos_sim_pearson
2976
- value: 87.10554507136152
2977
  - type: cos_sim_spearman
2978
- value: 87.4898082140765
2979
  - type: euclidean_pearson
2980
- value: 72.19391114541367
2981
  - type: euclidean_spearman
2982
- value: 70.36647944993783
2983
  - type: manhattan_pearson
2984
- value: 72.18680758133698
2985
  - type: manhattan_spearman
2986
- value: 70.3871215447305
2987
  - task:
2988
  type: STS
2989
  dataset:
@@ -2994,17 +2097,17 @@ model-index:
2994
  revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2995
  metrics:
2996
  - type: cos_sim_pearson
2997
- value: 64.54868111501618
2998
  - type: cos_sim_spearman
2999
- value: 64.25173617448473
3000
  - type: euclidean_pearson
3001
- value: 39.116088900637116
3002
  - type: euclidean_spearman
3003
- value: 53.300772929884
3004
  - type: manhattan_pearson
3005
- value: 38.3844195287959
3006
  - type: manhattan_spearman
3007
- value: 52.846675312001246
3008
  - task:
3009
  type: STS
3010
  dataset:
@@ -3015,17 +2118,17 @@ model-index:
3015
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
3016
  metrics:
3017
  - type: cos_sim_pearson
3018
- value: 80.04396610550214
3019
  - type: cos_sim_spearman
3020
- value: 79.19504854997832
3021
  - type: euclidean_pearson
3022
- value: 66.3284657637072
3023
  - type: euclidean_spearman
3024
- value: 63.69531796729492
3025
  - type: manhattan_pearson
3026
- value: 66.82324081038026
3027
  - type: manhattan_spearman
3028
- value: 64.18254512904923
3029
  - task:
3030
  type: Reranking
3031
  dataset:
@@ -3036,9 +2139,9 @@ model-index:
3036
  revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
3037
  metrics:
3038
  - type: map
3039
- value: 74.16264051781705
3040
  - type: mrr
3041
- value: 91.80864796060874
3042
  - task:
3043
  type: Retrieval
3044
  dataset:
@@ -3049,65 +2152,65 @@ model-index:
3049
  revision: None
3050
  metrics:
3051
  - type: map_at_1
3052
- value: 38.983000000000004
3053
  - type: map_at_10
3054
- value: 47.858000000000004
3055
  - type: map_at_100
3056
- value: 48.695
3057
  - type: map_at_1000
3058
- value: 48.752
3059
  - type: map_at_3
3060
- value: 45.444
3061
  - type: map_at_5
3062
- value: 46.906
3063
  - type: mrr_at_1
3064
- value: 41.333
3065
  - type: mrr_at_10
3066
- value: 49.935
3067
  - type: mrr_at_100
3068
- value: 50.51
3069
  - type: mrr_at_1000
3070
- value: 50.55500000000001
3071
  - type: mrr_at_3
3072
- value: 47.833
3073
  - type: mrr_at_5
3074
- value: 49.117
3075
  - type: ndcg_at_1
3076
- value: 41.333
3077
  - type: ndcg_at_10
3078
- value: 52.398999999999994
3079
  - type: ndcg_at_100
3080
- value: 56.196
3081
  - type: ndcg_at_1000
3082
- value: 57.838
3083
  - type: ndcg_at_3
3084
- value: 47.987
3085
  - type: ndcg_at_5
3086
- value: 50.356
3087
  - type: precision_at_1
3088
- value: 41.333
3089
  - type: precision_at_10
3090
- value: 7.167
3091
  - type: precision_at_100
3092
- value: 0.9299999999999999
3093
  - type: precision_at_1000
3094
- value: 0.108
3095
  - type: precision_at_3
3096
- value: 19.0
3097
  - type: precision_at_5
3098
- value: 12.8
3099
  - type: recall_at_1
3100
- value: 38.983000000000004
3101
  - type: recall_at_10
3102
- value: 64.183
3103
  - type: recall_at_100
3104
- value: 82.02199999999999
3105
  - type: recall_at_1000
3106
- value: 95.167
3107
  - type: recall_at_3
3108
- value: 52.383
3109
  - type: recall_at_5
3110
- value: 58.411
3111
  - task:
3112
  type: PairClassification
3113
  dataset:
@@ -3118,51 +2221,51 @@ model-index:
3118
  revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
3119
  metrics:
3120
  - type: cos_sim_accuracy
3121
- value: 99.8019801980198
3122
  - type: cos_sim_ap
3123
- value: 94.9287554635848
3124
  - type: cos_sim_f1
3125
- value: 89.83739837398375
3126
  - type: cos_sim_precision
3127
- value: 91.32231404958677
3128
  - type: cos_sim_recall
3129
- value: 88.4
3130
  - type: dot_accuracy
3131
- value: 99.23762376237623
3132
  - type: dot_ap
3133
- value: 55.22534191245801
3134
  - type: dot_f1
3135
- value: 54.054054054054056
3136
  - type: dot_precision
3137
- value: 55.15088449531738
3138
  - type: dot_recall
3139
- value: 53.0
3140
  - type: euclidean_accuracy
3141
- value: 99.6108910891089
3142
  - type: euclidean_ap
3143
- value: 82.5195111329438
3144
  - type: euclidean_f1
3145
- value: 78.2847718526663
3146
  - type: euclidean_precision
3147
- value: 86.93528693528694
3148
  - type: euclidean_recall
3149
- value: 71.2
3150
  - type: manhattan_accuracy
3151
- value: 99.5970297029703
3152
  - type: manhattan_ap
3153
- value: 81.96876777875492
3154
  - type: manhattan_f1
3155
- value: 77.33773377337734
3156
  - type: manhattan_precision
3157
- value: 85.94132029339853
3158
  - type: manhattan_recall
3159
- value: 70.3
3160
  - type: max_accuracy
3161
- value: 99.8019801980198
3162
  - type: max_ap
3163
- value: 94.9287554635848
3164
  - type: max_f1
3165
- value: 89.83739837398375
3166
  - task:
3167
  type: Clustering
3168
  dataset:
@@ -3173,7 +2276,7 @@ model-index:
3173
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
3174
  metrics:
3175
  - type: v_measure
3176
- value: 46.34997003954114
3177
  - task:
3178
  type: Clustering
3179
  dataset:
@@ -3184,7 +2287,7 @@ model-index:
3184
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
3185
  metrics:
3186
  - type: v_measure
3187
- value: 31.462336020554893
3188
  - task:
3189
  type: Reranking
3190
  dataset:
@@ -3195,9 +2298,9 @@ model-index:
3195
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
3196
  metrics:
3197
  - type: map
3198
- value: 47.1757817459526
3199
  - type: mrr
3200
- value: 47.941057104660054
3201
  - task:
3202
  type: Summarization
3203
  dataset:
@@ -3208,13 +2311,13 @@ model-index:
3208
  revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
3209
  metrics:
3210
  - type: cos_sim_pearson
3211
- value: 30.56106249068471
3212
  - type: cos_sim_spearman
3213
- value: 31.24613190558528
3214
  - type: dot_pearson
3215
- value: 20.486610035794257
3216
  - type: dot_spearman
3217
- value: 23.115667545894546
3218
  - task:
3219
  type: Retrieval
3220
  dataset:
@@ -3225,65 +2328,65 @@ model-index:
3225
  revision: None
3226
  metrics:
3227
  - type: map_at_1
3228
- value: 0.182
3229
  - type: map_at_10
3230
- value: 1.155
3231
  - type: map_at_100
3232
- value: 5.118
3233
  - type: map_at_1000
3234
- value: 11.827
3235
  - type: map_at_3
3236
- value: 0.482
3237
  - type: map_at_5
3238
- value: 0.712
3239
  - type: mrr_at_1
3240
- value: 70.0
3241
  - type: mrr_at_10
3242
- value: 79.483
3243
  - type: mrr_at_100
3244
- value: 79.637
3245
  - type: mrr_at_1000
3246
- value: 79.637
3247
  - type: mrr_at_3
3248
- value: 77.667
3249
  - type: mrr_at_5
3250
- value: 78.567
3251
  - type: ndcg_at_1
3252
- value: 63.0
3253
  - type: ndcg_at_10
3254
- value: 52.303
3255
  - type: ndcg_at_100
3256
- value: 37.361
3257
  - type: ndcg_at_1000
3258
- value: 32.84
3259
  - type: ndcg_at_3
3260
- value: 58.274
3261
  - type: ndcg_at_5
3262
- value: 55.601
3263
  - type: precision_at_1
3264
- value: 70.0
3265
  - type: precision_at_10
3266
- value: 55.60000000000001
3267
  - type: precision_at_100
3268
- value: 37.96
3269
  - type: precision_at_1000
3270
- value: 14.738000000000001
3271
  - type: precision_at_3
3272
- value: 62.666999999999994
3273
  - type: precision_at_5
3274
- value: 60.0
3275
  - type: recall_at_1
3276
- value: 0.182
3277
  - type: recall_at_10
3278
- value: 1.4120000000000001
3279
  - type: recall_at_100
3280
- value: 8.533
3281
  - type: recall_at_1000
3282
- value: 30.572
3283
  - type: recall_at_3
3284
- value: 0.5309999999999999
3285
  - type: recall_at_5
3286
- value: 0.814
3287
  - task:
3288
  type: Retrieval
3289
  dataset:
@@ -3294,65 +2397,65 @@ model-index:
3294
  revision: None
3295
  metrics:
3296
  - type: map_at_1
3297
- value: 1.385
3298
  - type: map_at_10
3299
- value: 7.185999999999999
3300
  - type: map_at_100
3301
- value: 11.642
3302
  - type: map_at_1000
3303
- value: 12.953000000000001
3304
  - type: map_at_3
3305
- value: 3.496
3306
  - type: map_at_5
3307
- value: 4.82
3308
  - type: mrr_at_1
3309
- value: 16.326999999999998
3310
  - type: mrr_at_10
3311
- value: 29.461
3312
  - type: mrr_at_100
3313
- value: 31.436999999999998
3314
  - type: mrr_at_1000
3315
- value: 31.436999999999998
3316
  - type: mrr_at_3
3317
- value: 24.490000000000002
3318
  - type: mrr_at_5
3319
- value: 27.857
3320
  - type: ndcg_at_1
3321
- value: 14.285999999999998
3322
  - type: ndcg_at_10
3323
- value: 16.672
3324
  - type: ndcg_at_100
3325
- value: 28.691
3326
  - type: ndcg_at_1000
3327
- value: 39.817
3328
  - type: ndcg_at_3
3329
- value: 15.277
3330
  - type: ndcg_at_5
3331
- value: 15.823
3332
  - type: precision_at_1
3333
- value: 16.326999999999998
3334
  - type: precision_at_10
3335
- value: 15.509999999999998
3336
  - type: precision_at_100
3337
- value: 6.49
3338
  - type: precision_at_1000
3339
- value: 1.4080000000000001
3340
  - type: precision_at_3
3341
- value: 16.326999999999998
3342
  - type: precision_at_5
3343
- value: 16.735
3344
  - type: recall_at_1
3345
- value: 1.385
3346
  - type: recall_at_10
3347
- value: 12.586
3348
  - type: recall_at_100
3349
- value: 40.765
3350
  - type: recall_at_1000
3351
- value: 75.198
3352
  - type: recall_at_3
3353
- value: 4.326
3354
  - type: recall_at_5
3355
- value: 7.074999999999999
3356
  - task:
3357
  type: Classification
3358
  dataset:
@@ -3363,11 +2466,11 @@ model-index:
3363
  revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
3364
  metrics:
3365
  - type: accuracy
3366
- value: 59.4402
3367
  - type: ap
3368
- value: 10.16922814263879
3369
  - type: f1
3370
- value: 45.374485104940476
3371
  - task:
3372
  type: Classification
3373
  dataset:
@@ -3378,9 +2481,9 @@ model-index:
3378
  revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
3379
  metrics:
3380
  - type: accuracy
3381
- value: 54.25863044708545
3382
  - type: f1
3383
- value: 54.20154252609619
3384
  - task:
3385
  type: Clustering
3386
  dataset:
@@ -3391,7 +2494,7 @@ model-index:
3391
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
3392
  metrics:
3393
  - type: v_measure
3394
- value: 34.3883169293051
3395
  - task:
3396
  type: PairClassification
3397
  dataset:
@@ -3402,51 +2505,51 @@ model-index:
3402
  revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
3403
  metrics:
3404
  - type: cos_sim_accuracy
3405
- value: 81.76670441676104
3406
  - type: cos_sim_ap
3407
- value: 59.29878710961347
3408
  - type: cos_sim_f1
3409
- value: 57.33284971587474
3410
  - type: cos_sim_precision
3411
- value: 52.9122963624191
3412
  - type: cos_sim_recall
3413
- value: 62.559366754617415
3414
  - type: dot_accuracy
3415
- value: 77.52279907015557
3416
  - type: dot_ap
3417
- value: 34.17588904643467
3418
  - type: dot_f1
3419
- value: 41.063567529494634
3420
  - type: dot_precision
3421
- value: 30.813953488372093
3422
  - type: dot_recall
3423
- value: 61.53034300791557
3424
  - type: euclidean_accuracy
3425
- value: 80.61631996185254
3426
  - type: euclidean_ap
3427
- value: 54.00362361479352
3428
  - type: euclidean_f1
3429
- value: 53.99111751290361
3430
  - type: euclidean_precision
3431
- value: 49.52653600528518
3432
  - type: euclidean_recall
3433
- value: 59.340369393139845
3434
  - type: manhattan_accuracy
3435
- value: 80.65208320915539
3436
  - type: manhattan_ap
3437
- value: 54.18329507159467
3438
  - type: manhattan_f1
3439
- value: 53.85550960836779
3440
  - type: manhattan_precision
3441
- value: 49.954873646209386
3442
  - type: manhattan_recall
3443
- value: 58.41688654353562
3444
  - type: max_accuracy
3445
- value: 81.76670441676104
3446
  - type: max_ap
3447
- value: 59.29878710961347
3448
  - type: max_f1
3449
- value: 57.33284971587474
3450
  - task:
3451
  type: PairClassification
3452
  dataset:
@@ -3457,51 +2560,51 @@ model-index:
3457
  revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
3458
  metrics:
3459
  - type: cos_sim_accuracy
3460
- value: 87.99433383785463
3461
  - type: cos_sim_ap
3462
- value: 83.43513915159009
3463
  - type: cos_sim_f1
3464
- value: 76.3906784964842
3465
  - type: cos_sim_precision
3466
- value: 73.19223985890653
3467
  - type: cos_sim_recall
3468
- value: 79.88142901139513
3469
  - type: dot_accuracy
3470
- value: 81.96142352621571
3471
  - type: dot_ap
3472
- value: 67.78764755689359
3473
  - type: dot_f1
3474
- value: 64.42823356983445
3475
  - type: dot_precision
3476
- value: 56.77801913931779
3477
  - type: dot_recall
3478
- value: 74.46104096088698
3479
  - type: euclidean_accuracy
3480
- value: 81.9478402607987
3481
  - type: euclidean_ap
3482
- value: 67.13958457373279
3483
  - type: euclidean_f1
3484
- value: 60.45118343195266
3485
  - type: euclidean_precision
3486
- value: 58.1625391403359
3487
  - type: euclidean_recall
3488
- value: 62.92731752386819
3489
  - type: manhattan_accuracy
3490
- value: 82.01769705437188
3491
  - type: manhattan_ap
3492
- value: 67.24709477497046
3493
  - type: manhattan_f1
3494
- value: 60.4103846436714
3495
  - type: manhattan_precision
3496
- value: 57.82063916654935
3497
  - type: manhattan_recall
3498
- value: 63.24299353249153
3499
  - type: max_accuracy
3500
- value: 87.99433383785463
3501
  - type: max_ap
3502
- value: 83.43513915159009
3503
  - type: max_f1
3504
- value: 76.3906784964842
3505
  ---
3506
  ---
3507
 
 
11
  language: en
12
  license: apache-2.0
13
  model-index:
14
+ - name: jina-embedding-b-en-v1
15
  results:
16
  - task:
17
  type: Classification
 
23
  revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
  metrics:
25
  - type: accuracy
26
+ value: 66.58208955223881
27
  - type: ap
28
+ value: 28.455148149555754
29
  - type: f1
30
+ value: 59.973775371110385
31
  - task:
32
  type: Classification
33
  dataset:
 
38
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
  metrics:
40
  - type: accuracy
41
+ value: 65.09505
42
  - type: ap
43
+ value: 61.387245649832614
44
  - type: f1
45
+ value: 62.96831291412068
46
  - task:
47
  type: Classification
48
  dataset:
 
53
  revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
  metrics:
55
  - type: accuracy
56
+ value: 30.633999999999993
57
  - type: f1
58
+ value: 29.638828990078647
59
  - task:
60
  type: Retrieval
61
  dataset:
 
963
  revision: None
964
  metrics:
965
  - type: map_at_1
966
+ value: 25.889
967
  - type: map_at_10
968
+ value: 40.604
969
  - type: map_at_100
970
+ value: 41.697
971
  - type: map_at_1000
972
+ value: 41.705999999999996
973
  - type: map_at_3
974
+ value: 35.217999999999996
975
  - type: map_at_5
976
+ value: 38.326
977
  - type: mrr_at_1
978
+ value: 26.245
979
  - type: mrr_at_10
980
+ value: 40.736
981
  - type: mrr_at_100
982
+ value: 41.829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983
  - type: mrr_at_1000
984
+ value: 41.837999999999994
985
  - type: mrr_at_3
986
+ value: 35.349000000000004
987
  - type: mrr_at_5
988
+ value: 38.425
989
  - type: ndcg_at_1
990
+ value: 25.889
991
  - type: ndcg_at_10
992
+ value: 49.347
993
  - type: ndcg_at_100
994
+ value: 53.956
995
  - type: ndcg_at_1000
996
+ value: 54.2
997
  - type: ndcg_at_3
998
+ value: 38.282
999
  - type: ndcg_at_5
1000
+ value: 43.895
1001
  - type: precision_at_1
1002
+ value: 25.889
1003
  - type: precision_at_10
1004
+ value: 7.752000000000001
1005
  - type: precision_at_100
1006
+ value: 0.976
1007
  - type: precision_at_1000
1008
+ value: 0.1
1009
  - type: precision_at_3
1010
+ value: 15.717999999999998
1011
  - type: precision_at_5
1012
+ value: 12.162
1013
  - type: recall_at_1
1014
+ value: 25.889
1015
  - type: recall_at_10
1016
+ value: 77.525
1017
  - type: recall_at_100
1018
+ value: 97.58200000000001
1019
  - type: recall_at_1000
1020
+ value: 99.502
1021
  - type: recall_at_3
1022
+ value: 47.155
1023
  - type: recall_at_5
1024
+ value: 60.81100000000001
1025
  - task:
1026
+ type: Clustering
1027
  dataset:
1028
+ type: mteb/arxiv-clustering-p2p
1029
+ name: MTEB ArxivClusteringP2P
1030
  config: default
1031
  split: test
1032
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
1033
  metrics:
1034
+ - type: v_measure
1035
+ value: 39.2179862062943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
  - task:
1037
+ type: Clustering
1038
  dataset:
1039
+ type: mteb/arxiv-clustering-s2s
1040
+ name: MTEB ArxivClusteringS2S
1041
  config: default
1042
  split: test
1043
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
1044
  metrics:
1045
+ - type: v_measure
1046
+ value: 29.87826673088078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
  - task:
1048
+ type: Reranking
1049
  dataset:
1050
+ type: mteb/askubuntudupquestions-reranking
1051
+ name: MTEB AskUbuntuDupQuestions
1052
  config: default
1053
  split: test
1054
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
1055
  metrics:
1056
+ - type: map
1057
+ value: 62.72401299412015
1058
+ - type: mrr
1059
+ value: 75.45167743921206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060
  - task:
1061
+ type: STS
1062
  dataset:
1063
+ type: mteb/biosses-sts
1064
+ name: MTEB BIOSSES
1065
  config: default
1066
  split: test
1067
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
1068
  metrics:
1069
+ - type: cos_sim_pearson
1070
+ value: 85.96510928112639
1071
+ - type: cos_sim_spearman
1072
+ value: 82.64224450538681
1073
+ - type: euclidean_pearson
1074
+ value: 52.03458755006108
1075
+ - type: euclidean_spearman
1076
+ value: 52.83192670285616
1077
+ - type: manhattan_pearson
1078
+ value: 52.14561955040935
1079
+ - type: manhattan_spearman
1080
+ value: 52.9584356095438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081
  - task:
1082
+ type: Classification
1083
  dataset:
1084
+ type: mteb/banking77
1085
+ name: MTEB Banking77Classification
1086
  config: default
1087
  split: test
1088
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
1089
  metrics:
1090
+ - type: accuracy
1091
+ value: 84.11363636363636
1092
+ - type: f1
1093
+ value: 84.01098114920124
1094
+ - task:
1095
+ type: Clustering
1096
+ dataset:
1097
+ type: mteb/biorxiv-clustering-p2p
1098
+ name: MTEB BiorxivClusteringP2P
1099
+ config: default
1100
+ split: test
1101
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
1102
+ metrics:
1103
+ - type: v_measure
1104
+ value: 32.991971466919026
1105
+ - task:
1106
+ type: Clustering
1107
+ dataset:
1108
+ type: mteb/biorxiv-clustering-s2s
1109
+ name: MTEB BiorxivClusteringS2S
1110
+ config: default
1111
+ split: test
1112
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
1113
+ metrics:
1114
+ - type: v_measure
1115
+ value: 26.48807922559519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
  - task:
1117
  type: Retrieval
1118
  dataset:
 
1123
  revision: None
1124
  metrics:
1125
  - type: map_at_1
1126
+ value: 8.014000000000001
1127
  - type: map_at_10
1128
+ value: 14.149999999999999
1129
  - type: map_at_100
1130
+ value: 15.539
1131
  - type: map_at_1000
1132
+ value: 15.711
1133
  - type: map_at_3
1134
+ value: 11.913
1135
  - type: map_at_5
1136
+ value: 12.982
1137
  - type: mrr_at_1
1138
+ value: 18.046
1139
  - type: mrr_at_10
1140
+ value: 28.224
1141
  - type: mrr_at_100
1142
+ value: 29.293000000000003
1143
  - type: mrr_at_1000
1144
+ value: 29.348999999999997
1145
  - type: mrr_at_3
1146
+ value: 25.179000000000002
1147
  - type: mrr_at_5
1148
+ value: 26.827
1149
  - type: ndcg_at_1
1150
+ value: 18.046
1151
  - type: ndcg_at_10
1152
+ value: 20.784
1153
  - type: ndcg_at_100
1154
+ value: 26.939999999999998
1155
  - type: ndcg_at_1000
1156
+ value: 30.453999999999997
1157
  - type: ndcg_at_3
1158
+ value: 16.694
1159
  - type: ndcg_at_5
1160
+ value: 18.049
1161
  - type: precision_at_1
1162
+ value: 18.046
1163
  - type: precision_at_10
1164
+ value: 6.5280000000000005
1165
  - type: precision_at_100
1166
+ value: 1.2959999999999998
1167
  - type: precision_at_1000
1168
+ value: 0.19499999999999998
1169
  - type: precision_at_3
1170
+ value: 12.465
1171
  - type: precision_at_5
1172
+ value: 9.511
1173
  - type: recall_at_1
1174
+ value: 8.014000000000001
1175
  - type: recall_at_10
1176
+ value: 26.021
1177
  - type: recall_at_100
1178
+ value: 47.692
1179
  - type: recall_at_1000
1180
+ value: 67.63
1181
  - type: recall_at_3
1182
+ value: 16.122
1183
  - type: recall_at_5
1184
+ value: 19.817
1185
  - task:
1186
  type: Retrieval
1187
  dataset:
 
1192
  revision: None
1193
  metrics:
1194
  - type: map_at_1
1195
+ value: 7.396
1196
  - type: map_at_10
1197
+ value: 14.543000000000001
1198
  - type: map_at_100
1199
+ value: 19.235
1200
  - type: map_at_1000
1201
+ value: 20.384
1202
  - type: map_at_3
1203
+ value: 10.886
1204
  - type: map_at_5
1205
+ value: 12.61
1206
  - type: mrr_at_1
1207
+ value: 55.50000000000001
1208
  - type: mrr_at_10
1209
+ value: 63.731
1210
  - type: mrr_at_100
1211
+ value: 64.256
1212
  - type: mrr_at_1000
1213
+ value: 64.27000000000001
1214
  - type: mrr_at_3
1215
+ value: 61.583
1216
  - type: mrr_at_5
1217
+ value: 62.92100000000001
1218
  - type: ndcg_at_1
1219
+ value: 43.375
1220
  - type: ndcg_at_10
1221
+ value: 31.352000000000004
1222
  - type: ndcg_at_100
1223
+ value: 34.717999999999996
1224
  - type: ndcg_at_1000
1225
+ value: 41.959
1226
  - type: ndcg_at_3
1227
+ value: 35.319
1228
  - type: ndcg_at_5
1229
+ value: 33.222
1230
  - type: precision_at_1
1231
+ value: 55.50000000000001
1232
  - type: precision_at_10
1233
+ value: 24.15
1234
  - type: precision_at_100
1235
+ value: 7.42
1236
  - type: precision_at_1000
1237
+ value: 1.66
1238
  - type: precision_at_3
1239
+ value: 37.917
1240
  - type: precision_at_5
1241
+ value: 31.900000000000002
1242
  - type: recall_at_1
1243
+ value: 7.396
1244
  - type: recall_at_10
1245
+ value: 19.686999999999998
1246
  - type: recall_at_100
1247
+ value: 40.465
1248
  - type: recall_at_1000
1249
+ value: 63.79899999999999
1250
  - type: recall_at_3
1251
+ value: 12.124
1252
  - type: recall_at_5
1253
+ value: 15.28
1254
  - task:
1255
  type: Classification
1256
  dataset:
 
1261
  revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1262
  metrics:
1263
  - type: accuracy
1264
+ value: 41.33
1265
  - type: f1
1266
+ value: 37.682972473685496
1267
  - task:
1268
  type: Retrieval
1269
  dataset:
 
1274
  revision: None
1275
  metrics:
1276
  - type: map_at_1
1277
+ value: 49.019
1278
  - type: map_at_10
1279
+ value: 61.219
1280
  - type: map_at_100
1281
+ value: 61.753
1282
  - type: map_at_1000
1283
+ value: 61.771
1284
  - type: map_at_3
1285
+ value: 58.952000000000005
1286
  - type: map_at_5
1287
+ value: 60.239
1288
  - type: mrr_at_1
1289
+ value: 53
1290
  - type: mrr_at_10
1291
+ value: 65.678
1292
  - type: mrr_at_100
1293
+ value: 66.147
1294
  - type: mrr_at_1000
1295
+ value: 66.155
1296
  - type: mrr_at_3
1297
+ value: 63.495999999999995
1298
  - type: mrr_at_5
1299
+ value: 64.75800000000001
1300
  - type: ndcg_at_1
1301
+ value: 53
1302
  - type: ndcg_at_10
1303
+ value: 67.587
1304
  - type: ndcg_at_100
1305
+ value: 69.877
1306
  - type: ndcg_at_1000
1307
+ value: 70.25200000000001
1308
  - type: ndcg_at_3
1309
+ value: 63.174
1310
  - type: ndcg_at_5
1311
+ value: 65.351
1312
  - type: precision_at_1
1313
+ value: 53
1314
  - type: precision_at_10
1315
+ value: 9.067
1316
  - type: precision_at_100
1317
+ value: 1.026
1318
  - type: precision_at_1000
1319
+ value: 0.107
1320
  - type: precision_at_3
1321
+ value: 25.728
1322
  - type: precision_at_5
1323
+ value: 16.637
1324
  - type: recall_at_1
1325
+ value: 49.019
1326
  - type: recall_at_10
1327
+ value: 82.962
1328
  - type: recall_at_100
1329
+ value: 92.917
1330
  - type: recall_at_1000
1331
+ value: 95.511
1332
  - type: recall_at_3
1333
+ value: 70.838
1334
  - type: recall_at_5
1335
+ value: 76.201
1336
  - task:
1337
  type: Retrieval
1338
  dataset:
 
1343
  revision: None
1344
  metrics:
1345
  - type: map_at_1
1346
+ value: 16.714000000000002
1347
  - type: map_at_10
1348
+ value: 28.041
1349
  - type: map_at_100
1350
+ value: 29.75
1351
  - type: map_at_1000
1352
+ value: 29.944
1353
  - type: map_at_3
1354
+ value: 23.884
1355
  - type: map_at_5
1356
+ value: 26.468000000000004
1357
  - type: mrr_at_1
1358
+ value: 33.796
1359
  - type: mrr_at_10
1360
+ value: 42.757
1361
  - type: mrr_at_100
1362
+ value: 43.705
1363
  - type: mrr_at_1000
1364
+ value: 43.751
1365
  - type: mrr_at_3
1366
+ value: 40.406
1367
  - type: mrr_at_5
1368
+ value: 41.88
1369
  - type: ndcg_at_1
1370
+ value: 33.796
1371
  - type: ndcg_at_10
1372
+ value: 35.482
1373
  - type: ndcg_at_100
1374
+ value: 42.44
1375
  - type: ndcg_at_1000
1376
+ value: 45.903
1377
  - type: ndcg_at_3
1378
+ value: 31.922
1379
  - type: ndcg_at_5
1380
+ value: 33.516
1381
  - type: precision_at_1
1382
+ value: 33.796
1383
  - type: precision_at_10
1384
+ value: 10.108
1385
  - type: precision_at_100
1386
+ value: 1.735
1387
  - type: precision_at_1000
1388
+ value: 0.23500000000000001
1389
  - type: precision_at_3
1390
+ value: 21.759
1391
  - type: precision_at_5
1392
+ value: 16.605
1393
  - type: recall_at_1
1394
+ value: 16.714000000000002
1395
  - type: recall_at_10
1396
+ value: 42.38
1397
  - type: recall_at_100
1398
+ value: 68.84700000000001
1399
  - type: recall_at_1000
1400
+ value: 90.036
1401
  - type: recall_at_3
1402
+ value: 28.776000000000003
1403
  - type: recall_at_5
1404
+ value: 35.606
1405
  - task:
1406
  type: Retrieval
1407
  dataset:
 
1412
  revision: None
1413
  metrics:
1414
  - type: map_at_1
1415
+ value: 29.534
1416
  - type: map_at_10
1417
+ value: 40.857
1418
  - type: map_at_100
1419
+ value: 41.715999999999994
1420
  - type: map_at_1000
1421
+ value: 41.795
1422
  - type: map_at_3
1423
+ value: 38.415
1424
  - type: map_at_5
1425
+ value: 39.833
1426
  - type: mrr_at_1
1427
+ value: 59.068
1428
  - type: mrr_at_10
1429
+ value: 66.034
1430
  - type: mrr_at_100
1431
+ value: 66.479
1432
  - type: mrr_at_1000
1433
+ value: 66.50399999999999
1434
  - type: mrr_at_3
1435
+ value: 64.38000000000001
1436
  - type: mrr_at_5
1437
+ value: 65.40599999999999
1438
  - type: ndcg_at_1
1439
+ value: 59.068
1440
  - type: ndcg_at_10
1441
+ value: 49.638
1442
  - type: ndcg_at_100
1443
+ value: 53.093999999999994
1444
  - type: ndcg_at_1000
1445
+ value: 54.813
1446
  - type: ndcg_at_3
1447
+ value: 45.537
1448
  - type: ndcg_at_5
1449
+ value: 47.671
1450
  - type: precision_at_1
1451
+ value: 59.068
1452
  - type: precision_at_10
1453
+ value: 10.313
1454
  - type: precision_at_100
1455
+ value: 1.304
1456
  - type: precision_at_1000
1457
+ value: 0.153
1458
  - type: precision_at_3
1459
+ value: 28.278
1460
  - type: precision_at_5
1461
+ value: 18.658
1462
  - type: recall_at_1
1463
+ value: 29.534
1464
  - type: recall_at_10
1465
+ value: 51.56699999999999
1466
  - type: recall_at_100
1467
+ value: 65.199
1468
  - type: recall_at_1000
1469
+ value: 76.678
1470
  - type: recall_at_3
1471
+ value: 42.417
1472
  - type: recall_at_5
1473
+ value: 46.644000000000005
1474
  - task:
1475
  type: Classification
1476
  dataset:
 
1481
  revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1482
  metrics:
1483
  - type: accuracy
1484
+ value: 65.74719999999999
1485
  - type: ap
1486
+ value: 60.57322504947344
1487
  - type: f1
1488
+ value: 65.37875006542282
1489
  - task:
1490
  type: Retrieval
1491
  dataset:
 
1496
  revision: None
1497
  metrics:
1498
  - type: map_at_1
1499
+ value: 15.695999999999998
1500
  - type: map_at_10
1501
+ value: 26.661
1502
  - type: map_at_100
1503
+ value: 27.982000000000003
1504
  - type: map_at_1000
1505
+ value: 28.049000000000003
1506
  - type: map_at_3
1507
+ value: 23.057
1508
  - type: map_at_5
1509
+ value: 25.079
1510
  - type: mrr_at_1
1511
+ value: 16.16
1512
  - type: mrr_at_10
1513
+ value: 27.150999999999996
1514
  - type: mrr_at_100
1515
+ value: 28.423
1516
  - type: mrr_at_1000
1517
+ value: 28.483999999999998
1518
  - type: mrr_at_3
1519
+ value: 23.577
1520
  - type: mrr_at_5
1521
+ value: 25.585
1522
  - type: ndcg_at_1
1523
+ value: 16.16
1524
  - type: ndcg_at_10
1525
+ value: 33.017
1526
  - type: ndcg_at_100
1527
+ value: 39.582
1528
  - type: ndcg_at_1000
1529
+ value: 41.28
1530
  - type: ndcg_at_3
1531
+ value: 25.607000000000003
1532
  - type: ndcg_at_5
1533
+ value: 29.214000000000002
1534
  - type: precision_at_1
1535
+ value: 16.16
1536
  - type: precision_at_10
1537
+ value: 5.506
1538
  - type: precision_at_100
1539
+ value: 0.882
1540
  - type: precision_at_1000
1541
+ value: 0.10300000000000001
1542
  - type: precision_at_3
1543
+ value: 11.199
1544
  - type: precision_at_5
1545
+ value: 8.55
1546
  - type: recall_at_1
1547
+ value: 15.695999999999998
1548
  - type: recall_at_10
1549
+ value: 52.736000000000004
1550
  - type: recall_at_100
1551
+ value: 83.523
1552
  - type: recall_at_1000
1553
+ value: 96.588
1554
  - type: recall_at_3
1555
+ value: 32.484
1556
  - type: recall_at_5
1557
+ value: 41.117
1558
  - task:
1559
  type: Classification
1560
  dataset:
 
1565
  revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1566
  metrics:
1567
  - type: accuracy
1568
+ value: 91.71682626538988
1569
  - type: f1
1570
+ value: 91.60647677401211
1571
  - task:
1572
  type: Classification
1573
  dataset:
 
1578
  revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1579
  metrics:
1580
  - type: accuracy
1581
+ value: 74.94756041951665
1582
  - type: f1
1583
+ value: 57.26936028487369
1584
  - task:
1585
  type: Classification
1586
  dataset:
 
1591
  revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1592
  metrics:
1593
  - type: accuracy
1594
+ value: 71.43241425689307
1595
  - type: f1
1596
+ value: 68.80370629448252
1597
  - task:
1598
  type: Classification
1599
  dataset:
 
1604
  revision: 7d571f92784cd94a019292a1f45445077d0ef634
1605
  metrics:
1606
  - type: accuracy
1607
+ value: 77.04774714189642
1608
  - type: f1
1609
+ value: 76.93545888412446
1610
  - task:
1611
  type: Clustering
1612
  dataset:
 
1617
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1618
  metrics:
1619
  - type: v_measure
1620
+ value: 30.009784989313765
1621
  - task:
1622
  type: Clustering
1623
  dataset:
 
1628
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1629
  metrics:
1630
  - type: v_measure
1631
+ value: 25.568442512328872
1632
  - task:
1633
  type: Reranking
1634
  dataset:
 
1639
  revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1640
  metrics:
1641
  - type: map
1642
+ value: 31.013959341949697
1643
  - type: mrr
1644
+ value: 31.998487836684575
1645
  - task:
1646
  type: Retrieval
1647
  dataset:
 
1652
  revision: None
1653
  metrics:
1654
  - type: map_at_1
1655
+ value: 4.316
1656
  - type: map_at_10
1657
+ value: 10.287
1658
  - type: map_at_100
1659
+ value: 12.817
1660
  - type: map_at_1000
1661
+ value: 14.141
1662
  - type: map_at_3
1663
+ value: 7.728
1664
  - type: map_at_5
1665
+ value: 8.876000000000001
1666
  - type: mrr_at_1
1667
+ value: 39.628
1668
  - type: mrr_at_10
1669
+ value: 48.423
1670
  - type: mrr_at_100
1671
+ value: 49.153999999999996
1672
  - type: mrr_at_1000
1673
+ value: 49.198
1674
  - type: mrr_at_3
1675
+ value: 45.666000000000004
1676
  - type: mrr_at_5
1677
+ value: 47.477000000000004
1678
  - type: ndcg_at_1
1679
+ value: 36.533
1680
  - type: ndcg_at_10
1681
+ value: 29.304000000000002
1682
  - type: ndcg_at_100
1683
+ value: 27.078000000000003
1684
  - type: ndcg_at_1000
1685
+ value: 36.221
1686
  - type: ndcg_at_3
1687
+ value: 33.256
1688
  - type: ndcg_at_5
1689
+ value: 31.465
1690
  - type: precision_at_1
1691
+ value: 39.009
1692
  - type: precision_at_10
1693
+ value: 22.043
1694
  - type: precision_at_100
1695
+ value: 7.115
1696
  - type: precision_at_1000
1697
+ value: 1.991
1698
  - type: precision_at_3
1699
+ value: 31.476
1700
  - type: precision_at_5
1701
+ value: 27.616000000000003
1702
  - type: recall_at_1
1703
+ value: 4.316
1704
  - type: recall_at_10
1705
+ value: 14.507
1706
  - type: recall_at_100
1707
+ value: 28.847
1708
  - type: recall_at_1000
1709
+ value: 61.758
1710
  - type: recall_at_3
1711
+ value: 8.753
1712
  - type: recall_at_5
1713
+ value: 11.153
1714
  - task:
1715
  type: Retrieval
1716
  dataset:
 
1721
  revision: None
1722
  metrics:
1723
  - type: map_at_1
1724
+ value: 22.374
1725
  - type: map_at_10
1726
+ value: 36.095
1727
  - type: map_at_100
1728
+ value: 37.413999999999994
1729
  - type: map_at_1000
1730
+ value: 37.46
1731
  - type: map_at_3
1732
+ value: 31.711
1733
  - type: map_at_5
1734
+ value: 34.294999999999995
1735
  - type: mrr_at_1
1736
+ value: 25.406000000000002
1737
  - type: mrr_at_10
1738
+ value: 38.424
1739
  - type: mrr_at_100
1740
+ value: 39.456
1741
  - type: mrr_at_1000
1742
+ value: 39.488
1743
  - type: mrr_at_3
1744
+ value: 34.613
1745
  - type: mrr_at_5
1746
+ value: 36.864999999999995
1747
  - type: ndcg_at_1
1748
+ value: 25.406000000000002
1749
  - type: ndcg_at_10
1750
+ value: 43.614000000000004
1751
  - type: ndcg_at_100
1752
+ value: 49.166
1753
  - type: ndcg_at_1000
1754
+ value: 50.212
1755
  - type: ndcg_at_3
1756
+ value: 35.221999999999994
1757
  - type: ndcg_at_5
1758
+ value: 39.571
1759
  - type: precision_at_1
1760
+ value: 25.406000000000002
1761
  - type: precision_at_10
1762
+ value: 7.654
1763
  - type: precision_at_100
1764
+ value: 1.0699999999999998
1765
  - type: precision_at_1000
1766
+ value: 0.117
1767
  - type: precision_at_3
1768
+ value: 16.425
1769
  - type: precision_at_5
1770
+ value: 12.352
1771
  - type: recall_at_1
1772
+ value: 22.374
1773
  - type: recall_at_10
1774
+ value: 64.337
1775
  - type: recall_at_100
1776
+ value: 88.374
1777
  - type: recall_at_1000
1778
+ value: 96.101
1779
  - type: recall_at_3
1780
+ value: 42.5
1781
  - type: recall_at_5
1782
+ value: 52.556000000000004
1783
  - task:
1784
  type: Retrieval
1785
  dataset:
 
1790
  revision: None
1791
  metrics:
1792
  - type: map_at_1
1793
+ value: 69.301
1794
  - type: map_at_10
1795
+ value: 83.128
1796
  - type: map_at_100
1797
+ value: 83.779
1798
  - type: map_at_1000
1799
+ value: 83.798
1800
  - type: map_at_3
1801
+ value: 80.11399999999999
1802
  - type: map_at_5
1803
+ value: 82.00699999999999
1804
  - type: mrr_at_1
1805
+ value: 79.81
1806
  - type: mrr_at_10
1807
+ value: 86.28
1808
  - type: mrr_at_100
1809
+ value: 86.399
1810
  - type: mrr_at_1000
1811
+ value: 86.401
1812
  - type: mrr_at_3
1813
+ value: 85.26
1814
  - type: mrr_at_5
1815
+ value: 85.93499999999999
1816
  - type: ndcg_at_1
1817
+ value: 79.80000000000001
1818
  - type: ndcg_at_10
1819
+ value: 87.06700000000001
1820
  - type: ndcg_at_100
1821
+ value: 88.41799999999999
1822
  - type: ndcg_at_1000
1823
+ value: 88.554
1824
  - type: ndcg_at_3
1825
+ value: 84.052
1826
  - type: ndcg_at_5
1827
+ value: 85.711
1828
  - type: precision_at_1
1829
+ value: 79.80000000000001
1830
  - type: precision_at_10
1831
+ value: 13.224
1832
  - type: precision_at_100
1833
+ value: 1.5230000000000001
1834
  - type: precision_at_1000
1835
+ value: 0.157
1836
  - type: precision_at_3
1837
+ value: 36.723
1838
  - type: precision_at_5
1839
+ value: 24.192
1840
  - type: recall_at_1
1841
+ value: 69.301
1842
  - type: recall_at_10
1843
+ value: 94.589
1844
  - type: recall_at_100
1845
+ value: 99.29299999999999
1846
  - type: recall_at_1000
1847
+ value: 99.965
1848
  - type: recall_at_3
1849
+ value: 86.045
1850
  - type: recall_at_5
1851
+ value: 90.656
1852
  - task:
1853
  type: Clustering
1854
  dataset:
 
1859
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1860
  metrics:
1861
  - type: v_measure
1862
+ value: 43.09903181165838
1863
  - task:
1864
  type: Clustering
1865
  dataset:
 
1870
  revision: 282350215ef01743dc01b456c7f5241fa8937f16
1871
  metrics:
1872
  - type: v_measure
1873
+ value: 51.710378422887594
1874
  - task:
1875
  type: Retrieval
1876
  dataset:
 
1881
  revision: None
1882
  metrics:
1883
  - type: map_at_1
1884
+ value: 4.138
1885
  - type: map_at_10
1886
+ value: 10.419
1887
  - type: map_at_100
1888
+ value: 12.321
1889
  - type: map_at_1000
1890
+ value: 12.605
1891
  - type: map_at_3
1892
+ value: 7.445
1893
  - type: map_at_5
1894
+ value: 8.859
1895
  - type: mrr_at_1
1896
+ value: 20.4
1897
  - type: mrr_at_10
1898
+ value: 30.148999999999997
1899
  - type: mrr_at_100
1900
+ value: 31.357000000000003
1901
  - type: mrr_at_1000
1902
+ value: 31.424999999999997
1903
  - type: mrr_at_3
1904
+ value: 26.983
1905
  - type: mrr_at_5
1906
+ value: 28.883
1907
  - type: ndcg_at_1
1908
+ value: 20.4
1909
  - type: ndcg_at_10
1910
+ value: 17.713
1911
  - type: ndcg_at_100
1912
+ value: 25.221
1913
  - type: ndcg_at_1000
1914
+ value: 30.381999999999998
1915
  - type: ndcg_at_3
1916
+ value: 16.607
1917
  - type: ndcg_at_5
1918
+ value: 14.559
1919
  - type: precision_at_1
1920
+ value: 20.4
1921
  - type: precision_at_10
1922
+ value: 9.3
1923
  - type: precision_at_100
1924
+ value: 2.0060000000000002
1925
  - type: precision_at_1000
1926
+ value: 0.32399999999999995
1927
  - type: precision_at_3
1928
+ value: 15.5
1929
  - type: precision_at_5
1930
+ value: 12.839999999999998
1931
  - type: recall_at_1
1932
+ value: 4.138
1933
  - type: recall_at_10
1934
+ value: 18.813
1935
  - type: recall_at_100
1936
+ value: 40.692
1937
  - type: recall_at_1000
1938
+ value: 65.835
1939
  - type: recall_at_3
1940
+ value: 9.418
1941
  - type: recall_at_5
1942
+ value: 12.983
1943
  - task:
1944
  type: STS
1945
  dataset:
 
1950
  revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1951
  metrics:
1952
  - type: cos_sim_pearson
1953
+ value: 83.25944192442188
1954
  - type: cos_sim_spearman
1955
+ value: 75.04296759426568
1956
  - type: euclidean_pearson
1957
+ value: 74.8130340249869
1958
  - type: euclidean_spearman
1959
+ value: 68.40180320816793
1960
  - type: manhattan_pearson
1961
+ value: 74.9149619199144
1962
  - type: manhattan_spearman
1963
+ value: 68.52380798258379
1964
  - task:
1965
  type: STS
1966
  dataset:
 
1971
  revision: a0d554a64d88156834ff5ae9920b964011b16384
1972
  metrics:
1973
  - type: cos_sim_pearson
1974
+ value: 81.91983072545858
1975
  - type: cos_sim_spearman
1976
+ value: 73.5129498787296
1977
  - type: euclidean_pearson
1978
+ value: 66.76535523270856
1979
  - type: euclidean_spearman
1980
+ value: 56.64797879544097
1981
  - type: manhattan_pearson
1982
+ value: 66.12191731384162
1983
  - type: manhattan_spearman
1984
+ value: 56.37753861965956
1985
  - task:
1986
  type: STS
1987
  dataset:
 
1992
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1993
  metrics:
1994
  - type: cos_sim_pearson
1995
+ value: 77.71164758747632
1996
  - type: cos_sim_spearman
1997
+ value: 79.1530762030973
1998
  - type: euclidean_pearson
1999
+ value: 69.50621786400177
2000
  - type: euclidean_spearman
2001
+ value: 70.44898083428744
2002
  - type: manhattan_pearson
2003
+ value: 69.04018458995307
2004
  - type: manhattan_spearman
2005
+ value: 70.00888532086853
2006
  - task:
2007
  type: STS
2008
  dataset:
 
2013
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2014
  metrics:
2015
  - type: cos_sim_pearson
2016
+ value: 78.90774995778577
2017
  - type: cos_sim_spearman
2018
+ value: 75.24229403562713
2019
  - type: euclidean_pearson
2020
+ value: 68.5838924571539
2021
  - type: euclidean_spearman
2022
+ value: 65.06652398167358
2023
  - type: manhattan_pearson
2024
+ value: 68.23143277902628
2025
  - type: manhattan_spearman
2026
+ value: 64.79624516012709
2027
  - task:
2028
  type: STS
2029
  dataset:
 
2034
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2035
  metrics:
2036
  - type: cos_sim_pearson
2037
+ value: 83.78074322110155
2038
  - type: cos_sim_spearman
2039
+ value: 85.12071478276958
2040
  - type: euclidean_pearson
2041
+ value: 65.00147804089737
2042
  - type: euclidean_spearman
2043
+ value: 66.02559342831921
2044
  - type: manhattan_pearson
2045
+ value: 65.01270190203297
2046
  - type: manhattan_spearman
2047
+ value: 66.13038450207748
2048
  - task:
2049
  type: STS
2050
  dataset:
 
2055
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2056
  metrics:
2057
  - type: cos_sim_pearson
2058
+ value: 77.29395327338185
2059
  - type: cos_sim_spearman
2060
+ value: 80.07128686563352
2061
  - type: euclidean_pearson
2062
+ value: 65.97939065455975
2063
  - type: euclidean_spearman
2064
+ value: 66.80283051081129
2065
  - type: manhattan_pearson
2066
+ value: 65.6750450606584
2067
  - type: manhattan_spearman
2068
+ value: 66.55805829330733
2069
  - task:
2070
  type: STS
2071
  dataset:
 
2076
  revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2077
  metrics:
2078
  - type: cos_sim_pearson
2079
+ value: 87.64956503192369
2080
  - type: cos_sim_spearman
2081
+ value: 87.95719598052727
2082
  - type: euclidean_pearson
2083
+ value: 73.35178669405819
2084
  - type: euclidean_spearman
2085
+ value: 71.58959083579994
2086
  - type: manhattan_pearson
2087
+ value: 73.24156949179472
2088
  - type: manhattan_spearman
2089
+ value: 71.35933730170666
2090
  - task:
2091
  type: STS
2092
  dataset:
 
2097
  revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2098
  metrics:
2099
  - type: cos_sim_pearson
2100
+ value: 66.61640922485357
2101
  - type: cos_sim_spearman
2102
+ value: 66.08406266387749
2103
  - type: euclidean_pearson
2104
+ value: 43.684972836995776
2105
  - type: euclidean_spearman
2106
+ value: 60.26686390609082
2107
  - type: manhattan_pearson
2108
+ value: 43.694268683941154
2109
  - type: manhattan_spearman
2110
+ value: 59.61419719435629
2111
  - task:
2112
  type: STS
2113
  dataset:
 
2118
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2119
  metrics:
2120
  - type: cos_sim_pearson
2121
+ value: 81.73624666044613
2122
  - type: cos_sim_spearman
2123
+ value: 81.68869881979401
2124
  - type: euclidean_pearson
2125
+ value: 72.47205990508046
2126
  - type: euclidean_spearman
2127
+ value: 71.02381428101695
2128
  - type: manhattan_pearson
2129
+ value: 72.4947870027535
2130
  - type: manhattan_spearman
2131
+ value: 71.0789806652577
2132
  - task:
2133
  type: Reranking
2134
  dataset:
 
2139
  revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2140
  metrics:
2141
  - type: map
2142
+ value: 79.53671929012175
2143
  - type: mrr
2144
+ value: 93.96566033820936
2145
  - task:
2146
  type: Retrieval
2147
  dataset:
 
2152
  revision: None
2153
  metrics:
2154
  - type: map_at_1
2155
+ value: 43.761
2156
  - type: map_at_10
2157
+ value: 53.846000000000004
2158
  - type: map_at_100
2159
+ value: 54.55799999999999
2160
  - type: map_at_1000
2161
+ value: 54.620999999999995
2162
  - type: map_at_3
2163
+ value: 51.513
2164
  - type: map_at_5
2165
+ value: 52.591
2166
  - type: mrr_at_1
2167
+ value: 46.666999999999994
2168
  - type: mrr_at_10
2169
+ value: 55.461000000000006
2170
  - type: mrr_at_100
2171
+ value: 56.008
2172
  - type: mrr_at_1000
2173
+ value: 56.069
2174
  - type: mrr_at_3
2175
+ value: 53.5
2176
  - type: mrr_at_5
2177
+ value: 54.417
2178
  - type: ndcg_at_1
2179
+ value: 46.666999999999994
2180
  - type: ndcg_at_10
2181
+ value: 58.599000000000004
2182
  - type: ndcg_at_100
2183
+ value: 61.538000000000004
2184
  - type: ndcg_at_1000
2185
+ value: 63.22
2186
  - type: ndcg_at_3
2187
+ value: 54.254999999999995
2188
  - type: ndcg_at_5
2189
+ value: 55.861000000000004
2190
  - type: precision_at_1
2191
+ value: 46.666999999999994
2192
  - type: precision_at_10
2193
+ value: 8.033
2194
  - type: precision_at_100
2195
+ value: 0.963
2196
  - type: precision_at_1000
2197
+ value: 0.11
2198
  - type: precision_at_3
2199
+ value: 21.667
2200
  - type: precision_at_5
2201
+ value: 14.066999999999998
2202
  - type: recall_at_1
2203
+ value: 43.761
2204
  - type: recall_at_10
2205
+ value: 71.65599999999999
2206
  - type: recall_at_100
2207
+ value: 84.433
2208
  - type: recall_at_1000
2209
+ value: 97.5
2210
  - type: recall_at_3
2211
+ value: 59.522
2212
  - type: recall_at_5
2213
+ value: 63.632999999999996
2214
  - task:
2215
  type: PairClassification
2216
  dataset:
 
2221
  revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2222
  metrics:
2223
  - type: cos_sim_accuracy
2224
+ value: 99.68811881188118
2225
  - type: cos_sim_ap
2226
+ value: 91.08077352794682
2227
  - type: cos_sim_f1
2228
+ value: 84.38570729319628
2229
  - type: cos_sim_precision
2230
+ value: 82.64621284755513
2231
  - type: cos_sim_recall
2232
+ value: 86.2
2233
  - type: dot_accuracy
2234
+ value: 99.14653465346535
2235
  - type: dot_ap
2236
+ value: 45.24942149367904
2237
  - type: dot_f1
2238
+ value: 46.470062555853445
2239
  - type: dot_precision
2240
+ value: 42.003231017770595
2241
  - type: dot_recall
2242
+ value: 52
2243
  - type: euclidean_accuracy
2244
+ value: 99.56930693069307
2245
  - type: euclidean_ap
2246
+ value: 80.28575652582506
2247
  - type: euclidean_f1
2248
+ value: 75.52054023635341
2249
  - type: euclidean_precision
2250
+ value: 86.35778635778635
2251
  - type: euclidean_recall
2252
+ value: 67.10000000000001
2253
  - type: manhattan_accuracy
2254
+ value: 99.56039603960396
2255
  - type: manhattan_ap
2256
+ value: 79.74630510301085
2257
  - type: manhattan_f1
2258
+ value: 74.67569091934575
2259
  - type: manhattan_precision
2260
+ value: 85.64036222509702
2261
  - type: manhattan_recall
2262
+ value: 66.2
2263
  - type: max_accuracy
2264
+ value: 99.68811881188118
2265
  - type: max_ap
2266
+ value: 91.08077352794682
2267
  - type: max_f1
2268
+ value: 84.38570729319628
2269
  - task:
2270
  type: Clustering
2271
  dataset:
 
2276
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2277
  metrics:
2278
  - type: v_measure
2279
+ value: 52.0788049295693
2280
  - task:
2281
  type: Clustering
2282
  dataset:
 
2287
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2288
  metrics:
2289
  - type: v_measure
2290
+ value: 31.606006030205545
2291
  - task:
2292
  type: Reranking
2293
  dataset:
 
2298
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2299
  metrics:
2300
  - type: map
2301
+ value: 50.87384988372756
2302
  - type: mrr
2303
+ value: 51.62476922587217
2304
  - task:
2305
  type: Summarization
2306
  dataset:
 
2311
  revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2312
  metrics:
2313
  - type: cos_sim_pearson
2314
+ value: 30.355859978837156
2315
  - type: cos_sim_spearman
2316
+ value: 30.0847548337847
2317
  - type: dot_pearson
2318
+ value: 19.391736817587557
2319
  - type: dot_spearman
2320
+ value: 20.732256259543014
2321
  - task:
2322
  type: Retrieval
2323
  dataset:
 
2328
  revision: None
2329
  metrics:
2330
  - type: map_at_1
2331
+ value: 0.19
2332
  - type: map_at_10
2333
+ value: 1.2850000000000001
2334
  - type: map_at_100
2335
+ value: 6.376999999999999
2336
  - type: map_at_1000
2337
+ value: 15.21
2338
  - type: map_at_3
2339
+ value: 0.492
2340
  - type: map_at_5
2341
+ value: 0.776
2342
  - type: mrr_at_1
2343
+ value: 68
2344
  - type: mrr_at_10
2345
+ value: 79.783
2346
  - type: mrr_at_100
2347
+ value: 79.783
2348
  - type: mrr_at_1000
2349
+ value: 79.783
2350
  - type: mrr_at_3
2351
+ value: 77.333
2352
  - type: mrr_at_5
2353
+ value: 79.533
2354
  - type: ndcg_at_1
2355
+ value: 62
2356
  - type: ndcg_at_10
2357
+ value: 54.635
2358
  - type: ndcg_at_100
2359
+ value: 40.939
2360
  - type: ndcg_at_1000
2361
+ value: 37.716
2362
  - type: ndcg_at_3
2363
+ value: 58.531
2364
  - type: ndcg_at_5
2365
+ value: 58.762
2366
  - type: precision_at_1
2367
+ value: 68
2368
  - type: precision_at_10
2369
+ value: 58.8
2370
  - type: precision_at_100
2371
+ value: 41.74
2372
  - type: precision_at_1000
2373
+ value: 16.938
2374
  - type: precision_at_3
2375
+ value: 64
2376
  - type: precision_at_5
2377
+ value: 64.8
2378
  - type: recall_at_1
2379
+ value: 0.19
2380
  - type: recall_at_10
2381
+ value: 1.547
2382
  - type: recall_at_100
2383
+ value: 9.739
2384
  - type: recall_at_1000
2385
+ value: 35.815000000000005
2386
  - type: recall_at_3
2387
+ value: 0.528
2388
  - type: recall_at_5
2389
+ value: 0.894
2390
  - task:
2391
  type: Retrieval
2392
  dataset:
 
2397
  revision: None
2398
  metrics:
2399
  - type: map_at_1
2400
+ value: 1.514
2401
  - type: map_at_10
2402
+ value: 7.163
2403
  - type: map_at_100
2404
+ value: 11.623999999999999
2405
  - type: map_at_1000
2406
+ value: 13.062999999999999
2407
  - type: map_at_3
2408
+ value: 3.51
2409
  - type: map_at_5
2410
+ value: 4.661
2411
  - type: mrr_at_1
2412
+ value: 20.408
2413
  - type: mrr_at_10
2414
+ value: 33.993
2415
  - type: mrr_at_100
2416
+ value: 35.257
2417
  - type: mrr_at_1000
2418
+ value: 35.313
2419
  - type: mrr_at_3
2420
+ value: 30.272
2421
  - type: mrr_at_5
2422
+ value: 31.701
2423
  - type: ndcg_at_1
2424
+ value: 18.367
2425
  - type: ndcg_at_10
2426
+ value: 18.062
2427
  - type: ndcg_at_100
2428
+ value: 28.441
2429
  - type: ndcg_at_1000
2430
+ value: 40.748
2431
  - type: ndcg_at_3
2432
+ value: 18.651999999999997
2433
  - type: ndcg_at_5
2434
+ value: 17.055
2435
  - type: precision_at_1
2436
+ value: 20.408
2437
  - type: precision_at_10
2438
+ value: 17.551
2439
  - type: precision_at_100
2440
+ value: 6.223999999999999
2441
  - type: precision_at_1000
2442
+ value: 1.427
2443
  - type: precision_at_3
2444
+ value: 20.408
2445
  - type: precision_at_5
2446
+ value: 17.959
2447
  - type: recall_at_1
2448
+ value: 1.514
2449
  - type: recall_at_10
2450
+ value: 13.447000000000001
2451
  - type: recall_at_100
2452
+ value: 39.77
2453
  - type: recall_at_1000
2454
+ value: 76.95
2455
  - type: recall_at_3
2456
+ value: 4.806
2457
  - type: recall_at_5
2458
+ value: 6.873
2459
  - task:
2460
  type: Classification
2461
  dataset:
 
2466
  revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2467
  metrics:
2468
  - type: accuracy
2469
+ value: 65.53179999999999
2470
  - type: ap
2471
+ value: 11.504743595308318
2472
  - type: f1
2473
+ value: 49.74264614001562
2474
  - task:
2475
  type: Classification
2476
  dataset:
 
2481
  revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2482
  metrics:
2483
  - type: accuracy
2484
+ value: 56.47425014148275
2485
  - type: f1
2486
+ value: 56.555750746223346
2487
  - task:
2488
  type: Clustering
2489
  dataset:
 
2494
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2495
  metrics:
2496
  - type: v_measure
2497
+ value: 39.27004599453324
2498
  - task:
2499
  type: PairClassification
2500
  dataset:
 
2505
  revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2506
  metrics:
2507
  - type: cos_sim_accuracy
2508
+ value: 84.47875067056088
2509
  - type: cos_sim_ap
2510
+ value: 68.630858164926
2511
  - type: cos_sim_f1
2512
+ value: 64.5112402121748
2513
  - type: cos_sim_precision
2514
+ value: 61.87015503875969
2515
  - type: cos_sim_recall
2516
+ value: 67.38786279683377
2517
  - type: dot_accuracy
2518
+ value: 77.68969422423557
2519
  - type: dot_ap
2520
+ value: 37.28838556128439
2521
  - type: dot_f1
2522
+ value: 43.27918525376652
2523
  - type: dot_precision
2524
+ value: 31.776047460140898
2525
  - type: dot_recall
2526
+ value: 67.83641160949868
2527
  - type: euclidean_accuracy
2528
+ value: 82.67866722298385
2529
  - type: euclidean_ap
2530
+ value: 62.72011158877603
2531
  - type: euclidean_f1
2532
+ value: 60.39579770339605
2533
  - type: euclidean_precision
2534
+ value: 56.23293903548681
2535
  - type: euclidean_recall
2536
+ value: 65.22427440633246
2537
  - type: manhattan_accuracy
2538
+ value: 82.67866722298385
2539
  - type: manhattan_ap
2540
+ value: 62.80364769571995
2541
  - type: manhattan_f1
2542
+ value: 60.413827282864574
2543
  - type: manhattan_precision
2544
+ value: 56.94931090866619
2545
  - type: manhattan_recall
2546
+ value: 64.32717678100263
2547
  - type: max_accuracy
2548
+ value: 84.47875067056088
2549
  - type: max_ap
2550
+ value: 68.630858164926
2551
  - type: max_f1
2552
+ value: 64.5112402121748
2553
  - task:
2554
  type: PairClassification
2555
  dataset:
 
2560
  revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2561
  metrics:
2562
  - type: cos_sim_accuracy
2563
+ value: 88.4192959987581
2564
  - type: cos_sim_ap
2565
+ value: 84.81803796578367
2566
  - type: cos_sim_f1
2567
+ value: 77.1643709825528
2568
  - type: cos_sim_precision
2569
+ value: 73.77958839643183
2570
  - type: cos_sim_recall
2571
+ value: 80.874653526332
2572
  - type: dot_accuracy
2573
+ value: 81.99441145651414
2574
  - type: dot_ap
2575
+ value: 67.908510950511
2576
  - type: dot_f1
2577
+ value: 64.4734255193656
2578
  - type: dot_precision
2579
+ value: 56.120935539075866
2580
  - type: dot_recall
2581
+ value: 75.74684323991376
2582
  - type: euclidean_accuracy
2583
+ value: 82.67163426087632
2584
  - type: euclidean_ap
2585
+ value: 70.1466353903414
2586
  - type: euclidean_f1
2587
+ value: 62.686024087617795
2588
  - type: euclidean_precision
2589
+ value: 59.42738875474301
2590
  - type: euclidean_recall
2591
+ value: 66.32275947028026
2592
  - type: manhattan_accuracy
2593
+ value: 82.6483486630186
2594
  - type: manhattan_ap
2595
+ value: 70.12958345267741
2596
  - type: manhattan_f1
2597
+ value: 62.5966218150587
2598
  - type: manhattan_precision
2599
+ value: 58.47820272800214
2600
  - type: manhattan_recall
2601
+ value: 67.33908222975053
2602
  - type: max_accuracy
2603
+ value: 88.4192959987581
2604
  - type: max_ap
2605
+ value: 84.81803796578367
2606
  - type: max_f1
2607
+ value: 77.1643709825528
2608
  ---
2609
  ---
2610