--- pipeline_tag: sentence-similarity tags: - finetuner - mteb - feature-extraction - sentence-similarity datasets: - jinaai/negation-dataset language: en license: apache-2.0 model-index: - name: jina-embedding-l-en-v1 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 61.64179104477612 - type: ap value: 24.63675721041911 - type: f1 value: 55.10036810049116 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 60.708125 - type: ap value: 57.491681452557344 - type: f1 value: 58.046023443205655 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 28.12 - type: f1 value: 26.904734434317966 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 26.031 - type: map_at_10 value: 40.742 - type: map_at_100 value: 41.832 - type: map_at_1000 value: 41.844 - type: map_at_3 value: 35.526 - type: map_at_5 value: 38.567 - type: mrr_at_1 value: 26.316 - type: mrr_at_10 value: 40.855999999999995 - type: mrr_at_100 value: 41.946 - type: mrr_at_1000 value: 41.957 - type: mrr_at_3 value: 35.621 - type: mrr_at_5 value: 38.644 - type: ndcg_at_1 value: 26.031 - type: ndcg_at_10 value: 49.483 - type: ndcg_at_100 value: 54.074999999999996 - type: ndcg_at_1000 value: 54.344 - type: ndcg_at_3 value: 38.792 - type: ndcg_at_5 value: 44.24 - type: precision_at_1 value: 26.031 - type: precision_at_10 value: 7.76 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.098000000000003 - type: precision_at_5 value: 12.29 - type: recall_at_1 value: 26.031 - type: recall_at_10 value: 77.596 - type: recall_at_100 value: 97.51100000000001 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 48.293 - type: recall_at_5 value: 61.451 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 41.76036539849672 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 34.27585676831497 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 63.47328704612227 - type: mrr value: 76.63182078002022 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 87.42072640664271 - type: cos_sim_spearman value: 84.31336692039407 - type: euclidean_pearson value: 54.93250871487246 - type: euclidean_spearman value: 55.91091252228738 - type: manhattan_pearson value: 54.78812442894107 - type: manhattan_spearman value: 55.35005636930548 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.28896103896103 - type: f1 value: 86.23389676482913 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 33.73729294301578 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.641078215958288 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 8.258000000000001 - type: map_at_10 value: 14.57 - type: map_at_100 value: 15.98 - type: map_at_1000 value: 16.149 - type: map_at_3 value: 11.993 - type: map_at_5 value: 13.383000000000001 - type: mrr_at_1 value: 18.176000000000002 - type: mrr_at_10 value: 28.560000000000002 - type: mrr_at_100 value: 29.656 - type: mrr_at_1000 value: 29.709999999999997 - type: mrr_at_3 value: 25.255 - type: mrr_at_5 value: 27.128000000000004 - type: ndcg_at_1 value: 18.176000000000002 - type: ndcg_at_10 value: 21.36 - type: ndcg_at_100 value: 27.619 - type: ndcg_at_1000 value: 31.086000000000002 - type: ndcg_at_3 value: 16.701 - type: ndcg_at_5 value: 18.559 - type: precision_at_1 value: 18.176000000000002 - type: precision_at_10 value: 6.683999999999999 - type: precision_at_100 value: 1.3339999999999999 - type: precision_at_1000 value: 0.197 - type: precision_at_3 value: 12.269 - type: precision_at_5 value: 9.798 - type: recall_at_1 value: 8.258000000000001 - type: recall_at_10 value: 27.060000000000002 - type: recall_at_100 value: 48.833 - type: recall_at_1000 value: 68.636 - type: recall_at_3 value: 15.895999999999999 - type: recall_at_5 value: 20.625 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.241 - type: map_at_10 value: 17.141000000000002 - type: map_at_100 value: 22.805 - type: map_at_1000 value: 24.189 - type: map_at_3 value: 12.940999999999999 - type: map_at_5 value: 14.607000000000001 - type: mrr_at_1 value: 62.25000000000001 - type: mrr_at_10 value: 70.537 - type: mrr_at_100 value: 70.851 - type: mrr_at_1000 value: 70.875 - type: mrr_at_3 value: 68.75 - type: mrr_at_5 value: 69.77499999999999 - type: ndcg_at_1 value: 50.125 - type: ndcg_at_10 value: 36.032 - type: ndcg_at_100 value: 39.428999999999995 - type: ndcg_at_1000 value: 47.138999999999996 - type: ndcg_at_3 value: 40.99 - type: ndcg_at_5 value: 37.772 - type: precision_at_1 value: 62.25000000000001 - type: precision_at_10 value: 28.050000000000004 - type: precision_at_100 value: 8.527999999999999 - type: precision_at_1000 value: 1.82 - type: precision_at_3 value: 45.0 - type: precision_at_5 value: 36.0 - type: recall_at_1 value: 8.241 - type: recall_at_10 value: 22.583000000000002 - type: recall_at_100 value: 44.267 - type: recall_at_1000 value: 69.497 - type: recall_at_3 value: 14.326 - type: recall_at_5 value: 17.29 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 42.295 - type: f1 value: 38.32403088027173 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 58.553 - type: map_at_10 value: 69.632 - type: map_at_100 value: 69.95400000000001 - type: map_at_1000 value: 69.968 - type: map_at_3 value: 67.656 - type: map_at_5 value: 68.86 - type: mrr_at_1 value: 63.156 - type: mrr_at_10 value: 74.37700000000001 - type: mrr_at_100 value: 74.629 - type: mrr_at_1000 value: 74.63300000000001 - type: mrr_at_3 value: 72.577 - type: mrr_at_5 value: 73.71 - type: ndcg_at_1 value: 63.156 - type: ndcg_at_10 value: 75.345 - type: ndcg_at_100 value: 76.728 - type: ndcg_at_1000 value: 77.006 - type: ndcg_at_3 value: 71.67099999999999 - type: ndcg_at_5 value: 73.656 - type: precision_at_1 value: 63.156 - type: precision_at_10 value: 9.673 - type: precision_at_100 value: 1.045 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 28.393 - type: precision_at_5 value: 18.160999999999998 - type: recall_at_1 value: 58.553 - type: recall_at_10 value: 88.362 - type: recall_at_100 value: 94.401 - type: recall_at_1000 value: 96.256 - type: recall_at_3 value: 78.371 - type: recall_at_5 value: 83.32300000000001 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 19.302 - type: map_at_10 value: 31.887 - type: map_at_100 value: 33.727000000000004 - type: map_at_1000 value: 33.914 - type: map_at_3 value: 27.254 - type: map_at_5 value: 29.904999999999998 - type: mrr_at_1 value: 39.043 - type: mrr_at_10 value: 47.858000000000004 - type: mrr_at_100 value: 48.636 - type: mrr_at_1000 value: 48.677 - type: mrr_at_3 value: 45.062000000000005 - type: mrr_at_5 value: 46.775 - type: ndcg_at_1 value: 39.043 - type: ndcg_at_10 value: 39.899 - type: ndcg_at_100 value: 46.719 - type: ndcg_at_1000 value: 49.739 - type: ndcg_at_3 value: 35.666 - type: ndcg_at_5 value: 37.232 - type: precision_at_1 value: 39.043 - type: precision_at_10 value: 11.265 - type: precision_at_100 value: 1.864 - type: precision_at_1000 value: 0.23800000000000002 - type: precision_at_3 value: 24.227999999999998 - type: precision_at_5 value: 18.148 - type: recall_at_1 value: 19.302 - type: recall_at_10 value: 47.278 - type: recall_at_100 value: 72.648 - type: recall_at_1000 value: 90.793 - type: recall_at_3 value: 31.235000000000003 - type: recall_at_5 value: 38.603 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 31.398 - type: map_at_10 value: 44.635000000000005 - type: map_at_100 value: 45.513 - type: map_at_1000 value: 45.595 - type: map_at_3 value: 41.894 - type: map_at_5 value: 43.514 - type: mrr_at_1 value: 62.795 - type: mrr_at_10 value: 70.001 - type: mrr_at_100 value: 70.378 - type: mrr_at_1000 value: 70.399 - type: mrr_at_3 value: 68.542 - type: mrr_at_5 value: 69.394 - type: ndcg_at_1 value: 62.795 - type: ndcg_at_10 value: 53.635 - type: ndcg_at_100 value: 57.05 - type: ndcg_at_1000 value: 58.755 - type: ndcg_at_3 value: 49.267 - type: ndcg_at_5 value: 51.522 - type: precision_at_1 value: 62.795 - type: precision_at_10 value: 11.196 - type: precision_at_100 value: 1.389 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 30.804 - type: precision_at_5 value: 20.265 - type: recall_at_1 value: 31.398 - type: recall_at_10 value: 55.982 - type: recall_at_100 value: 69.453 - type: recall_at_1000 value: 80.756 - type: recall_at_3 value: 46.205 - type: recall_at_5 value: 50.662 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 63.803200000000004 - type: ap value: 59.04397034963468 - type: f1 value: 63.4675375611795 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 17.671 - type: map_at_10 value: 29.152 - type: map_at_100 value: 30.422 - type: map_at_1000 value: 30.481 - type: map_at_3 value: 25.417 - type: map_at_5 value: 27.448 - type: mrr_at_1 value: 18.195 - type: mrr_at_10 value: 29.67 - type: mrr_at_100 value: 30.891999999999996 - type: mrr_at_1000 value: 30.944 - type: mrr_at_3 value: 25.974000000000004 - type: mrr_at_5 value: 27.996 - type: ndcg_at_1 value: 18.195 - type: ndcg_at_10 value: 35.795 - type: ndcg_at_100 value: 42.117 - type: ndcg_at_1000 value: 43.585 - type: ndcg_at_3 value: 28.122000000000003 - type: ndcg_at_5 value: 31.757 - type: precision_at_1 value: 18.195 - type: precision_at_10 value: 5.89 - type: precision_at_100 value: 0.9079999999999999 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.24 - type: precision_at_5 value: 9.178 - type: recall_at_1 value: 17.671 - type: recall_at_10 value: 56.373 - type: recall_at_100 value: 86.029 - type: recall_at_1000 value: 97.246 - type: recall_at_3 value: 35.414 - type: recall_at_5 value: 44.149 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.80255357957135 - type: f1 value: 90.79256308087807 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.20611035111719 - type: f1 value: 54.075483897190836 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.79354404841965 - type: f1 value: 68.53816551555609 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.6072629455279 - type: f1 value: 77.04997715738867 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 30.432745003633016 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.95493811839366 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.63516074152514 - type: mrr value: 32.73091425241894 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.379 - type: map_at_10 value: 12.051 - type: map_at_100 value: 15.176 - type: map_at_1000 value: 16.662 - type: map_at_3 value: 8.588 - type: map_at_5 value: 10.274 - type: mrr_at_1 value: 44.891999999999996 - type: mrr_at_10 value: 53.06999999999999 - type: mrr_at_100 value: 53.675 - type: mrr_at_1000 value: 53.717999999999996 - type: mrr_at_3 value: 50.671 - type: mrr_at_5 value: 52.25 - type: ndcg_at_1 value: 42.879 - type: ndcg_at_10 value: 33.291 - type: ndcg_at_100 value: 30.567 - type: ndcg_at_1000 value: 39.598 - type: ndcg_at_3 value: 37.713 - type: ndcg_at_5 value: 36.185 - type: precision_at_1 value: 44.891999999999996 - type: precision_at_10 value: 24.923000000000002 - type: precision_at_100 value: 8.015 - type: precision_at_1000 value: 2.083 - type: precision_at_3 value: 35.088 - type: precision_at_5 value: 31.765 - type: recall_at_1 value: 5.379 - type: recall_at_10 value: 16.346 - type: recall_at_100 value: 31.887999999999998 - type: recall_at_1000 value: 64.90599999999999 - type: recall_at_3 value: 9.543 - type: recall_at_5 value: 12.369 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 25.654 - type: map_at_10 value: 40.163 - type: map_at_100 value: 41.376000000000005 - type: map_at_1000 value: 41.411 - type: map_at_3 value: 35.677 - type: map_at_5 value: 38.238 - type: mrr_at_1 value: 29.055999999999997 - type: mrr_at_10 value: 42.571999999999996 - type: mrr_at_100 value: 43.501 - type: mrr_at_1000 value: 43.527 - type: mrr_at_3 value: 38.775 - type: mrr_at_5 value: 40.953 - type: ndcg_at_1 value: 29.026999999999997 - type: ndcg_at_10 value: 47.900999999999996 - type: ndcg_at_100 value: 52.941 - type: ndcg_at_1000 value: 53.786 - type: ndcg_at_3 value: 39.387 - type: ndcg_at_5 value: 43.65 - type: precision_at_1 value: 29.026999999999997 - type: precision_at_10 value: 8.247 - type: precision_at_100 value: 1.102 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 18.231 - type: precision_at_5 value: 13.378 - type: recall_at_1 value: 25.654 - type: recall_at_10 value: 69.175 - type: recall_at_100 value: 90.85600000000001 - type: recall_at_1000 value: 97.18 - type: recall_at_3 value: 47.043 - type: recall_at_5 value: 56.86600000000001 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.785 - type: map_at_10 value: 84.509 - type: map_at_100 value: 85.17 - type: map_at_1000 value: 85.187 - type: map_at_3 value: 81.628 - type: map_at_5 value: 83.422 - type: mrr_at_1 value: 81.43 - type: mrr_at_10 value: 87.506 - type: mrr_at_100 value: 87.616 - type: mrr_at_1000 value: 87.617 - type: mrr_at_3 value: 86.598 - type: mrr_at_5 value: 87.215 - type: ndcg_at_1 value: 81.44 - type: ndcg_at_10 value: 88.208 - type: ndcg_at_100 value: 89.49000000000001 - type: ndcg_at_1000 value: 89.59700000000001 - type: ndcg_at_3 value: 85.471 - type: ndcg_at_5 value: 86.955 - type: precision_at_1 value: 81.44 - type: precision_at_10 value: 13.347000000000001 - type: precision_at_100 value: 1.53 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.330000000000005 - type: precision_at_5 value: 24.506 - type: recall_at_1 value: 70.785 - type: recall_at_10 value: 95.15 - type: recall_at_100 value: 99.502 - type: recall_at_1000 value: 99.993 - type: recall_at_3 value: 87.234 - type: recall_at_5 value: 91.467 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 52.40682777853522 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 56.61834429208595 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.918 - type: map_at_10 value: 11.562 - type: map_at_100 value: 13.636999999999999 - type: map_at_1000 value: 13.918 - type: map_at_3 value: 8.353 - type: map_at_5 value: 9.878 - type: mrr_at_1 value: 24.3 - type: mrr_at_10 value: 33.914 - type: mrr_at_100 value: 35.079 - type: mrr_at_1000 value: 35.134 - type: mrr_at_3 value: 30.833 - type: mrr_at_5 value: 32.528 - type: ndcg_at_1 value: 24.3 - type: ndcg_at_10 value: 19.393 - type: ndcg_at_100 value: 27.471 - type: ndcg_at_1000 value: 32.543 - type: ndcg_at_3 value: 18.648 - type: ndcg_at_5 value: 16.064999999999998 - type: precision_at_1 value: 24.3 - type: precision_at_10 value: 9.92 - type: precision_at_100 value: 2.152 - type: precision_at_1000 value: 0.338 - type: precision_at_3 value: 17.1 - type: precision_at_5 value: 13.819999999999999 - type: recall_at_1 value: 4.918 - type: recall_at_10 value: 20.102 - type: recall_at_100 value: 43.69 - type: recall_at_1000 value: 68.568 - type: recall_at_3 value: 10.383000000000001 - type: recall_at_5 value: 13.977999999999998 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 86.02374279770862 - type: cos_sim_spearman value: 80.3123278821752 - type: euclidean_pearson value: 78.150387301923 - type: euclidean_spearman value: 74.27020095240543 - type: manhattan_pearson value: 78.00212720962597 - type: manhattan_spearman value: 74.27996355049189 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 83.56832604166104 - type: cos_sim_spearman value: 73.85172437109456 - type: euclidean_pearson value: 70.77037821156355 - type: euclidean_spearman value: 58.32603602271459 - type: manhattan_pearson value: 70.6019035905572 - type: manhattan_spearman value: 58.18758998109944 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.97624603590171 - type: cos_sim_spearman value: 84.3654403570941 - type: euclidean_pearson value: 77.37734191552401 - type: euclidean_spearman value: 77.83492278107906 - type: manhattan_pearson value: 77.38406845115612 - type: manhattan_spearman value: 77.80429501178632 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.5175806484823 - type: cos_sim_spearman value: 77.84074419393815 - type: euclidean_pearson value: 75.31514179994578 - type: euclidean_spearman value: 71.06564963155697 - type: manhattan_pearson value: 75.25016497298036 - type: manhattan_spearman value: 71.0503867625097 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 85.15312065200007 - type: cos_sim_spearman value: 86.28786282283781 - type: euclidean_pearson value: 69.93961446583728 - type: euclidean_spearman value: 70.99565144007187 - type: manhattan_pearson value: 70.06338127800244 - type: manhattan_spearman value: 71.15328825585216 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 80.48261723093232 - type: cos_sim_spearman value: 82.13997187275378 - type: euclidean_pearson value: 72.01034058956992 - type: euclidean_spearman value: 72.90423890320797 - type: manhattan_pearson value: 71.91819389305805 - type: manhattan_spearman value: 72.804333901611 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.89094326696411 - type: cos_sim_spearman value: 89.5679328484923 - type: euclidean_pearson value: 77.27326226557433 - type: euclidean_spearman value: 75.44670270858582 - type: manhattan_pearson value: 77.49623029933024 - type: manhattan_spearman value: 75.6317127686177 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.03259798800852 - type: cos_sim_spearman value: 66.17683868865686 - type: euclidean_pearson value: 49.154524473561416 - type: euclidean_spearman value: 58.82796771905756 - type: manhattan_pearson value: 48.97445679282608 - type: manhattan_spearman value: 58.69653501728678 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.01368632144246 - type: cos_sim_spearman value: 83.64169080274549 - type: euclidean_pearson value: 75.84021692605727 - type: euclidean_spearman value: 74.69132304226987 - type: manhattan_pearson value: 75.9627059404693 - type: manhattan_spearman value: 74.83616979158057 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 81.63017243645893 - type: mrr value: 94.79274900843528 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 47.094 - type: map_at_10 value: 56.047000000000004 - type: map_at_100 value: 56.701 - type: map_at_1000 value: 56.742000000000004 - type: map_at_3 value: 53.189 - type: map_at_5 value: 54.464 - type: mrr_at_1 value: 50.0 - type: mrr_at_10 value: 57.567 - type: mrr_at_100 value: 58.104 - type: mrr_at_1000 value: 58.142 - type: mrr_at_3 value: 55.222 - type: mrr_at_5 value: 56.355999999999995 - type: ndcg_at_1 value: 50.0 - type: ndcg_at_10 value: 60.84 - type: ndcg_at_100 value: 63.983999999999995 - type: ndcg_at_1000 value: 65.19500000000001 - type: ndcg_at_3 value: 55.491 - type: ndcg_at_5 value: 57.51500000000001 - type: precision_at_1 value: 50.0 - type: precision_at_10 value: 8.366999999999999 - type: precision_at_100 value: 1.013 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 21.556 - type: precision_at_5 value: 14.2 - type: recall_at_1 value: 47.094 - type: recall_at_10 value: 74.239 - type: recall_at_100 value: 89.0 - type: recall_at_1000 value: 98.667 - type: recall_at_3 value: 59.606 - type: recall_at_5 value: 64.756 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.7128712871287 - type: cos_sim_ap value: 91.8391173412632 - type: cos_sim_f1 value: 85.23421588594704 - type: cos_sim_precision value: 86.82572614107885 - type: cos_sim_recall value: 83.7 - type: dot_accuracy value: 99.23960396039604 - type: dot_ap value: 58.07268940033783 - type: dot_f1 value: 58.00486618004865 - type: dot_precision value: 56.49289099526066 - type: dot_recall value: 59.599999999999994 - type: euclidean_accuracy value: 99.62574257425743 - type: euclidean_ap value: 86.31145319031712 - type: euclidean_f1 value: 80.12486992715921 - type: euclidean_precision value: 83.51409978308027 - type: euclidean_recall value: 77.0 - type: manhattan_accuracy value: 99.62178217821783 - type: manhattan_ap value: 85.96697606381338 - type: manhattan_f1 value: 80.24193548387099 - type: manhattan_precision value: 80.89430894308943 - type: manhattan_recall value: 79.60000000000001 - type: max_accuracy value: 99.7128712871287 - type: max_ap value: 91.8391173412632 - type: max_f1 value: 85.23421588594704 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 54.98955943181893 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.72837687387049 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 51.02207528482775 - type: mrr value: 51.8842044393515 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.250596893094876 - type: cos_sim_spearman value: 30.609457706010158 - type: dot_pearson value: 19.739579843052162 - type: dot_spearman value: 20.27834051930579 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.187 - type: map_at_10 value: 1.239 - type: map_at_100 value: 6.388000000000001 - type: map_at_1000 value: 15.507000000000001 - type: map_at_3 value: 0.5 - type: map_at_5 value: 0.712 - type: mrr_at_1 value: 70.0 - type: mrr_at_10 value: 83.0 - type: mrr_at_100 value: 83.0 - type: mrr_at_1000 value: 83.0 - type: mrr_at_3 value: 81.667 - type: mrr_at_5 value: 82.667 - type: ndcg_at_1 value: 65.0 - type: ndcg_at_10 value: 56.57600000000001 - type: ndcg_at_100 value: 42.054 - type: ndcg_at_1000 value: 38.269999999999996 - type: ndcg_at_3 value: 63.134 - type: ndcg_at_5 value: 58.792 - type: precision_at_1 value: 70.0 - type: precision_at_10 value: 59.8 - type: precision_at_100 value: 42.5 - type: precision_at_1000 value: 17.304 - type: precision_at_3 value: 67.333 - type: precision_at_5 value: 62.4 - type: recall_at_1 value: 0.187 - type: recall_at_10 value: 1.529 - type: recall_at_100 value: 9.673 - type: recall_at_1000 value: 35.807 - type: recall_at_3 value: 0.5459999999999999 - type: recall_at_5 value: 0.8130000000000001 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.646 - type: map_at_10 value: 6.569999999999999 - type: map_at_100 value: 11.530999999999999 - type: map_at_1000 value: 13.009 - type: map_at_3 value: 3.234 - type: map_at_5 value: 4.956 - type: mrr_at_1 value: 18.367 - type: mrr_at_10 value: 35.121 - type: mrr_at_100 value: 36.142 - type: mrr_at_1000 value: 36.153 - type: mrr_at_3 value: 29.252 - type: mrr_at_5 value: 33.434999999999995 - type: ndcg_at_1 value: 16.326999999999998 - type: ndcg_at_10 value: 17.336 - type: ndcg_at_100 value: 28.925 - type: ndcg_at_1000 value: 41.346 - type: ndcg_at_3 value: 16.131999999999998 - type: ndcg_at_5 value: 18.107 - type: precision_at_1 value: 18.367 - type: precision_at_10 value: 16.531000000000002 - type: precision_at_100 value: 6.449000000000001 - type: precision_at_1000 value: 1.451 - type: precision_at_3 value: 17.687 - type: precision_at_5 value: 20.0 - type: recall_at_1 value: 1.646 - type: recall_at_10 value: 12.113 - type: recall_at_100 value: 40.261 - type: recall_at_1000 value: 77.878 - type: recall_at_3 value: 4.181 - type: recall_at_5 value: 7.744 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 66.61500000000001 - type: ap value: 11.70707762285034 - type: f1 value: 50.53259935502312 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 54.89247311827958 - type: f1 value: 55.044186334629586 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 46.95851882042766 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 84.01978899684092 - type: cos_sim_ap value: 68.10404793439619 - type: cos_sim_f1 value: 63.93145891154821 - type: cos_sim_precision value: 58.905937291527685 - type: cos_sim_recall value: 69.89445910290237 - type: dot_accuracy value: 77.78506288370984 - type: dot_ap value: 38.55636213255057 - type: dot_f1 value: 44.6866485013624 - type: dot_precision value: 34.07202216066482 - type: dot_recall value: 64.90765171503958 - type: euclidean_accuracy value: 82.94093103653812 - type: euclidean_ap value: 63.65596102723866 - type: euclidean_f1 value: 61.444903916322055 - type: euclidean_precision value: 56.994584837545126 - type: euclidean_recall value: 66.64907651715039 - type: manhattan_accuracy value: 82.99457590749239 - type: manhattan_ap value: 63.77653539498376 - type: manhattan_f1 value: 61.48299483235189 - type: manhattan_precision value: 56.455528580887226 - type: manhattan_recall value: 67.4934036939314 - type: max_accuracy value: 84.01978899684092 - type: max_ap value: 68.10404793439619 - type: max_f1 value: 63.93145891154821 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.75177552683665 - type: cos_sim_ap value: 83.75899853399007 - type: cos_sim_f1 value: 76.25022931572188 - type: cos_sim_precision value: 72.83241045769958 - type: cos_sim_recall value: 80.00461964890668 - type: dot_accuracy value: 81.8197694725812 - type: dot_ap value: 67.6851675345571 - type: dot_f1 value: 64.04501820589209 - type: dot_precision value: 56.17233770758332 - type: dot_recall value: 74.48413920542039 - type: euclidean_accuracy value: 83.3003454030349 - type: euclidean_ap value: 72.80186670461116 - type: euclidean_f1 value: 65.38000218078727 - type: euclidean_precision value: 61.92082616179002 - type: euclidean_recall value: 69.24853711117956 - type: manhattan_accuracy value: 83.32169053440447 - type: manhattan_ap value: 72.8243559753097 - type: manhattan_f1 value: 65.45939901157966 - type: manhattan_precision value: 61.58284124075205 - type: manhattan_recall value: 69.85679088389283 - type: max_accuracy value: 87.75177552683665 - type: max_ap value: 83.75899853399007 - type: max_f1 value: 76.25022931572188 ---

Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

The text embedding suite trained by Jina AI, Finetuner team.

## Intented Usage & Model Info `jina-embedding-l-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. This dataset consists of 380 million pairs of sentences, which include both query-document pairs. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs. The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more. With a size of 330 million parameters, the model enables single-gpu inference while delivering better performance than our small and base model. Additionally, we provide the following options: - `jina-embedding-s-en-v1`: 35 million parameters. - `jina-embedding-b-en-v1`: 110 million parameters. - `jina-embedding-l-en-v1`: 330 million parameters **(you are here)**. - `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10* bert-base size (soon). - `jina-embedding-6b-en-v1`: 6 billion parameters 30* bert-base size(soon). ## Data & Parameters More info will be released together with the technique report. ## Metrics We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI: |Name|param |context| |------------------------------|-----|------| |all-minilm-l6-v2|33m |128| |all-mpnet-base-v2 |110m |128| |ada-embedding-002|Unknown/OpenAI API |8192| |jina-embedding-s-en-v1|35m |512| |jina-embedding-b-en-v1|110m |512| |jina-embedding-l-en-v1|330m |512| |Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact| |------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----| |all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 | |all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8 |**0.906**|0.513 |0.875|0.656 | |ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** | |jina-embedding-s-en-v1|0.742|0.786|0.738|0.837|0.80|0.875|0.543 |0.857|0.608 | |jina-embedding-b-en-v1|**0.751**|0.809|0.761|0.856|0.812|0.89|0.601 |0.876|0.645 | |jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.829|0.896|0.526 |**0.882**|0.652 | *update: we have updated the checkpoints for small/base model, re-evaluation of large model and BEIR is running in progress.* ## Usage Use with Jina AI Finetuner ```python !pip install finetuner import finetuner model = finetuner.build_model('jinaai/jina-embedding-l-en-v1') embeddings = finetuner.encode( model=model, data=['how is the weather today', 'What is the current weather like today?'] ) print(finetuner.cos_sim(embeddings[0], embeddings[1])) ``` Use directly with Huggingface Transformers: ```python import torch from transformers import AutoModel, AutoTokenizer def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) sentences = ['how is the weather today', 'What is the current weather like today?'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embedding-l-en-v1') model = AutoModel.from_pretrained('jinaai/jina-embedding-l-en-v1') with torch.inference_mode(): encoded_input = tokenizer( sentences, padding=True, truncation=True, return_tensors='pt' ) model_output = model.encoder(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` ## Fine-tuning Please consider [Finetuner](https://github.com/jina-ai/finetuner). ## Plans 1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length. 2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`. ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.