bwang0911 commited on
Commit
5b48751
1 Parent(s): 5307e97

Update README.md (#27)

Browse files

- Update README.md (3627135d756fd2fa86ad752269966f6570ec0650)

Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -2652,7 +2652,7 @@ Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923)
2652
 
2653
  ## Usage
2654
 
2655
- <details><summary>Please apply **mean pooling** when integrating the model.</summary>
2656
  <p>
2657
 
2658
  ### Why mean pooling?
@@ -2717,7 +2717,7 @@ Alternatively, you can use Jina AI's [Embedding platform](https://jina.ai/embedd
2717
 
2718
  ## Use Jina Embeddings for RAG
2719
 
2720
- According to the latest blog post from [LLama Index](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
2721
 
2722
  > In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
2723
 
 
2652
 
2653
  ## Usage
2654
 
2655
+ **<details><summary>Please apply mean pooling when integrating the model.</summary>**
2656
  <p>
2657
 
2658
  ### Why mean pooling?
 
2717
 
2718
  ## Use Jina Embeddings for RAG
2719
 
2720
+ According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
2721
 
2722
  > In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
2723