bwang0911 commited on
Commit
7233472
1 Parent(s): 29a08cb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +975 -975
README.md CHANGED
@@ -23,11 +23,11 @@ model-index:
23
  revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
  metrics:
25
  - type: accuracy
26
- value: 73.4179104477612
27
  - type: ap
28
- value: 35.798378234524705
29
  - type: f1
30
- value: 67.27708504551819
31
  - task:
32
  type: Classification
33
  dataset:
@@ -38,11 +38,11 @@ model-index:
38
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
  metrics:
40
  - type: accuracy
41
- value: 88.977575
42
  - type: ap
43
- value: 85.00359027707599
44
  - type: f1
45
- value: 88.9585285941142
46
  - task:
47
  type: Classification
48
  dataset:
@@ -53,9 +53,9 @@ model-index:
53
  revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
  metrics:
55
  - type: accuracy
56
- value: 44.455999999999996
57
  - type: f1
58
- value: 42.80615676169829
59
  - task:
60
  type: Retrieval
61
  dataset:
@@ -66,65 +66,65 @@ model-index:
66
  revision: None
67
  metrics:
68
  - type: map_at_1
69
- value: 18.919
70
  - type: map_at_10
71
- value: 33.272
72
  - type: map_at_100
73
- value: 34.669
74
  - type: map_at_1000
75
- value: 34.68
76
  - type: map_at_3
77
- value: 28.011000000000003
78
  - type: map_at_5
79
- value: 30.767
80
  - type: mrr_at_1
81
- value: 19.061
82
  - type: mrr_at_10
83
- value: 33.352
84
  - type: mrr_at_100
85
- value: 34.75
86
  - type: mrr_at_1000
87
- value: 34.760999999999996
88
  - type: mrr_at_3
89
- value: 28.07
90
  - type: mrr_at_5
91
- value: 30.848
92
  - type: ndcg_at_1
93
- value: 18.919
94
  - type: ndcg_at_10
95
- value: 42.138
96
  - type: ndcg_at_100
97
- value: 48.165
98
  - type: ndcg_at_1000
99
- value: 48.435
100
  - type: ndcg_at_3
101
- value: 31.041
102
  - type: ndcg_at_5
103
- value: 36.015
104
  - type: precision_at_1
105
- value: 18.919
106
  - type: precision_at_10
107
- value: 7.098
108
  - type: precision_at_100
109
- value: 0.9740000000000001
110
  - type: precision_at_1000
111
  value: 0.1
112
  - type: precision_at_3
113
- value: 13.276
114
  - type: precision_at_5
115
- value: 10.384
116
  - type: recall_at_1
117
- value: 18.919
118
  - type: recall_at_10
119
- value: 70.982
120
  - type: recall_at_100
121
- value: 97.44
122
  - type: recall_at_1000
123
- value: 99.502
124
  - type: recall_at_3
125
- value: 39.829
126
  - type: recall_at_5
127
- value: 51.92
128
  - task:
129
  type: Clustering
130
  dataset:
@@ -135,7 +135,7 @@ model-index:
135
  revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
  metrics:
137
  - type: v_measure
138
- value: 45.38238451470738
139
  - task:
140
  type: Clustering
141
  dataset:
@@ -146,7 +146,7 @@ model-index:
146
  revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
  metrics:
148
  - type: v_measure
149
- value: 37.12265635737745
150
  - task:
151
  type: Reranking
152
  dataset:
@@ -157,9 +157,9 @@ model-index:
157
  revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
  metrics:
159
  - type: map
160
- value: 62.473921100678695
161
  - type: mrr
162
- value: 75.28195488721803
163
  - task:
164
  type: STS
165
  dataset:
@@ -170,17 +170,17 @@ model-index:
170
  revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
  metrics:
172
  - type: cos_sim_pearson
173
- value: 84.46030780641742
174
  - type: cos_sim_spearman
175
- value: 83.29647627997147
176
  - type: euclidean_pearson
177
- value: 83.63127685751004
178
  - type: euclidean_spearman
179
- value: 83.29647627997147
180
  - type: manhattan_pearson
181
- value: 83.29505322210208
182
  - type: manhattan_spearman
183
- value: 82.8398393691656
184
  - task:
185
  type: Classification
186
  dataset:
@@ -191,9 +191,9 @@ model-index:
191
  revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
  metrics:
193
  - type: accuracy
194
- value: 83.94480519480521
195
  - type: f1
196
- value: 83.26406143364741
197
  - task:
198
  type: Clustering
199
  dataset:
@@ -204,7 +204,7 @@ model-index:
204
  revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
  metrics:
206
  - type: v_measure
207
- value: 37.15926312173139
208
  - task:
209
  type: Clustering
210
  dataset:
@@ -215,7 +215,7 @@ model-index:
215
  revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
  metrics:
217
  - type: v_measure
218
- value: 31.20469085642121
219
  - task:
220
  type: Retrieval
221
  dataset:
@@ -226,65 +226,65 @@ model-index:
226
  revision: None
227
  metrics:
228
  - type: map_at_1
229
- value: 28.462
230
  - type: map_at_10
231
- value: 39.834
232
  - type: map_at_100
233
- value: 41.329
234
  - type: map_at_1000
235
- value: 41.465
236
  - type: map_at_3
237
- value: 36.586999999999996
238
  - type: map_at_5
239
- value: 38.239000000000004
240
  - type: mrr_at_1
241
- value: 34.335
242
  - type: mrr_at_10
243
- value: 45.493
244
  - type: mrr_at_100
245
- value: 46.323
246
  - type: mrr_at_1000
247
- value: 46.37
248
  - type: mrr_at_3
249
- value: 42.870999999999995
250
  - type: mrr_at_5
251
- value: 44.502
252
  - type: ndcg_at_1
253
- value: 34.335
254
  - type: ndcg_at_10
255
- value: 46.434
256
  - type: ndcg_at_100
257
- value: 52.013
258
  - type: ndcg_at_1000
259
- value: 54.079
260
  - type: ndcg_at_3
261
- value: 41.408
262
  - type: ndcg_at_5
263
- value: 43.562
264
  - type: precision_at_1
265
- value: 34.335
266
  - type: precision_at_10
267
- value: 8.913
268
  - type: precision_at_100
269
- value: 1.439
270
  - type: precision_at_1000
271
- value: 0.197
272
  - type: precision_at_3
273
- value: 20.029
274
  - type: precision_at_5
275
- value: 14.335
276
  - type: recall_at_1
277
- value: 28.462
278
  - type: recall_at_10
279
- value: 59.574000000000005
280
  - type: recall_at_100
281
- value: 82.631
282
  - type: recall_at_1000
283
- value: 95.45700000000001
284
  - type: recall_at_3
285
- value: 45.381
286
  - type: recall_at_5
287
- value: 51.18000000000001
288
  - task:
289
  type: Retrieval
290
  dataset:
@@ -295,65 +295,65 @@ model-index:
295
  revision: None
296
  metrics:
297
  - type: map_at_1
298
- value: 27.245
299
  - type: map_at_10
300
- value: 37.156
301
  - type: map_at_100
302
- value: 38.464999999999996
303
  - type: map_at_1000
304
- value: 38.607
305
  - type: map_at_3
306
- value: 34.613
307
  - type: map_at_5
308
- value: 35.924
309
  - type: mrr_at_1
310
- value: 34.777
311
  - type: mrr_at_10
312
- value: 43.425000000000004
313
  - type: mrr_at_100
314
- value: 44.163000000000004
315
  - type: mrr_at_1000
316
- value: 44.211
317
  - type: mrr_at_3
318
- value: 41.391
319
  - type: mrr_at_5
320
- value: 42.461
321
  - type: ndcg_at_1
322
- value: 34.777
323
  - type: ndcg_at_10
324
- value: 42.807
325
  - type: ndcg_at_100
326
- value: 47.629
327
  - type: ndcg_at_1000
328
- value: 49.84
329
  - type: ndcg_at_3
330
- value: 39.28
331
  - type: ndcg_at_5
332
- value: 40.671
333
  - type: precision_at_1
334
- value: 34.777
335
  - type: precision_at_10
336
- value: 8.134
337
  - type: precision_at_100
338
- value: 1.3599999999999999
339
  - type: precision_at_1000
340
- value: 0.186
341
  - type: precision_at_3
342
- value: 19.320999999999998
343
  - type: precision_at_5
344
- value: 13.286999999999999
345
  - type: recall_at_1
346
- value: 27.245
347
  - type: recall_at_10
348
- value: 52.491
349
  - type: recall_at_100
350
- value: 73.065
351
  - type: recall_at_1000
352
- value: 86.931
353
  - type: recall_at_3
354
- value: 41.257
355
  - type: recall_at_5
356
- value: 45.811
357
  - task:
358
  type: Retrieval
359
  dataset:
@@ -364,65 +364,65 @@ model-index:
364
  revision: None
365
  metrics:
366
  - type: map_at_1
367
- value: 37.088
368
  - type: map_at_10
369
- value: 49.003
370
  - type: map_at_100
371
- value: 50.017999999999994
372
  - type: map_at_1000
373
- value: 50.07899999999999
374
  - type: map_at_3
375
- value: 45.846
376
  - type: map_at_5
377
- value: 47.733
378
  - type: mrr_at_1
379
- value: 42.193999999999996
380
  - type: mrr_at_10
381
- value: 52.522999999999996
382
  - type: mrr_at_100
383
- value: 53.177
384
  - type: mrr_at_1000
385
- value: 53.205999999999996
386
  - type: mrr_at_3
387
- value: 49.916
388
  - type: mrr_at_5
389
- value: 51.50900000000001
390
  - type: ndcg_at_1
391
- value: 42.193999999999996
392
  - type: ndcg_at_10
393
- value: 54.99699999999999
394
  - type: ndcg_at_100
395
- value: 59.058
396
  - type: ndcg_at_1000
397
- value: 60.355000000000004
398
  - type: ndcg_at_3
399
- value: 49.515
400
  - type: ndcg_at_5
401
- value: 52.412000000000006
402
  - type: precision_at_1
403
- value: 42.193999999999996
404
  - type: precision_at_10
405
- value: 8.84
406
  - type: precision_at_100
407
- value: 1.1820000000000002
408
  - type: precision_at_1000
409
- value: 0.134
410
  - type: precision_at_3
411
- value: 21.944
412
  - type: precision_at_5
413
- value: 15.197
414
  - type: recall_at_1
415
- value: 37.088
416
  - type: recall_at_10
417
- value: 69.13
418
  - type: recall_at_100
419
- value: 86.612
420
  - type: recall_at_1000
421
- value: 95.946
422
  - type: recall_at_3
423
- value: 54.76
424
  - type: recall_at_5
425
- value: 61.76199999999999
426
  - task:
427
  type: Retrieval
428
  dataset:
@@ -433,65 +433,65 @@ model-index:
433
  revision: None
434
  metrics:
435
  - type: map_at_1
436
- value: 21.816
437
  - type: map_at_10
438
- value: 30.630000000000003
439
  - type: map_at_100
440
- value: 31.641000000000002
441
  - type: map_at_1000
442
- value: 31.730999999999998
443
  - type: map_at_3
444
- value: 28.153
445
  - type: map_at_5
446
- value: 29.433
447
  - type: mrr_at_1
448
- value: 23.842
449
  - type: mrr_at_10
450
- value: 32.432
451
  - type: mrr_at_100
452
- value: 33.354
453
  - type: mrr_at_1000
454
- value: 33.421
455
  - type: mrr_at_3
456
- value: 30.131999999999998
457
  - type: mrr_at_5
458
- value: 31.358000000000004
459
  - type: ndcg_at_1
460
- value: 23.842
461
  - type: ndcg_at_10
462
- value: 35.626000000000005
463
  - type: ndcg_at_100
464
- value: 40.855999999999995
465
  - type: ndcg_at_1000
466
- value: 43.111
467
  - type: ndcg_at_3
468
- value: 30.712
469
  - type: ndcg_at_5
470
- value: 32.912
471
  - type: precision_at_1
472
- value: 23.842
473
  - type: precision_at_10
474
- value: 5.627
475
  - type: precision_at_100
476
- value: 0.873
477
  - type: precision_at_1000
478
  value: 0.11100000000000002
479
  - type: precision_at_3
480
- value: 13.333
481
  - type: precision_at_5
482
- value: 9.266
483
  - type: recall_at_1
484
- value: 21.816
485
  - type: recall_at_10
486
- value: 49.370000000000005
487
  - type: recall_at_100
488
- value: 73.855
489
  - type: recall_at_1000
490
- value: 90.67399999999999
491
  - type: recall_at_3
492
- value: 35.85
493
  - type: recall_at_5
494
- value: 41.282000000000004
495
  - task:
496
  type: Retrieval
497
  dataset:
@@ -502,65 +502,65 @@ model-index:
502
  revision: None
503
  metrics:
504
  - type: map_at_1
505
- value: 14.402000000000001
506
  - type: map_at_10
507
- value: 21.401999999999997
508
  - type: map_at_100
509
- value: 22.425
510
  - type: map_at_1000
511
- value: 22.561
512
  - type: map_at_3
513
- value: 19.238
514
  - type: map_at_5
515
- value: 20.213
516
  - type: mrr_at_1
517
- value: 17.91
518
  - type: mrr_at_10
519
- value: 25.629999999999995
520
  - type: mrr_at_100
521
- value: 26.529999999999998
522
  - type: mrr_at_1000
523
- value: 26.616
524
  - type: mrr_at_3
525
- value: 23.362
526
  - type: mrr_at_5
527
- value: 24.438
528
  - type: ndcg_at_1
529
- value: 17.91
530
  - type: ndcg_at_10
531
- value: 26.161
532
  - type: ndcg_at_100
533
- value: 31.474000000000004
534
  - type: ndcg_at_1000
535
- value: 34.802
536
  - type: ndcg_at_3
537
- value: 21.965
538
  - type: ndcg_at_5
539
- value: 23.511000000000003
540
  - type: precision_at_1
541
- value: 17.91
542
  - type: precision_at_10
543
- value: 4.8629999999999995
544
  - type: precision_at_100
545
- value: 0.869
546
  - type: precision_at_1000
547
- value: 0.129
548
  - type: precision_at_3
549
- value: 10.655000000000001
550
  - type: precision_at_5
551
- value: 7.5120000000000005
552
  - type: recall_at_1
553
- value: 14.402000000000001
554
  - type: recall_at_10
555
- value: 36.760999999999996
556
  - type: recall_at_100
557
- value: 60.549
558
  - type: recall_at_1000
559
- value: 84.414
560
  - type: recall_at_3
561
- value: 25.130000000000003
562
  - type: recall_at_5
563
- value: 29.079
564
  - task:
565
  type: Retrieval
566
  dataset:
@@ -571,65 +571,65 @@ model-index:
571
  revision: None
572
  metrics:
573
  - type: map_at_1
574
- value: 26.176
575
  - type: map_at_10
576
- value: 35.789
577
  - type: map_at_100
578
- value: 37.092000000000006
579
  - type: map_at_1000
580
- value: 37.206
581
  - type: map_at_3
582
- value: 33.207
583
  - type: map_at_5
584
- value: 34.436
585
  - type: mrr_at_1
586
- value: 31.569000000000003
587
  - type: mrr_at_10
588
- value: 41.219
589
  - type: mrr_at_100
590
- value: 42.016999999999996
591
  - type: mrr_at_1000
592
- value: 42.065000000000005
593
  - type: mrr_at_3
594
- value: 39.012
595
  - type: mrr_at_5
596
- value: 40.22
597
  - type: ndcg_at_1
598
- value: 31.569000000000003
599
  - type: ndcg_at_10
600
- value: 41.515
601
  - type: ndcg_at_100
602
- value: 47.125
603
  - type: ndcg_at_1000
604
- value: 49.314
605
  - type: ndcg_at_3
606
- value: 37.201
607
  - type: ndcg_at_5
608
- value: 38.906
609
  - type: precision_at_1
610
- value: 31.569000000000003
611
  - type: precision_at_10
612
- value: 7.517
613
  - type: precision_at_100
614
- value: 1.225
615
  - type: precision_at_1000
616
- value: 0.161
617
  - type: precision_at_3
618
- value: 17.485
619
  - type: precision_at_5
620
- value: 12.089
621
  - type: recall_at_1
622
- value: 26.176
623
  - type: recall_at_10
624
- value: 53.076
625
  - type: recall_at_100
626
- value: 77.049
627
  - type: recall_at_1000
628
- value: 91.51
629
  - type: recall_at_3
630
- value: 40.82
631
  - type: recall_at_5
632
- value: 45.479
633
  - task:
634
  type: Retrieval
635
  dataset:
@@ -640,65 +640,65 @@ model-index:
640
  revision: None
641
  metrics:
642
  - type: map_at_1
643
- value: 22.675
644
  - type: map_at_10
645
- value: 31.752999999999997
646
  - type: map_at_100
647
- value: 33.19
648
  - type: map_at_1000
649
- value: 33.303
650
  - type: map_at_3
651
- value: 28.89
652
  - type: map_at_5
653
- value: 30.451
654
  - type: mrr_at_1
655
- value: 27.854
656
  - type: mrr_at_10
657
- value: 36.736999999999995
658
  - type: mrr_at_100
659
- value: 37.783
660
  - type: mrr_at_1000
661
- value: 37.836
662
  - type: mrr_at_3
663
- value: 34.266000000000005
664
  - type: mrr_at_5
665
- value: 35.577999999999996
666
  - type: ndcg_at_1
667
- value: 27.854
668
  - type: ndcg_at_10
669
- value: 37.391999999999996
670
  - type: ndcg_at_100
671
- value: 43.682
672
  - type: ndcg_at_1000
673
- value: 46.005
674
  - type: ndcg_at_3
675
- value: 32.66
676
  - type: ndcg_at_5
677
- value: 34.73
678
  - type: precision_at_1
679
- value: 27.854
680
  - type: precision_at_10
681
- value: 6.963
682
  - type: precision_at_100
683
- value: 1.184
684
  - type: precision_at_1000
685
- value: 0.159
686
  - type: precision_at_3
687
- value: 15.715000000000002
688
  - type: precision_at_5
689
- value: 11.256
690
  - type: recall_at_1
691
- value: 22.675
692
  - type: recall_at_10
693
- value: 49.15
694
  - type: recall_at_100
695
- value: 76.542
696
  - type: recall_at_1000
697
- value: 92.19000000000001
698
  - type: recall_at_3
699
- value: 35.607
700
  - type: recall_at_5
701
- value: 41.288000000000004
702
  - task:
703
  type: Retrieval
704
  dataset:
@@ -709,65 +709,65 @@ model-index:
709
  revision: None
710
  metrics:
711
  - type: map_at_1
712
- value: 23.214499999999997
713
  - type: map_at_10
714
- value: 31.979833333333335
715
  - type: map_at_100
716
- value: 33.20666666666666
717
  - type: map_at_1000
718
- value: 33.328583333333334
719
  - type: map_at_3
720
- value: 29.341416666666664
721
  - type: map_at_5
722
- value: 30.718083333333336
723
  - type: mrr_at_1
724
- value: 27.328583333333338
725
  - type: mrr_at_10
726
- value: 35.88433333333333
727
  - type: mrr_at_100
728
- value: 36.80075000000001
729
  - type: mrr_at_1000
730
- value: 36.86175
731
  - type: mrr_at_3
732
- value: 33.51625
733
  - type: mrr_at_5
734
- value: 34.821416666666664
735
  - type: ndcg_at_1
736
- value: 27.328583333333338
737
  - type: ndcg_at_10
738
- value: 37.24475
739
  - type: ndcg_at_100
740
- value: 42.63825
741
  - type: ndcg_at_1000
742
- value: 45.08266666666667
743
  - type: ndcg_at_3
744
- value: 32.61783333333334
745
  - type: ndcg_at_5
746
- value: 34.631249999999994
747
  - type: precision_at_1
748
- value: 27.328583333333338
749
  - type: precision_at_10
750
- value: 6.5873333333333335
751
  - type: precision_at_100
752
- value: 1.094916666666667
753
  - type: precision_at_1000
754
- value: 0.15091666666666664
755
  - type: precision_at_3
756
- value: 15.073499999999997
757
  - type: precision_at_5
758
- value: 10.651916666666667
759
  - type: recall_at_1
760
- value: 23.214499999999997
761
  - type: recall_at_10
762
- value: 49.010250000000006
763
  - type: recall_at_100
764
- value: 72.70374999999999
765
  - type: recall_at_1000
766
- value: 89.66041666666666
767
  - type: recall_at_3
768
- value: 36.06008333333334
769
  - type: recall_at_5
770
- value: 41.289166666666674
771
  - task:
772
  type: Retrieval
773
  dataset:
@@ -778,65 +778,65 @@ model-index:
778
  revision: None
779
  metrics:
780
  - type: map_at_1
781
- value: 23.497
782
  - type: map_at_10
783
- value: 29.176000000000002
784
  - type: map_at_100
785
- value: 30.218
786
  - type: map_at_1000
787
- value: 30.317
788
  - type: map_at_3
789
- value: 27.072000000000003
790
  - type: map_at_5
791
- value: 28.162
792
  - type: mrr_at_1
793
- value: 25.919999999999998
794
  - type: mrr_at_10
795
- value: 31.513
796
  - type: mrr_at_100
797
- value: 32.434000000000005
798
  - type: mrr_at_1000
799
- value: 32.507000000000005
800
  - type: mrr_at_3
801
- value: 29.576
802
  - type: mrr_at_5
803
- value: 30.45
804
  - type: ndcg_at_1
805
- value: 25.919999999999998
806
  - type: ndcg_at_10
807
- value: 32.958999999999996
808
  - type: ndcg_at_100
809
- value: 37.937
810
  - type: ndcg_at_1000
811
- value: 40.455000000000005
812
  - type: ndcg_at_3
813
- value: 28.969
814
  - type: ndcg_at_5
815
- value: 30.552
816
  - type: precision_at_1
817
- value: 25.919999999999998
818
  - type: precision_at_10
819
- value: 5.106999999999999
820
  - type: precision_at_100
821
- value: 0.8170000000000001
822
  - type: precision_at_1000
823
- value: 0.11100000000000002
824
  - type: precision_at_3
825
- value: 12.117
826
  - type: precision_at_5
827
- value: 8.373999999999999
828
  - type: recall_at_1
829
- value: 23.497
830
  - type: recall_at_10
831
- value: 42.506
832
  - type: recall_at_100
833
- value: 65.048
834
  - type: recall_at_1000
835
- value: 83.545
836
  - type: recall_at_3
837
- value: 31.078
838
  - type: recall_at_5
839
- value: 35.018
840
  - task:
841
  type: Retrieval
842
  dataset:
@@ -847,65 +847,65 @@ model-index:
847
  revision: None
848
  metrics:
849
  - type: map_at_1
850
- value: 15.267
851
  - type: map_at_10
852
- value: 22.292
853
  - type: map_at_100
854
- value: 23.412
855
  - type: map_at_1000
856
- value: 23.543
857
  - type: map_at_3
858
- value: 19.993
859
  - type: map_at_5
860
- value: 21.256
861
  - type: mrr_at_1
862
- value: 18.445
863
  - type: mrr_at_10
864
- value: 25.698999999999998
865
  - type: mrr_at_100
866
- value: 26.682
867
  - type: mrr_at_1000
868
- value: 26.764
869
  - type: mrr_at_3
870
- value: 23.446
871
  - type: mrr_at_5
872
- value: 24.757
873
  - type: ndcg_at_1
874
- value: 18.445
875
  - type: ndcg_at_10
876
- value: 26.833000000000002
877
  - type: ndcg_at_100
878
- value: 32.151999999999994
879
  - type: ndcg_at_1000
880
- value: 35.235
881
  - type: ndcg_at_3
882
- value: 22.597
883
  - type: ndcg_at_5
884
- value: 24.585
885
  - type: precision_at_1
886
- value: 18.445
887
  - type: precision_at_10
888
- value: 4.942
889
  - type: precision_at_100
890
- value: 0.894
891
  - type: precision_at_1000
892
- value: 0.135
893
  - type: precision_at_3
894
- value: 10.735999999999999
895
  - type: precision_at_5
896
- value: 7.915
897
  - type: recall_at_1
898
- value: 15.267
899
  - type: recall_at_10
900
- value: 37.198
901
  - type: recall_at_100
902
- value: 60.748999999999995
903
  - type: recall_at_1000
904
- value: 82.72699999999999
905
  - type: recall_at_3
906
- value: 25.419000000000004
907
  - type: recall_at_5
908
- value: 30.416999999999998
909
  - task:
910
  type: Retrieval
911
  dataset:
@@ -916,65 +916,65 @@ model-index:
916
  revision: None
917
  metrics:
918
  - type: map_at_1
919
- value: 22.839000000000002
920
  - type: map_at_10
921
- value: 31.287
922
  - type: map_at_100
923
- value: 32.474
924
  - type: map_at_1000
925
- value: 32.586
926
  - type: map_at_3
927
- value: 28.735
928
  - type: map_at_5
929
- value: 30.11
930
  - type: mrr_at_1
931
- value: 26.959
932
  - type: mrr_at_10
933
- value: 34.943000000000005
934
  - type: mrr_at_100
935
- value: 35.957
936
  - type: mrr_at_1000
937
- value: 36.022
938
  - type: mrr_at_3
939
- value: 32.572
940
  - type: mrr_at_5
941
- value: 33.952
942
  - type: ndcg_at_1
943
- value: 26.959
944
  - type: ndcg_at_10
945
- value: 36.252
946
  - type: ndcg_at_100
947
- value: 41.915
948
  - type: ndcg_at_1000
949
- value: 44.461
950
  - type: ndcg_at_3
951
- value: 31.532
952
  - type: ndcg_at_5
953
- value: 33.674
954
  - type: precision_at_1
955
- value: 26.959
956
  - type: precision_at_10
957
- value: 6.166
958
  - type: precision_at_100
959
- value: 1.01
960
  - type: precision_at_1000
961
- value: 0.134
962
  - type: precision_at_3
963
- value: 14.302999999999999
964
  - type: precision_at_5
965
- value: 10.131
966
  - type: recall_at_1
967
- value: 22.839000000000002
968
  - type: recall_at_10
969
- value: 47.796
970
  - type: recall_at_100
971
- value: 72.68
972
  - type: recall_at_1000
973
- value: 90.556
974
  - type: recall_at_3
975
- value: 34.955000000000005
976
  - type: recall_at_5
977
- value: 40.293
978
  - task:
979
  type: Retrieval
980
  dataset:
@@ -985,65 +985,65 @@ model-index:
985
  revision: None
986
  metrics:
987
  - type: map_at_1
988
- value: 21.676000000000002
989
  - type: map_at_10
990
- value: 30.742000000000004
991
  - type: map_at_100
992
- value: 32.332
993
  - type: map_at_1000
994
- value: 32.548
995
  - type: map_at_3
996
- value: 27.560000000000002
997
  - type: map_at_5
998
- value: 29.331000000000003
999
  - type: mrr_at_1
1000
- value: 25.099
1001
  - type: mrr_at_10
1002
- value: 34.538999999999994
1003
  - type: mrr_at_100
1004
- value: 35.629
1005
  - type: mrr_at_1000
1006
- value: 35.687000000000005
1007
  - type: mrr_at_3
1008
- value: 31.621
1009
  - type: mrr_at_5
1010
- value: 33.419
1011
  - type: ndcg_at_1
1012
- value: 25.099
1013
  - type: ndcg_at_10
1014
- value: 36.741
1015
  - type: ndcg_at_100
1016
- value: 42.964
1017
  - type: ndcg_at_1000
1018
- value: 45.754
1019
  - type: ndcg_at_3
1020
- value: 31.356
1021
  - type: ndcg_at_5
1022
- value: 33.934999999999995
1023
  - type: precision_at_1
1024
- value: 25.099
1025
  - type: precision_at_10
1026
- value: 7.115
1027
  - type: precision_at_100
1028
- value: 1.46
1029
  - type: precision_at_1000
1030
- value: 0.23800000000000002
1031
  - type: precision_at_3
1032
- value: 14.954
1033
  - type: precision_at_5
1034
- value: 11.067
1035
  - type: recall_at_1
1036
- value: 21.676000000000002
1037
  - type: recall_at_10
1038
- value: 49.546
1039
  - type: recall_at_100
1040
- value: 76.544
1041
  - type: recall_at_1000
1042
- value: 94.39999999999999
1043
  - type: recall_at_3
1044
- value: 34.67
1045
  - type: recall_at_5
1046
- value: 41.528999999999996
1047
  - task:
1048
  type: Retrieval
1049
  dataset:
@@ -1054,65 +1054,65 @@ model-index:
1054
  revision: None
1055
  metrics:
1056
  - type: map_at_1
1057
- value: 17.431
1058
  - type: map_at_10
1059
- value: 24.694
1060
  - type: map_at_100
1061
- value: 25.884
1062
  - type: map_at_1000
1063
- value: 25.996999999999996
1064
  - type: map_at_3
1065
- value: 22.203
1066
  - type: map_at_5
1067
- value: 23.329
1068
  - type: mrr_at_1
1069
- value: 19.039
1070
  - type: mrr_at_10
1071
- value: 26.459
1072
  - type: mrr_at_100
1073
- value: 27.560000000000002
1074
  - type: mrr_at_1000
1075
- value: 27.636
1076
  - type: mrr_at_3
1077
- value: 24.03
1078
  - type: mrr_at_5
1079
- value: 25.213
1080
  - type: ndcg_at_1
1081
- value: 19.039
1082
  - type: ndcg_at_10
1083
- value: 29.220000000000002
1084
  - type: ndcg_at_100
1085
- value: 34.854
1086
  - type: ndcg_at_1000
1087
- value: 37.580999999999996
1088
  - type: ndcg_at_3
1089
- value: 24.218999999999998
1090
  - type: ndcg_at_5
1091
- value: 26.125
1092
  - type: precision_at_1
1093
- value: 19.039
1094
  - type: precision_at_10
1095
- value: 4.861
1096
  - type: precision_at_100
1097
- value: 0.826
1098
  - type: precision_at_1000
1099
  value: 0.116
1100
  - type: precision_at_3
1101
- value: 10.290000000000001
1102
  - type: precision_at_5
1103
- value: 7.394
1104
  - type: recall_at_1
1105
- value: 17.431
1106
  - type: recall_at_10
1107
- value: 41.525
1108
  - type: recall_at_100
1109
- value: 67.121
1110
  - type: recall_at_1000
1111
- value: 87.575
1112
  - type: recall_at_3
1113
- value: 27.794
1114
  - type: recall_at_5
1115
- value: 32.332
1116
  - task:
1117
  type: Retrieval
1118
  dataset:
@@ -1123,65 +1123,65 @@ model-index:
1123
  revision: None
1124
  metrics:
1125
  - type: map_at_1
1126
- value: 10.767
1127
  - type: map_at_10
1128
- value: 17.456
1129
  - type: map_at_100
1130
- value: 19.097
1131
  - type: map_at_1000
1132
- value: 19.272
1133
  - type: map_at_3
1134
- value: 14.530000000000001
1135
  - type: map_at_5
1136
- value: 15.943999999999999
1137
  - type: mrr_at_1
1138
- value: 23.583000000000002
1139
  - type: mrr_at_10
1140
- value: 33.391
1141
  - type: mrr_at_100
1142
- value: 34.43
1143
  - type: mrr_at_1000
1144
- value: 34.479
1145
  - type: mrr_at_3
1146
- value: 30.239
1147
  - type: mrr_at_5
1148
- value: 31.923000000000002
1149
  - type: ndcg_at_1
1150
- value: 23.583000000000002
1151
  - type: ndcg_at_10
1152
- value: 24.84
1153
  - type: ndcg_at_100
1154
- value: 31.749
1155
  - type: ndcg_at_1000
1156
- value: 35.161
1157
  - type: ndcg_at_3
1158
- value: 19.906
1159
  - type: ndcg_at_5
1160
- value: 21.543
1161
  - type: precision_at_1
1162
- value: 23.583000000000002
1163
  - type: precision_at_10
1164
- value: 7.739
1165
  - type: precision_at_100
1166
- value: 1.5110000000000001
1167
  - type: precision_at_1000
1168
- value: 0.215
1169
  - type: precision_at_3
1170
- value: 14.506
1171
  - type: precision_at_5
1172
- value: 11.179
1173
  - type: recall_at_1
1174
- value: 10.767
1175
  - type: recall_at_10
1176
- value: 30.270000000000003
1177
  - type: recall_at_100
1178
- value: 54.467
1179
  - type: recall_at_1000
1180
- value: 73.71799999999999
1181
  - type: recall_at_3
1182
- value: 18.251
1183
  - type: recall_at_5
1184
- value: 22.831000000000003
1185
  - task:
1186
  type: Retrieval
1187
  dataset:
@@ -1192,65 +1192,65 @@ model-index:
1192
  revision: None
1193
  metrics:
1194
  - type: map_at_1
1195
- value: 6.493
1196
  - type: map_at_10
1197
- value: 15.290999999999999
1198
  - type: map_at_100
1199
- value: 21.523999999999997
1200
  - type: map_at_1000
1201
- value: 22.980999999999998
1202
  - type: map_at_3
1203
- value: 11.015
1204
  - type: map_at_5
1205
- value: 12.631
1206
  - type: mrr_at_1
1207
  value: 55.50000000000001
1208
  - type: mrr_at_10
1209
- value: 65.068
1210
  - type: mrr_at_100
1211
- value: 65.608
1212
  - type: mrr_at_1000
1213
- value: 65.622
1214
  - type: mrr_at_3
1215
- value: 62.625
1216
  - type: mrr_at_5
1217
- value: 64.2
1218
  - type: ndcg_at_1
1219
- value: 44.875
1220
  - type: ndcg_at_10
1221
- value: 35.046
1222
  - type: ndcg_at_100
1223
- value: 38.662
1224
  - type: ndcg_at_1000
1225
- value: 45.916000000000004
1226
  - type: ndcg_at_3
1227
- value: 38.888
1228
  - type: ndcg_at_5
1229
- value: 36.411
1230
  - type: precision_at_1
1231
  value: 55.50000000000001
1232
  - type: precision_at_10
1233
- value: 28.175
1234
  - type: precision_at_100
1235
- value: 8.938
1236
  - type: precision_at_1000
1237
- value: 1.894
1238
  - type: precision_at_3
1239
- value: 41.917
1240
  - type: precision_at_5
1241
- value: 34.949999999999996
1242
  - type: recall_at_1
1243
- value: 6.493
1244
  - type: recall_at_10
1245
- value: 20.992
1246
  - type: recall_at_100
1247
- value: 44.138
1248
  - type: recall_at_1000
1249
- value: 67.181
1250
  - type: recall_at_3
1251
- value: 12.546
1252
  - type: recall_at_5
1253
- value: 15.552
1254
  - task:
1255
  type: Classification
1256
  dataset:
@@ -1261,9 +1261,9 @@ model-index:
1261
  revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1262
  metrics:
1263
  - type: accuracy
1264
- value: 45.955
1265
  - type: f1
1266
- value: 40.97084067876041
1267
  - task:
1268
  type: Retrieval
1269
  dataset:
@@ -1274,65 +1274,65 @@ model-index:
1274
  revision: None
1275
  metrics:
1276
  - type: map_at_1
1277
- value: 43.765
1278
  - type: map_at_10
1279
- value: 56.566
1280
  - type: map_at_100
1281
- value: 57.154
1282
  - type: map_at_1000
1283
- value: 57.181000000000004
1284
  - type: map_at_3
1285
- value: 53.637
1286
  - type: map_at_5
1287
- value: 55.457
1288
  - type: mrr_at_1
1289
- value: 47.03
1290
  - type: mrr_at_10
1291
- value: 59.938
1292
  - type: mrr_at_100
1293
- value: 60.44500000000001
1294
  - type: mrr_at_1000
1295
- value: 60.458999999999996
1296
  - type: mrr_at_3
1297
- value: 57.141
1298
  - type: mrr_at_5
1299
- value: 58.862
1300
  - type: ndcg_at_1
1301
- value: 47.03
1302
  - type: ndcg_at_10
1303
- value: 63.227
1304
  - type: ndcg_at_100
1305
- value: 65.846
1306
  - type: ndcg_at_1000
1307
- value: 66.412
1308
  - type: ndcg_at_3
1309
- value: 57.546
1310
  - type: ndcg_at_5
1311
- value: 60.638000000000005
1312
  - type: precision_at_1
1313
- value: 47.03
1314
  - type: precision_at_10
1315
- value: 8.831
1316
  - type: precision_at_100
1317
- value: 1.027
1318
  - type: precision_at_1000
1319
  value: 0.109
1320
  - type: precision_at_3
1321
- value: 23.642
1322
  - type: precision_at_5
1323
- value: 15.884
1324
  - type: recall_at_1
1325
- value: 43.765
1326
  - type: recall_at_10
1327
- value: 80.537
1328
  - type: recall_at_100
1329
- value: 92.06400000000001
1330
  - type: recall_at_1000
1331
- value: 96.054
1332
  - type: recall_at_3
1333
- value: 65.27199999999999
1334
  - type: recall_at_5
1335
- value: 72.71
1336
  - task:
1337
  type: Retrieval
1338
  dataset:
@@ -1343,65 +1343,65 @@ model-index:
1343
  revision: None
1344
  metrics:
1345
  - type: map_at_1
1346
- value: 20.684
1347
  - type: map_at_10
1348
- value: 33.393
1349
  - type: map_at_100
1350
- value: 35.370000000000005
1351
  - type: map_at_1000
1352
- value: 35.539
1353
  - type: map_at_3
1354
- value: 28.810000000000002
1355
  - type: map_at_5
1356
- value: 31.484
1357
  - type: mrr_at_1
1358
- value: 41.049
1359
  - type: mrr_at_10
1360
- value: 49.736999999999995
1361
  - type: mrr_at_100
1362
- value: 50.541000000000004
1363
  - type: mrr_at_1000
1364
- value: 50.575
1365
  - type: mrr_at_3
1366
- value: 47.094
1367
  - type: mrr_at_5
1368
- value: 48.768
1369
  - type: ndcg_at_1
1370
- value: 41.049
1371
  - type: ndcg_at_10
1372
- value: 41.338
1373
  - type: ndcg_at_100
1374
- value: 48.386
1375
  - type: ndcg_at_1000
1376
- value: 51.209
1377
  - type: ndcg_at_3
1378
- value: 37.208000000000006
1379
  - type: ndcg_at_5
1380
- value: 38.788
1381
  - type: precision_at_1
1382
- value: 41.049
1383
  - type: precision_at_10
1384
- value: 11.466
1385
  - type: precision_at_100
1386
- value: 1.8769999999999998
1387
  - type: precision_at_1000
1388
- value: 0.23800000000000002
1389
  - type: precision_at_3
1390
- value: 24.691
1391
  - type: precision_at_5
1392
- value: 18.519
1393
  - type: recall_at_1
1394
- value: 20.684
1395
  - type: recall_at_10
1396
- value: 48.431000000000004
1397
  - type: recall_at_100
1398
- value: 74.331
1399
  - type: recall_at_1000
1400
- value: 91.268
1401
  - type: recall_at_3
1402
- value: 33.267
1403
  - type: recall_at_5
1404
- value: 40.313
1405
  - task:
1406
  type: Retrieval
1407
  dataset:
@@ -1412,65 +1412,65 @@ model-index:
1412
  revision: None
1413
  metrics:
1414
  - type: map_at_1
1415
- value: 32.242
1416
  - type: map_at_10
1417
- value: 47.49
1418
  - type: map_at_100
1419
- value: 48.409
1420
  - type: map_at_1000
1421
- value: 48.489
1422
  - type: map_at_3
1423
- value: 44.519
1424
  - type: map_at_5
1425
- value: 46.298
1426
  - type: mrr_at_1
1427
- value: 64.483
1428
  - type: mrr_at_10
1429
- value: 71.364
1430
  - type: mrr_at_100
1431
- value: 71.734
1432
  - type: mrr_at_1000
1433
- value: 71.751
1434
  - type: mrr_at_3
1435
- value: 69.899
1436
  - type: mrr_at_5
1437
- value: 70.791
1438
  - type: ndcg_at_1
1439
- value: 64.483
1440
  - type: ndcg_at_10
1441
- value: 56.274
1442
  - type: ndcg_at_100
1443
- value: 59.855999999999995
1444
  - type: ndcg_at_1000
1445
- value: 61.538000000000004
1446
  - type: ndcg_at_3
1447
- value: 51.636
1448
  - type: ndcg_at_5
1449
- value: 54.089
1450
  - type: precision_at_1
1451
- value: 64.483
1452
  - type: precision_at_10
1453
- value: 11.858
1454
  - type: precision_at_100
1455
- value: 1.47
1456
  - type: precision_at_1000
1457
- value: 0.169
1458
  - type: precision_at_3
1459
- value: 32.635999999999996
1460
  - type: precision_at_5
1461
- value: 21.521
1462
  - type: recall_at_1
1463
- value: 32.242
1464
  - type: recall_at_10
1465
- value: 59.291000000000004
1466
  - type: recall_at_100
1467
- value: 73.518
1468
  - type: recall_at_1000
1469
- value: 84.747
1470
  - type: recall_at_3
1471
- value: 48.953
1472
  - type: recall_at_5
1473
- value: 53.801
1474
  - task:
1475
  type: Classification
1476
  dataset:
@@ -1481,11 +1481,11 @@ model-index:
1481
  revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1482
  metrics:
1483
  - type: accuracy
1484
- value: 80.9492
1485
  - type: ap
1486
- value: 75.30846930618502
1487
  - type: f1
1488
- value: 80.89150705991759
1489
  - task:
1490
  type: Retrieval
1491
  dataset:
@@ -1496,65 +1496,65 @@ model-index:
1496
  revision: None
1497
  metrics:
1498
  - type: map_at_1
1499
- value: 22.033
1500
  - type: map_at_10
1501
- value: 34.331
1502
  - type: map_at_100
1503
- value: 35.536
1504
  - type: map_at_1000
1505
- value: 35.583
1506
  - type: map_at_3
1507
- value: 30.562
1508
  - type: map_at_5
1509
- value: 32.667
1510
  - type: mrr_at_1
1511
- value: 22.708000000000002
1512
  - type: mrr_at_10
1513
- value: 34.967999999999996
1514
  - type: mrr_at_100
1515
- value: 36.105
1516
  - type: mrr_at_1000
1517
- value: 36.147
1518
  - type: mrr_at_3
1519
- value: 31.256
1520
  - type: mrr_at_5
1521
- value: 33.322
1522
  - type: ndcg_at_1
1523
- value: 22.708000000000002
1524
  - type: ndcg_at_10
1525
- value: 41.211999999999996
1526
  - type: ndcg_at_100
1527
- value: 46.952
1528
  - type: ndcg_at_1000
1529
- value: 48.131
1530
  - type: ndcg_at_3
1531
- value: 33.501
1532
  - type: ndcg_at_5
1533
- value: 37.248999999999995
1534
  - type: precision_at_1
1535
- value: 22.708000000000002
1536
  - type: precision_at_10
1537
- value: 6.519
1538
  - type: precision_at_100
1539
- value: 0.9390000000000001
1540
  - type: precision_at_1000
1541
  value: 0.104
1542
  - type: precision_at_3
1543
- value: 14.302999999999999
1544
  - type: precision_at_5
1545
- value: 10.481
1546
  - type: recall_at_1
1547
- value: 22.033
1548
  - type: recall_at_10
1549
- value: 62.348000000000006
1550
  - type: recall_at_100
1551
- value: 88.771
1552
  - type: recall_at_1000
1553
- value: 97.782
1554
  - type: recall_at_3
1555
- value: 41.331
1556
  - type: recall_at_5
1557
- value: 50.32600000000001
1558
  - task:
1559
  type: Classification
1560
  dataset:
@@ -1565,9 +1565,9 @@ model-index:
1565
  revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1566
  metrics:
1567
  - type: accuracy
1568
- value: 92.69037847697219
1569
  - type: f1
1570
- value: 92.20814766144707
1571
  - task:
1572
  type: Classification
1573
  dataset:
@@ -1578,9 +1578,9 @@ model-index:
1578
  revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1579
  metrics:
1580
  - type: accuracy
1581
- value: 61.12859097127223
1582
  - type: f1
1583
- value: 44.859837744275346
1584
  - task:
1585
  type: Classification
1586
  dataset:
@@ -1591,9 +1591,9 @@ model-index:
1591
  revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1592
  metrics:
1593
  - type: accuracy
1594
- value: 67.59246805648958
1595
  - type: f1
1596
- value: 65.35653843975764
1597
  - task:
1598
  type: Classification
1599
  dataset:
@@ -1604,9 +1604,9 @@ model-index:
1604
  revision: 7d571f92784cd94a019292a1f45445077d0ef634
1605
  metrics:
1606
  - type: accuracy
1607
- value: 72.82447881640888
1608
  - type: f1
1609
- value: 71.74294810351809
1610
  - task:
1611
  type: Clustering
1612
  dataset:
@@ -1617,7 +1617,7 @@ model-index:
1617
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1618
  metrics:
1619
  - type: v_measure
1620
- value: 32.623627054114884
1621
  - task:
1622
  type: Clustering
1623
  dataset:
@@ -1628,7 +1628,7 @@ model-index:
1628
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1629
  metrics:
1630
  - type: v_measure
1631
- value: 28.715250618201516
1632
  - task:
1633
  type: Reranking
1634
  dataset:
@@ -1639,9 +1639,9 @@ model-index:
1639
  revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1640
  metrics:
1641
  - type: map
1642
- value: 31.268319417897434
1643
  - type: mrr
1644
- value: 32.363138927039806
1645
  - task:
1646
  type: Retrieval
1647
  dataset:
@@ -1652,65 +1652,65 @@ model-index:
1652
  revision: None
1653
  metrics:
1654
  - type: map_at_1
1655
- value: 5.702
1656
  - type: map_at_10
1657
- value: 11.838999999999999
1658
  - type: map_at_100
1659
- value: 14.879999999999999
1660
  - type: map_at_1000
1661
- value: 16.277
1662
  - type: map_at_3
1663
- value: 8.912
1664
  - type: map_at_5
1665
- value: 10.213999999999999
1666
  - type: mrr_at_1
1667
- value: 44.891999999999996
1668
  - type: mrr_at_10
1669
- value: 53.15800000000001
1670
  - type: mrr_at_100
1671
- value: 53.830999999999996
1672
  - type: mrr_at_1000
1673
- value: 53.882
1674
  - type: mrr_at_3
1675
- value: 51.135
1676
  - type: mrr_at_5
1677
- value: 52.234
1678
  - type: ndcg_at_1
1679
  value: 43.808
1680
  - type: ndcg_at_10
1681
- value: 32.179
1682
  - type: ndcg_at_100
1683
- value: 29.842000000000002
1684
  - type: ndcg_at_1000
1685
- value: 38.858
1686
  - type: ndcg_at_3
1687
- value: 38.015
1688
  - type: ndcg_at_5
1689
- value: 35.574
1690
  - type: precision_at_1
1691
- value: 44.891999999999996
1692
  - type: precision_at_10
1693
- value: 23.375
1694
  - type: precision_at_100
1695
- value: 7.545
1696
  - type: precision_at_1000
1697
- value: 2.052
1698
  - type: precision_at_3
1699
- value: 35.088
1700
  - type: precision_at_5
1701
- value: 30.154999999999998
1702
  - type: recall_at_1
1703
- value: 5.702
1704
  - type: recall_at_10
1705
- value: 15.421000000000001
1706
  - type: recall_at_100
1707
- value: 30.708999999999996
1708
  - type: recall_at_1000
1709
- value: 62.487
1710
  - type: recall_at_3
1711
- value: 9.966999999999999
1712
  - type: recall_at_5
1713
- value: 12.059000000000001
1714
  - task:
1715
  type: Retrieval
1716
  dataset:
@@ -1721,65 +1721,65 @@ model-index:
1721
  revision: None
1722
  metrics:
1723
  - type: map_at_1
1724
- value: 39.117000000000004
1725
  - type: map_at_10
1726
- value: 54.041
1727
  - type: map_at_100
1728
- value: 54.845
1729
  - type: map_at_1000
1730
- value: 54.876999999999995
1731
  - type: map_at_3
1732
- value: 50.339999999999996
1733
  - type: map_at_5
1734
- value: 52.678999999999995
1735
  - type: mrr_at_1
1736
- value: 43.627
1737
  - type: mrr_at_10
1738
- value: 56.752
1739
  - type: mrr_at_100
1740
- value: 57.32899999999999
1741
  - type: mrr_at_1000
1742
- value: 57.35
1743
  - type: mrr_at_3
1744
- value: 53.818999999999996
1745
  - type: mrr_at_5
1746
- value: 55.684999999999995
1747
  - type: ndcg_at_1
1748
- value: 43.627
1749
  - type: ndcg_at_10
1750
- value: 60.934
1751
  - type: ndcg_at_100
1752
- value: 64.277
1753
  - type: ndcg_at_1000
1754
- value: 64.97
1755
  - type: ndcg_at_3
1756
- value: 54.164
1757
  - type: ndcg_at_5
1758
- value: 57.994
1759
  - type: precision_at_1
1760
- value: 43.627
1761
- - type: precision_at_10
1762
- value: 9.383
1763
  - type: precision_at_100
1764
- value: 1.131
1765
  - type: precision_at_1000
1766
  value: 0.12
1767
  - type: precision_at_3
1768
- value: 23.919
1769
  - type: precision_at_5
1770
- value: 16.541
1771
  - type: recall_at_1
1772
- value: 39.117000000000004
1773
  - type: recall_at_10
1774
- value: 79.012
1775
  - type: recall_at_100
1776
- value: 93.395
1777
  - type: recall_at_1000
1778
- value: 98.494
1779
  - type: recall_at_3
1780
- value: 61.714999999999996
1781
  - type: recall_at_5
1782
- value: 70.55799999999999
1783
  - task:
1784
  type: Retrieval
1785
  dataset:
@@ -1790,65 +1790,65 @@ model-index:
1790
  revision: None
1791
  metrics:
1792
  - type: map_at_1
1793
- value: 70.832
1794
  - type: map_at_10
1795
- value: 84.82300000000001
1796
  - type: map_at_100
1797
- value: 85.44500000000001
1798
  - type: map_at_1000
1799
- value: 85.461
1800
  - type: map_at_3
1801
- value: 81.917
1802
  - type: map_at_5
1803
- value: 83.734
1804
  - type: mrr_at_1
1805
- value: 81.61
1806
  - type: mrr_at_10
1807
- value: 87.75500000000001
1808
  - type: mrr_at_100
1809
- value: 87.85300000000001
1810
  - type: mrr_at_1000
1811
- value: 87.854
1812
  - type: mrr_at_3
1813
- value: 86.855
1814
  - type: mrr_at_5
1815
- value: 87.465
1816
  - type: ndcg_at_1
1817
- value: 81.58999999999999
1818
  - type: ndcg_at_10
1819
- value: 88.536
1820
  - type: ndcg_at_100
1821
- value: 89.714
1822
  - type: ndcg_at_1000
1823
- value: 89.80799999999999
1824
  - type: ndcg_at_3
1825
- value: 85.8
1826
  - type: ndcg_at_5
1827
- value: 87.286
1828
  - type: precision_at_1
1829
- value: 81.58999999999999
1830
  - type: precision_at_10
1831
- value: 13.438
1832
  - type: precision_at_100
1833
- value: 1.5310000000000001
1834
  - type: precision_at_1000
1835
  value: 0.157
1836
  - type: precision_at_3
1837
- value: 37.563
1838
  - type: precision_at_5
1839
- value: 24.65
1840
  - type: recall_at_1
1841
- value: 70.832
1842
  - type: recall_at_10
1843
- value: 95.574
1844
  - type: recall_at_100
1845
- value: 99.575
1846
  - type: recall_at_1000
1847
- value: 99.99
1848
  - type: recall_at_3
1849
- value: 87.61
1850
  - type: recall_at_5
1851
- value: 91.9
1852
  - task:
1853
  type: Clustering
1854
  dataset:
@@ -1859,7 +1859,7 @@ model-index:
1859
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1860
  metrics:
1861
  - type: v_measure
1862
- value: 54.4131741738767
1863
  - task:
1864
  type: Clustering
1865
  dataset:
@@ -1870,7 +1870,7 @@ model-index:
1870
  revision: 282350215ef01743dc01b456c7f5241fa8937f16
1871
  metrics:
1872
  - type: v_measure
1873
- value: 59.816632341901865
1874
  - task:
1875
  type: Retrieval
1876
  dataset:
@@ -1881,65 +1881,65 @@ model-index:
1881
  revision: None
1882
  metrics:
1883
  - type: map_at_1
1884
- value: 4.857
1885
  - type: map_at_10
1886
- value: 11.937000000000001
1887
  - type: map_at_100
1888
- value: 14.143
1889
  - type: map_at_1000
1890
- value: 14.451
1891
  - type: map_at_3
1892
- value: 8.376999999999999
1893
  - type: map_at_5
1894
- value: 10.172
1895
  - type: mrr_at_1
1896
- value: 23.799999999999997
1897
  - type: mrr_at_10
1898
- value: 34.134
1899
  - type: mrr_at_100
1900
- value: 35.285
1901
  - type: mrr_at_1000
1902
- value: 35.33
1903
  - type: mrr_at_3
1904
- value: 30.833
1905
  - type: mrr_at_5
1906
- value: 32.828
1907
  - type: ndcg_at_1
1908
- value: 23.799999999999997
1909
  - type: ndcg_at_10
1910
- value: 20.0
1911
  - type: ndcg_at_100
1912
- value: 28.486
1913
  - type: ndcg_at_1000
1914
- value: 33.781
1915
  - type: ndcg_at_3
1916
- value: 18.726000000000003
1917
  - type: ndcg_at_5
1918
- value: 16.587
1919
  - type: precision_at_1
1920
- value: 23.799999999999997
1921
  - type: precision_at_10
1922
  value: 10.39
1923
  - type: precision_at_100
1924
- value: 2.263
1925
  - type: precision_at_1000
1926
  value: 0.35300000000000004
1927
  - type: precision_at_3
1928
- value: 17.333000000000002
1929
  - type: precision_at_5
1930
- value: 14.56
1931
  - type: recall_at_1
1932
- value: 4.857
1933
  - type: recall_at_10
1934
- value: 21.02
1935
  - type: recall_at_100
1936
- value: 45.932
1937
  - type: recall_at_1000
1938
- value: 71.693
1939
  - type: recall_at_3
1940
- value: 10.552
1941
  - type: recall_at_5
1942
- value: 14.760000000000002
1943
  - task:
1944
  type: STS
1945
  dataset:
@@ -1950,17 +1950,17 @@ model-index:
1950
  revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1951
  metrics:
1952
  - type: cos_sim_pearson
1953
- value: 85.00513539036214
1954
  - type: cos_sim_spearman
1955
- value: 79.19581558052613
1956
  - type: euclidean_pearson
1957
- value: 82.46689229301268
1958
  - type: euclidean_spearman
1959
- value: 79.19581263972574
1960
  - type: manhattan_pearson
1961
- value: 82.46839559537645
1962
  - type: manhattan_spearman
1963
- value: 79.19301791744469
1964
  - task:
1965
  type: STS
1966
  dataset:
@@ -1971,17 +1971,17 @@ model-index:
1971
  revision: a0d554a64d88156834ff5ae9920b964011b16384
1972
  metrics:
1973
  - type: cos_sim_pearson
1974
- value: 82.44111721768361
1975
  - type: cos_sim_spearman
1976
- value: 73.14524004507561
1977
  - type: euclidean_pearson
1978
- value: 78.70346379990235
1979
  - type: euclidean_spearman
1980
- value: 73.14518679640568
1981
  - type: manhattan_pearson
1982
- value: 78.68478215009414
1983
  - type: manhattan_spearman
1984
- value: 73.10912398034866
1985
  - task:
1986
  type: STS
1987
  dataset:
@@ -1992,17 +1992,17 @@ model-index:
1992
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1993
  metrics:
1994
  - type: cos_sim_pearson
1995
- value: 82.17030364533524
1996
  - type: cos_sim_spearman
1997
- value: 82.88382996129783
1998
  - type: euclidean_pearson
1999
- value: 82.25266887145027
2000
  - type: euclidean_spearman
2001
- value: 82.88382996129783
2002
  - type: manhattan_pearson
2003
- value: 82.21831434263969
2004
  - type: manhattan_spearman
2005
- value: 82.83144970048046
2006
  - task:
2007
  type: STS
2008
  dataset:
@@ -2013,17 +2013,17 @@ model-index:
2013
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2014
  metrics:
2015
  - type: cos_sim_pearson
2016
- value: 80.73413303490618
2017
  - type: cos_sim_spearman
2018
- value: 76.95203008005365
2019
  - type: euclidean_pearson
2020
- value: 79.09169854088067
2021
  - type: euclidean_spearman
2022
- value: 76.95202489005659
2023
  - type: manhattan_pearson
2024
- value: 79.04289364751341
2025
  - type: manhattan_spearman
2026
- value: 76.89976809512328
2027
  - task:
2028
  type: STS
2029
  dataset:
@@ -2034,17 +2034,17 @@ model-index:
2034
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2035
  metrics:
2036
  - type: cos_sim_pearson
2037
- value: 86.84421416279349
2038
  - type: cos_sim_spearman
2039
- value: 87.67393507190887
2040
  - type: euclidean_pearson
2041
- value: 86.81662915280972
2042
  - type: euclidean_spearman
2043
- value: 87.67395576051472
2044
  - type: manhattan_pearson
2045
- value: 86.76502179645067
2046
  - type: manhattan_spearman
2047
- value: 87.60931601838358
2048
  - task:
2049
  type: STS
2050
  dataset:
@@ -2055,17 +2055,17 @@ model-index:
2055
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2056
  metrics:
2057
  - type: cos_sim_pearson
2058
- value: 83.47603001840406
2059
  - type: cos_sim_spearman
2060
- value: 84.57363689562743
2061
  - type: euclidean_pearson
2062
- value: 83.62746191773213
2063
  - type: euclidean_spearman
2064
- value: 84.57363689562743
2065
  - type: manhattan_pearson
2066
- value: 83.5049257196953
2067
  - type: manhattan_spearman
2068
- value: 84.43576972291818
2069
  - task:
2070
  type: STS
2071
  dataset:
@@ -2076,17 +2076,17 @@ model-index:
2076
  revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2077
  metrics:
2078
  - type: cos_sim_pearson
2079
- value: 89.17222804445805
2080
  - type: cos_sim_spearman
2081
- value: 89.04642204765032
2082
  - type: euclidean_pearson
2083
- value: 88.93412366747594
2084
  - type: euclidean_spearman
2085
- value: 89.04642204765032
2086
  - type: manhattan_pearson
2087
- value: 88.88891722217033
2088
  - type: manhattan_spearman
2089
- value: 88.95405155642727
2090
  - task:
2091
  type: STS
2092
  dataset:
@@ -2097,17 +2097,17 @@ model-index:
2097
  revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2098
  metrics:
2099
  - type: cos_sim_pearson
2100
- value: 63.4232873899918
2101
  - type: cos_sim_spearman
2102
- value: 62.53261852485254
2103
  - type: euclidean_pearson
2104
- value: 63.95808586267597
2105
  - type: euclidean_spearman
2106
- value: 62.53261852485254
2107
  - type: manhattan_pearson
2108
- value: 64.07446205165546
2109
  - type: manhattan_spearman
2110
- value: 62.86514483815617
2111
  - task:
2112
  type: STS
2113
  dataset:
@@ -2118,17 +2118,17 @@ model-index:
2118
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2119
  metrics:
2120
  - type: cos_sim_pearson
2121
- value: 84.324835033109
2122
  - type: cos_sim_spearman
2123
- value: 84.75551248417419
2124
  - type: euclidean_pearson
2125
- value: 84.98725144123726
2126
  - type: euclidean_spearman
2127
- value: 84.75551248417419
2128
  - type: manhattan_pearson
2129
- value: 84.9546533100131
2130
  - type: manhattan_spearman
2131
- value: 84.73671830914728
2132
  - task:
2133
  type: Reranking
2134
  dataset:
@@ -2139,9 +2139,9 @@ model-index:
2139
  revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2140
  metrics:
2141
  - type: map
2142
- value: 83.62940531539546
2143
  - type: mrr
2144
- value: 95.50283503714876
2145
  - task:
2146
  type: Retrieval
2147
  dataset:
@@ -2152,65 +2152,65 @@ model-index:
2152
  revision: None
2153
  metrics:
2154
  - type: map_at_1
2155
- value: 52.428
2156
  - type: map_at_10
2157
- value: 62.731
2158
  - type: map_at_100
2159
- value: 63.327
2160
  - type: map_at_1000
2161
- value: 63.356
2162
  - type: map_at_3
2163
- value: 60.17400000000001
2164
  - type: map_at_5
2165
- value: 61.461
2166
  - type: mrr_at_1
2167
  value: 55.333
2168
  - type: mrr_at_10
2169
- value: 63.788999999999994
2170
  - type: mrr_at_100
2171
- value: 64.27000000000001
2172
  - type: mrr_at_1000
2173
- value: 64.298
2174
  - type: mrr_at_3
2175
- value: 61.944
2176
  - type: mrr_at_5
2177
- value: 62.861
2178
  - type: ndcg_at_1
2179
  value: 55.333
2180
  - type: ndcg_at_10
2181
- value: 67.309
2182
  - type: ndcg_at_100
2183
- value: 70.033
2184
  - type: ndcg_at_1000
2185
- value: 70.842
2186
  - type: ndcg_at_3
2187
- value: 63.05500000000001
2188
  - type: ndcg_at_5
2189
- value: 64.8
2190
  - type: precision_at_1
2191
  value: 55.333
2192
  - type: precision_at_10
2193
- value: 9.1
2194
  - type: precision_at_100
2195
- value: 1.057
2196
  - type: precision_at_1000
2197
  value: 0.11199999999999999
2198
  - type: precision_at_3
2199
- value: 25.111
2200
  - type: precision_at_5
2201
  value: 16.333000000000002
2202
  - type: recall_at_1
2203
- value: 52.428
2204
  - type: recall_at_10
2205
- value: 80.156
2206
  - type: recall_at_100
2207
- value: 92.833
2208
  - type: recall_at_1000
2209
  value: 99.333
2210
  - type: recall_at_3
2211
- value: 68.73899999999999
2212
  - type: recall_at_5
2213
- value: 73.13300000000001
2214
  - task:
2215
  type: PairClassification
2216
  dataset:
@@ -2221,51 +2221,51 @@ model-index:
2221
  revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2222
  metrics:
2223
  - type: cos_sim_accuracy
2224
- value: 99.8069306930693
2225
  - type: cos_sim_ap
2226
- value: 94.89496931806809
2227
  - type: cos_sim_f1
2228
- value: 90.0763358778626
2229
  - type: cos_sim_precision
2230
- value: 91.70984455958549
2231
  - type: cos_sim_recall
2232
- value: 88.5
2233
  - type: dot_accuracy
2234
- value: 99.8069306930693
2235
  - type: dot_ap
2236
- value: 94.89495820622456
2237
  - type: dot_f1
2238
- value: 90.0763358778626
2239
  - type: dot_precision
2240
- value: 91.70984455958549
2241
  - type: dot_recall
2242
- value: 88.5
2243
  - type: euclidean_accuracy
2244
- value: 99.8069306930693
2245
  - type: euclidean_ap
2246
- value: 94.8949693180681
2247
  - type: euclidean_f1
2248
- value: 90.0763358778626
2249
  - type: euclidean_precision
2250
- value: 91.70984455958549
2251
  - type: euclidean_recall
2252
- value: 88.5
2253
  - type: manhattan_accuracy
2254
- value: 99.8009900990099
2255
  - type: manhattan_ap
2256
- value: 94.81699021810266
2257
  - type: manhattan_f1
2258
- value: 89.82278481012658
2259
  - type: manhattan_precision
2260
- value: 90.97435897435898
2261
  - type: manhattan_recall
2262
- value: 88.7
2263
  - type: max_accuracy
2264
- value: 99.8069306930693
2265
  - type: max_ap
2266
- value: 94.8949693180681
2267
  - type: max_f1
2268
- value: 90.0763358778626
2269
  - task:
2270
  type: Clustering
2271
  dataset:
@@ -2276,7 +2276,7 @@ model-index:
2276
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2277
  metrics:
2278
  - type: v_measure
2279
- value: 58.95255708336027
2280
  - task:
2281
  type: Clustering
2282
  dataset:
@@ -2287,7 +2287,7 @@ model-index:
2287
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2288
  metrics:
2289
  - type: v_measure
2290
- value: 34.26328409998647
2291
  - task:
2292
  type: Reranking
2293
  dataset:
@@ -2298,9 +2298,9 @@ model-index:
2298
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2299
  metrics:
2300
  - type: map
2301
- value: 52.324949351182134
2302
  - type: mrr
2303
- value: 53.08798329938036
2304
  - task:
2305
  type: Summarization
2306
  dataset:
@@ -2311,13 +2311,13 @@ model-index:
2311
  revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2312
  metrics:
2313
  - type: cos_sim_pearson
2314
- value: 30.286127875761963
2315
  - type: cos_sim_spearman
2316
- value: 30.85723241148158
2317
  - type: dot_pearson
2318
- value: 30.28613033184199
2319
  - type: dot_spearman
2320
- value: 30.85723241148158
2321
  - task:
2322
  type: Retrieval
2323
  dataset:
@@ -2328,65 +2328,65 @@ model-index:
2328
  revision: None
2329
  metrics:
2330
  - type: map_at_1
2331
- value: 0.199
2332
  - type: map_at_10
2333
- value: 1.633
2334
  - type: map_at_100
2335
- value: 8.813
2336
  - type: map_at_1000
2337
- value: 21.015
2338
  - type: map_at_3
2339
- value: 0.577
2340
  - type: map_at_5
2341
- value: 0.907
2342
  - type: mrr_at_1
2343
- value: 72.0
2344
  - type: mrr_at_10
2345
- value: 82.667
2346
  - type: mrr_at_100
2347
- value: 82.667
2348
  - type: mrr_at_1000
2349
- value: 82.667
2350
  - type: mrr_at_3
2351
- value: 80.667
2352
  - type: mrr_at_5
2353
- value: 82.667
2354
  - type: ndcg_at_1
2355
- value: 67.0
2356
  - type: ndcg_at_10
2357
- value: 65.377
2358
  - type: ndcg_at_100
2359
- value: 50.693
2360
  - type: ndcg_at_1000
2361
- value: 45.449
2362
  - type: ndcg_at_3
2363
- value: 67.78800000000001
2364
  - type: ndcg_at_5
2365
- value: 67.19000000000001
2366
  - type: precision_at_1
2367
- value: 72.0
2368
  - type: precision_at_10
2369
- value: 70.6
2370
  - type: precision_at_100
2371
- value: 52.0
2372
  - type: precision_at_1000
2373
- value: 20.316000000000003
2374
  - type: precision_at_3
2375
  value: 72.667
2376
  - type: precision_at_5
2377
- value: 72.39999999999999
2378
  - type: recall_at_1
2379
- value: 0.199
2380
  - type: recall_at_10
2381
- value: 1.8800000000000001
2382
  - type: recall_at_100
2383
- value: 12.195
2384
  - type: recall_at_1000
2385
- value: 42.612
2386
  - type: recall_at_3
2387
- value: 0.608
2388
  - type: recall_at_5
2389
- value: 1.004
2390
  - task:
2391
  type: Retrieval
2392
  dataset:
@@ -2397,65 +2397,65 @@ model-index:
2397
  revision: None
2398
  metrics:
2399
  - type: map_at_1
2400
- value: 2.34
2401
  - type: map_at_10
2402
- value: 7.983
2403
  - type: map_at_100
2404
- value: 14.488999999999999
2405
  - type: map_at_1000
2406
- value: 16.133
2407
  - type: map_at_3
2408
- value: 4.312
2409
  - type: map_at_5
2410
- value: 6.3420000000000005
2411
  - type: mrr_at_1
2412
- value: 26.531
2413
  - type: mrr_at_10
2414
- value: 41.558
2415
  - type: mrr_at_100
2416
- value: 42.211999999999996
2417
  - type: mrr_at_1000
2418
- value: 42.211999999999996
2419
  - type: mrr_at_3
2420
- value: 36.054
2421
  - type: mrr_at_5
2422
- value: 39.217999999999996
2423
  - type: ndcg_at_1
2424
- value: 23.469
2425
  - type: ndcg_at_10
2426
- value: 21.077
2427
  - type: ndcg_at_100
2428
- value: 35.497
2429
  - type: ndcg_at_1000
2430
- value: 47.282000000000004
2431
  - type: ndcg_at_3
2432
- value: 20.906
2433
  - type: ndcg_at_5
2434
- value: 21.78
2435
  - type: precision_at_1
2436
- value: 26.531
2437
  - type: precision_at_10
2438
- value: 18.570999999999998
2439
  - type: precision_at_100
2440
- value: 7.673000000000001
2441
  - type: precision_at_1000
2442
- value: 1.551
2443
  - type: precision_at_3
2444
- value: 21.769
2445
  - type: precision_at_5
2446
- value: 22.448999999999998
2447
  - type: recall_at_1
2448
- value: 2.34
2449
  - type: recall_at_10
2450
- value: 14.154
2451
  - type: recall_at_100
2452
- value: 48.355
2453
  - type: recall_at_1000
2454
- value: 84.872
2455
  - type: recall_at_3
2456
- value: 5.19
2457
  - type: recall_at_5
2458
- value: 9.211
2459
  - task:
2460
  type: Classification
2461
  dataset:
@@ -2466,11 +2466,11 @@ model-index:
2466
  revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2467
  metrics:
2468
  - type: accuracy
2469
- value: 71.9318
2470
  - type: ap
2471
- value: 14.755439516631267
2472
  - type: f1
2473
- value: 55.39101096477449
2474
  - task:
2475
  type: Classification
2476
  dataset:
@@ -2481,9 +2481,9 @@ model-index:
2481
  revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2482
  metrics:
2483
  - type: accuracy
2484
- value: 61.06395019807584
2485
  - type: f1
2486
- value: 61.18513886850968
2487
  - task:
2488
  type: Clustering
2489
  dataset:
@@ -2494,7 +2494,7 @@ model-index:
2494
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2495
  metrics:
2496
  - type: v_measure
2497
- value: 43.68814723462553
2498
  - task:
2499
  type: PairClassification
2500
  dataset:
@@ -2505,51 +2505,51 @@ model-index:
2505
  revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2506
  metrics:
2507
  - type: cos_sim_accuracy
2508
- value: 85.8258329856351
2509
  - type: cos_sim_ap
2510
- value: 73.51953909054856
2511
  - type: cos_sim_f1
2512
- value: 68.17958783120707
2513
  - type: cos_sim_precision
2514
- value: 63.70930765703806
2515
  - type: cos_sim_recall
2516
- value: 73.3245382585752
2517
  - type: dot_accuracy
2518
- value: 85.8258329856351
2519
  - type: dot_ap
2520
- value: 73.51954936569123
2521
  - type: dot_f1
2522
- value: 68.17958783120707
2523
  - type: dot_precision
2524
- value: 63.70930765703806
2525
  - type: dot_recall
2526
- value: 73.3245382585752
2527
  - type: euclidean_accuracy
2528
- value: 85.8258329856351
2529
  - type: euclidean_ap
2530
- value: 73.51954390509214
2531
  - type: euclidean_f1
2532
- value: 68.17958783120707
2533
  - type: euclidean_precision
2534
- value: 63.70930765703806
2535
  - type: euclidean_recall
2536
- value: 73.3245382585752
2537
  - type: manhattan_accuracy
2538
- value: 85.8258329856351
2539
  - type: manhattan_ap
2540
- value: 73.44954175022839
2541
  - type: manhattan_f1
2542
- value: 68.08816482989938
2543
  - type: manhattan_precision
2544
- value: 62.351908731899954
2545
  - type: manhattan_recall
2546
- value: 74.9868073878628
2547
  - type: max_accuracy
2548
- value: 85.8258329856351
2549
  - type: max_ap
2550
- value: 73.51954936569123
2551
  - type: max_f1
2552
- value: 68.17958783120707
2553
  - task:
2554
  type: PairClassification
2555
  dataset:
@@ -2560,51 +2560,51 @@ model-index:
2560
  revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2561
  metrics:
2562
  - type: cos_sim_accuracy
2563
- value: 88.6094617145962
2564
  - type: cos_sim_ap
2565
- value: 85.4121913477208
2566
  - type: cos_sim_f1
2567
- value: 77.61548157484985
2568
  - type: cos_sim_precision
2569
- value: 74.84627484627485
2570
  - type: cos_sim_recall
2571
- value: 80.59747459193102
2572
  - type: dot_accuracy
2573
- value: 88.6094617145962
2574
  - type: dot_ap
2575
- value: 85.41219830675979
2576
  - type: dot_f1
2577
- value: 77.61548157484985
2578
  - type: dot_precision
2579
- value: 74.84627484627485
2580
  - type: dot_recall
2581
- value: 80.59747459193102
2582
  - type: euclidean_accuracy
2583
- value: 88.6094617145962
2584
  - type: euclidean_ap
2585
- value: 85.41219328124808
2586
  - type: euclidean_f1
2587
- value: 77.61548157484985
2588
  - type: euclidean_precision
2589
- value: 74.84627484627485
2590
  - type: euclidean_recall
2591
- value: 80.59747459193102
2592
  - type: manhattan_accuracy
2593
- value: 88.53960492102301
2594
  - type: manhattan_ap
2595
- value: 85.35022078482446
2596
  - type: manhattan_f1
2597
- value: 77.56588974387569
2598
  - type: manhattan_precision
2599
- value: 74.98742183569324
2600
  - type: manhattan_recall
2601
- value: 80.3279950723745
2602
  - type: max_accuracy
2603
- value: 88.6094617145962
2604
  - type: max_ap
2605
- value: 85.41219830675979
2606
  - type: max_f1
2607
- value: 77.61548157484985
2608
  ---
2609
  <!-- TODO: add evaluation results here -->
2610
  <br><br>
@@ -2641,8 +2641,8 @@ Additionally, we provide the following embedding models:
2641
 
2642
  **V2 (Based on JinaBert, 8k Seq)**
2643
 
2644
- - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters **(you are here)**.
2645
- - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
2646
  - [`jina-embeddings-v2-large-en`](): 435 million parameters (releasing soon).
2647
 
2648
  ## Data & Parameters
@@ -2674,7 +2674,7 @@ embeddings = model.encode(
2674
  )
2675
  ```
2676
 
2677
- *Alternatively, you can use Jina AI's Embeddings platform for fully-managed access to Jina Embeddings models (Coming soon!)*.
2678
 
2679
  ## Fine-tuning
2680
 
 
23
  revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
  metrics:
25
  - type: accuracy
26
+ value: 74.73134328358209
27
  - type: ap
28
+ value: 37.765427081831035
29
  - type: f1
30
+ value: 68.79367444339518
31
  - task:
32
  type: Classification
33
  dataset:
 
38
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
  metrics:
40
  - type: accuracy
41
+ value: 88.544275
42
  - type: ap
43
+ value: 84.61328675662887
44
  - type: f1
45
+ value: 88.51879035862375
46
  - task:
47
  type: Classification
48
  dataset:
 
53
  revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
  metrics:
55
  - type: accuracy
56
+ value: 45.263999999999996
57
  - type: f1
58
+ value: 43.778759656699435
59
  - task:
60
  type: Retrieval
61
  dataset:
 
66
  revision: None
67
  metrics:
68
  - type: map_at_1
69
+ value: 21.693
70
  - type: map_at_10
71
+ value: 35.487
72
  - type: map_at_100
73
+ value: 36.862
74
  - type: map_at_1000
75
+ value: 36.872
76
  - type: map_at_3
77
+ value: 30.049999999999997
78
  - type: map_at_5
79
+ value: 32.966
80
  - type: mrr_at_1
81
+ value: 21.977
82
  - type: mrr_at_10
83
+ value: 35.565999999999995
84
  - type: mrr_at_100
85
+ value: 36.948
86
  - type: mrr_at_1000
87
+ value: 36.958
88
  - type: mrr_at_3
89
+ value: 30.121
90
  - type: mrr_at_5
91
+ value: 33.051
92
  - type: ndcg_at_1
93
+ value: 21.693
94
  - type: ndcg_at_10
95
+ value: 44.181
96
  - type: ndcg_at_100
97
+ value: 49.982
98
  - type: ndcg_at_1000
99
+ value: 50.233000000000004
100
  - type: ndcg_at_3
101
+ value: 32.830999999999996
102
  - type: ndcg_at_5
103
+ value: 38.080000000000005
104
  - type: precision_at_1
105
+ value: 21.693
106
  - type: precision_at_10
107
+ value: 7.248
108
  - type: precision_at_100
109
+ value: 0.9769999999999999
110
  - type: precision_at_1000
111
  value: 0.1
112
  - type: precision_at_3
113
+ value: 13.632
114
  - type: precision_at_5
115
+ value: 10.725
116
  - type: recall_at_1
117
+ value: 21.693
118
  - type: recall_at_10
119
+ value: 72.475
120
  - type: recall_at_100
121
+ value: 97.653
122
  - type: recall_at_1000
123
+ value: 99.57300000000001
124
  - type: recall_at_3
125
+ value: 40.896
126
  - type: recall_at_5
127
+ value: 53.627
128
  - task:
129
  type: Clustering
130
  dataset:
 
135
  revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
  metrics:
137
  - type: v_measure
138
+ value: 45.39242428696777
139
  - task:
140
  type: Clustering
141
  dataset:
 
146
  revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
  metrics:
148
  - type: v_measure
149
+ value: 36.675626784714
150
  - task:
151
  type: Reranking
152
  dataset:
 
157
  revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
  metrics:
159
  - type: map
160
+ value: 62.247725694904034
161
  - type: mrr
162
+ value: 74.91359978894604
163
  - task:
164
  type: STS
165
  dataset:
 
170
  revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
  metrics:
172
  - type: cos_sim_pearson
173
+ value: 82.68003802970496
174
  - type: cos_sim_spearman
175
+ value: 81.23438110096286
176
  - type: euclidean_pearson
177
+ value: 81.87462986142582
178
  - type: euclidean_spearman
179
+ value: 81.23438110096286
180
  - type: manhattan_pearson
181
+ value: 81.61162566600755
182
  - type: manhattan_spearman
183
+ value: 81.11329400456184
184
  - task:
185
  type: Classification
186
  dataset:
 
191
  revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
  metrics:
193
  - type: accuracy
194
+ value: 84.01298701298701
195
  - type: f1
196
+ value: 83.31690714969382
197
  - task:
198
  type: Clustering
199
  dataset:
 
204
  revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
  metrics:
206
  - type: v_measure
207
+ value: 37.050108150972086
208
  - task:
209
  type: Clustering
210
  dataset:
 
215
  revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
  metrics:
217
  - type: v_measure
218
+ value: 30.15731442819715
219
  - task:
220
  type: Retrieval
221
  dataset:
 
226
  revision: None
227
  metrics:
228
  - type: map_at_1
229
+ value: 31.391999999999996
230
  - type: map_at_10
231
+ value: 42.597
232
  - type: map_at_100
233
+ value: 44.07
234
  - type: map_at_1000
235
+ value: 44.198
236
  - type: map_at_3
237
+ value: 38.957
238
  - type: map_at_5
239
+ value: 40.961
240
  - type: mrr_at_1
241
+ value: 37.196
242
  - type: mrr_at_10
243
+ value: 48.152
244
  - type: mrr_at_100
245
+ value: 48.928
246
  - type: mrr_at_1000
247
+ value: 48.964999999999996
248
  - type: mrr_at_3
249
+ value: 45.446
250
  - type: mrr_at_5
251
+ value: 47.205999999999996
252
  - type: ndcg_at_1
253
+ value: 37.196
254
  - type: ndcg_at_10
255
+ value: 49.089
256
  - type: ndcg_at_100
257
+ value: 54.471000000000004
258
  - type: ndcg_at_1000
259
+ value: 56.385
260
  - type: ndcg_at_3
261
+ value: 43.699
262
  - type: ndcg_at_5
263
+ value: 46.22
264
  - type: precision_at_1
265
+ value: 37.196
266
  - type: precision_at_10
267
+ value: 9.313
268
  - type: precision_at_100
269
+ value: 1.478
270
  - type: precision_at_1000
271
+ value: 0.198
272
  - type: precision_at_3
273
+ value: 20.839
274
  - type: precision_at_5
275
+ value: 14.936
276
  - type: recall_at_1
277
+ value: 31.391999999999996
278
  - type: recall_at_10
279
+ value: 61.876
280
  - type: recall_at_100
281
+ value: 84.214
282
  - type: recall_at_1000
283
+ value: 95.985
284
  - type: recall_at_3
285
+ value: 46.6
286
  - type: recall_at_5
287
+ value: 53.588
288
  - task:
289
  type: Retrieval
290
  dataset:
 
295
  revision: None
296
  metrics:
297
  - type: map_at_1
298
+ value: 29.083
299
  - type: map_at_10
300
+ value: 38.812999999999995
301
  - type: map_at_100
302
+ value: 40.053
303
  - type: map_at_1000
304
+ value: 40.188
305
  - type: map_at_3
306
+ value: 36.111
307
  - type: map_at_5
308
+ value: 37.519000000000005
309
  - type: mrr_at_1
310
+ value: 36.497
311
  - type: mrr_at_10
312
+ value: 44.85
313
  - type: mrr_at_100
314
+ value: 45.546
315
  - type: mrr_at_1000
316
+ value: 45.593
317
  - type: mrr_at_3
318
+ value: 42.686
319
  - type: mrr_at_5
320
+ value: 43.909
321
  - type: ndcg_at_1
322
+ value: 36.497
323
  - type: ndcg_at_10
324
+ value: 44.443
325
  - type: ndcg_at_100
326
+ value: 48.979
327
  - type: ndcg_at_1000
328
+ value: 51.154999999999994
329
  - type: ndcg_at_3
330
+ value: 40.660000000000004
331
  - type: ndcg_at_5
332
+ value: 42.193000000000005
333
  - type: precision_at_1
334
+ value: 36.497
335
  - type: precision_at_10
336
+ value: 8.433
337
  - type: precision_at_100
338
+ value: 1.369
339
  - type: precision_at_1000
340
+ value: 0.185
341
  - type: precision_at_3
342
+ value: 19.894000000000002
343
  - type: precision_at_5
344
+ value: 13.873
345
  - type: recall_at_1
346
+ value: 29.083
347
  - type: recall_at_10
348
+ value: 54.313
349
  - type: recall_at_100
350
+ value: 73.792
351
  - type: recall_at_1000
352
+ value: 87.629
353
  - type: recall_at_3
354
+ value: 42.257
355
  - type: recall_at_5
356
+ value: 47.066
357
  - task:
358
  type: Retrieval
359
  dataset:
 
364
  revision: None
365
  metrics:
366
  - type: map_at_1
367
+ value: 38.556000000000004
368
  - type: map_at_10
369
+ value: 50.698
370
  - type: map_at_100
371
+ value: 51.705
372
  - type: map_at_1000
373
+ value: 51.768
374
  - type: map_at_3
375
+ value: 47.848
376
  - type: map_at_5
377
+ value: 49.358000000000004
378
  - type: mrr_at_1
379
+ value: 43.95
380
  - type: mrr_at_10
381
+ value: 54.191
382
  - type: mrr_at_100
383
+ value: 54.852999999999994
384
  - type: mrr_at_1000
385
+ value: 54.885
386
  - type: mrr_at_3
387
+ value: 51.954
388
  - type: mrr_at_5
389
+ value: 53.13
390
  - type: ndcg_at_1
391
+ value: 43.95
392
  - type: ndcg_at_10
393
+ value: 56.516
394
  - type: ndcg_at_100
395
+ value: 60.477000000000004
396
  - type: ndcg_at_1000
397
+ value: 61.746
398
  - type: ndcg_at_3
399
+ value: 51.601
400
  - type: ndcg_at_5
401
+ value: 53.795
402
  - type: precision_at_1
403
+ value: 43.95
404
  - type: precision_at_10
405
+ value: 9.009
406
  - type: precision_at_100
407
+ value: 1.189
408
  - type: precision_at_1000
409
+ value: 0.135
410
  - type: precision_at_3
411
+ value: 22.989
412
  - type: precision_at_5
413
+ value: 15.473
414
  - type: recall_at_1
415
+ value: 38.556000000000004
416
  - type: recall_at_10
417
+ value: 70.159
418
  - type: recall_at_100
419
+ value: 87.132
420
  - type: recall_at_1000
421
+ value: 96.16
422
  - type: recall_at_3
423
+ value: 56.906
424
  - type: recall_at_5
425
+ value: 62.332
426
  - task:
427
  type: Retrieval
428
  dataset:
 
433
  revision: None
434
  metrics:
435
  - type: map_at_1
436
+ value: 24.238
437
  - type: map_at_10
438
+ value: 32.5
439
  - type: map_at_100
440
+ value: 33.637
441
  - type: map_at_1000
442
+ value: 33.719
443
  - type: map_at_3
444
+ value: 30.026999999999997
445
  - type: map_at_5
446
+ value: 31.555
447
  - type: mrr_at_1
448
+ value: 26.328000000000003
449
  - type: mrr_at_10
450
+ value: 34.44
451
  - type: mrr_at_100
452
+ value: 35.455999999999996
453
  - type: mrr_at_1000
454
+ value: 35.521
455
  - type: mrr_at_3
456
+ value: 32.034
457
  - type: mrr_at_5
458
+ value: 33.565
459
  - type: ndcg_at_1
460
+ value: 26.328000000000003
461
  - type: ndcg_at_10
462
+ value: 37.202
463
  - type: ndcg_at_100
464
+ value: 42.728
465
  - type: ndcg_at_1000
466
+ value: 44.792
467
  - type: ndcg_at_3
468
+ value: 32.368
469
  - type: ndcg_at_5
470
+ value: 35.008
471
  - type: precision_at_1
472
+ value: 26.328000000000003
473
  - type: precision_at_10
474
+ value: 5.7059999999999995
475
  - type: precision_at_100
476
+ value: 0.8880000000000001
477
  - type: precision_at_1000
478
  value: 0.11100000000000002
479
  - type: precision_at_3
480
+ value: 13.672
481
  - type: precision_at_5
482
+ value: 9.74
483
  - type: recall_at_1
484
+ value: 24.238
485
  - type: recall_at_10
486
+ value: 49.829
487
  - type: recall_at_100
488
+ value: 75.21
489
  - type: recall_at_1000
490
+ value: 90.521
491
  - type: recall_at_3
492
+ value: 36.867
493
  - type: recall_at_5
494
+ value: 43.241
495
  - task:
496
  type: Retrieval
497
  dataset:
 
502
  revision: None
503
  metrics:
504
  - type: map_at_1
505
+ value: 15.378
506
  - type: map_at_10
507
+ value: 22.817999999999998
508
  - type: map_at_100
509
+ value: 23.977999999999998
510
  - type: map_at_1000
511
+ value: 24.108
512
  - type: map_at_3
513
+ value: 20.719
514
  - type: map_at_5
515
+ value: 21.889
516
  - type: mrr_at_1
517
+ value: 19.03
518
  - type: mrr_at_10
519
+ value: 27.022000000000002
520
  - type: mrr_at_100
521
+ value: 28.011999999999997
522
  - type: mrr_at_1000
523
+ value: 28.096
524
  - type: mrr_at_3
525
+ value: 24.855
526
  - type: mrr_at_5
527
+ value: 26.029999999999998
528
  - type: ndcg_at_1
529
+ value: 19.03
530
  - type: ndcg_at_10
531
+ value: 27.526
532
  - type: ndcg_at_100
533
+ value: 33.040000000000006
534
  - type: ndcg_at_1000
535
+ value: 36.187000000000005
536
  - type: ndcg_at_3
537
+ value: 23.497
538
  - type: ndcg_at_5
539
+ value: 25.334
540
  - type: precision_at_1
541
+ value: 19.03
542
  - type: precision_at_10
543
+ value: 4.963
544
  - type: precision_at_100
545
+ value: 0.893
546
  - type: precision_at_1000
547
+ value: 0.13
548
  - type: precision_at_3
549
+ value: 11.360000000000001
550
  - type: precision_at_5
551
+ value: 8.134
552
  - type: recall_at_1
553
+ value: 15.378
554
  - type: recall_at_10
555
+ value: 38.061
556
  - type: recall_at_100
557
+ value: 61.754
558
  - type: recall_at_1000
559
+ value: 84.259
560
  - type: recall_at_3
561
+ value: 26.788
562
  - type: recall_at_5
563
+ value: 31.326999999999998
564
  - task:
565
  type: Retrieval
566
  dataset:
 
571
  revision: None
572
  metrics:
573
  - type: map_at_1
574
+ value: 27.511999999999997
575
  - type: map_at_10
576
+ value: 37.429
577
  - type: map_at_100
578
+ value: 38.818000000000005
579
  - type: map_at_1000
580
+ value: 38.924
581
  - type: map_at_3
582
+ value: 34.625
583
  - type: map_at_5
584
+ value: 36.064
585
  - type: mrr_at_1
586
+ value: 33.300999999999995
587
  - type: mrr_at_10
588
+ value: 43.036
589
  - type: mrr_at_100
590
+ value: 43.894
591
  - type: mrr_at_1000
592
+ value: 43.936
593
  - type: mrr_at_3
594
+ value: 40.825
595
  - type: mrr_at_5
596
+ value: 42.028
597
  - type: ndcg_at_1
598
+ value: 33.300999999999995
599
  - type: ndcg_at_10
600
+ value: 43.229
601
  - type: ndcg_at_100
602
+ value: 48.992000000000004
603
  - type: ndcg_at_1000
604
+ value: 51.02100000000001
605
  - type: ndcg_at_3
606
+ value: 38.794000000000004
607
  - type: ndcg_at_5
608
+ value: 40.65
609
  - type: precision_at_1
610
+ value: 33.300999999999995
611
  - type: precision_at_10
612
+ value: 7.777000000000001
613
  - type: precision_at_100
614
+ value: 1.269
615
  - type: precision_at_1000
616
+ value: 0.163
617
  - type: precision_at_3
618
+ value: 18.351
619
  - type: precision_at_5
620
+ value: 12.762
621
  - type: recall_at_1
622
+ value: 27.511999999999997
623
  - type: recall_at_10
624
+ value: 54.788000000000004
625
  - type: recall_at_100
626
+ value: 79.105
627
  - type: recall_at_1000
628
+ value: 92.49199999999999
629
  - type: recall_at_3
630
+ value: 41.924
631
  - type: recall_at_5
632
+ value: 47.026
633
  - task:
634
  type: Retrieval
635
  dataset:
 
640
  revision: None
641
  metrics:
642
  - type: map_at_1
643
+ value: 24.117
644
  - type: map_at_10
645
+ value: 33.32
646
  - type: map_at_100
647
+ value: 34.677
648
  - type: map_at_1000
649
+ value: 34.78
650
  - type: map_at_3
651
+ value: 30.233999999999998
652
  - type: map_at_5
653
+ value: 31.668000000000003
654
  - type: mrr_at_1
655
+ value: 29.566
656
  - type: mrr_at_10
657
+ value: 38.244
658
  - type: mrr_at_100
659
+ value: 39.245000000000005
660
  - type: mrr_at_1000
661
+ value: 39.296
662
  - type: mrr_at_3
663
+ value: 35.864000000000004
664
  - type: mrr_at_5
665
+ value: 36.919999999999995
666
  - type: ndcg_at_1
667
+ value: 29.566
668
  - type: ndcg_at_10
669
+ value: 39.127
670
  - type: ndcg_at_100
671
+ value: 44.989000000000004
672
  - type: ndcg_at_1000
673
+ value: 47.189
674
  - type: ndcg_at_3
675
+ value: 34.039
676
  - type: ndcg_at_5
677
+ value: 35.744
678
  - type: precision_at_1
679
+ value: 29.566
680
  - type: precision_at_10
681
+ value: 7.385999999999999
682
  - type: precision_at_100
683
+ value: 1.204
684
  - type: precision_at_1000
685
+ value: 0.158
686
  - type: precision_at_3
687
+ value: 16.286
688
  - type: precision_at_5
689
+ value: 11.484
690
  - type: recall_at_1
691
+ value: 24.117
692
  - type: recall_at_10
693
+ value: 51.559999999999995
694
  - type: recall_at_100
695
+ value: 77.104
696
  - type: recall_at_1000
697
+ value: 91.79899999999999
698
  - type: recall_at_3
699
+ value: 36.82
700
  - type: recall_at_5
701
+ value: 41.453
702
  - task:
703
  type: Retrieval
704
  dataset:
 
709
  revision: None
710
  metrics:
711
  - type: map_at_1
712
+ value: 25.17625
713
  - type: map_at_10
714
+ value: 34.063916666666664
715
  - type: map_at_100
716
+ value: 35.255500000000005
717
  - type: map_at_1000
718
+ value: 35.37275
719
  - type: map_at_3
720
+ value: 31.351666666666667
721
  - type: map_at_5
722
+ value: 32.80608333333333
723
  - type: mrr_at_1
724
+ value: 29.59783333333333
725
  - type: mrr_at_10
726
+ value: 38.0925
727
  - type: mrr_at_100
728
+ value: 38.957249999999995
729
  - type: mrr_at_1000
730
+ value: 39.01608333333333
731
  - type: mrr_at_3
732
+ value: 35.77625
733
  - type: mrr_at_5
734
+ value: 37.04991666666667
735
  - type: ndcg_at_1
736
+ value: 29.59783333333333
737
  - type: ndcg_at_10
738
+ value: 39.343666666666664
739
  - type: ndcg_at_100
740
+ value: 44.488249999999994
741
  - type: ndcg_at_1000
742
+ value: 46.83358333333334
743
  - type: ndcg_at_3
744
+ value: 34.69708333333333
745
  - type: ndcg_at_5
746
+ value: 36.75075
747
  - type: precision_at_1
748
+ value: 29.59783333333333
749
  - type: precision_at_10
750
+ value: 6.884083333333332
751
  - type: precision_at_100
752
+ value: 1.114
753
  - type: precision_at_1000
754
+ value: 0.15108333333333332
755
  - type: precision_at_3
756
+ value: 15.965250000000003
757
  - type: precision_at_5
758
+ value: 11.246500000000001
759
  - type: recall_at_1
760
+ value: 25.17625
761
  - type: recall_at_10
762
+ value: 51.015999999999984
763
  - type: recall_at_100
764
+ value: 73.60174999999998
765
  - type: recall_at_1000
766
+ value: 89.849
767
  - type: recall_at_3
768
+ value: 37.88399999999999
769
  - type: recall_at_5
770
+ value: 43.24541666666666
771
  - task:
772
  type: Retrieval
773
  dataset:
 
778
  revision: None
779
  metrics:
780
  - type: map_at_1
781
+ value: 24.537
782
  - type: map_at_10
783
+ value: 31.081999999999997
784
  - type: map_at_100
785
+ value: 32.042
786
  - type: map_at_1000
787
+ value: 32.141
788
  - type: map_at_3
789
+ value: 29.137
790
  - type: map_at_5
791
+ value: 30.079
792
  - type: mrr_at_1
793
+ value: 27.454
794
  - type: mrr_at_10
795
+ value: 33.694
796
  - type: mrr_at_100
797
+ value: 34.579
798
  - type: mrr_at_1000
799
+ value: 34.649
800
  - type: mrr_at_3
801
+ value: 32.004
802
  - type: mrr_at_5
803
+ value: 32.794000000000004
804
  - type: ndcg_at_1
805
+ value: 27.454
806
  - type: ndcg_at_10
807
+ value: 34.915
808
  - type: ndcg_at_100
809
+ value: 39.641
810
  - type: ndcg_at_1000
811
+ value: 42.105
812
  - type: ndcg_at_3
813
+ value: 31.276
814
  - type: ndcg_at_5
815
+ value: 32.65
816
  - type: precision_at_1
817
+ value: 27.454
818
  - type: precision_at_10
819
+ value: 5.337
820
  - type: precision_at_100
821
+ value: 0.8250000000000001
822
  - type: precision_at_1000
823
+ value: 0.11199999999999999
824
  - type: precision_at_3
825
+ value: 13.241
826
  - type: precision_at_5
827
+ value: 8.895999999999999
828
  - type: recall_at_1
829
+ value: 24.537
830
  - type: recall_at_10
831
+ value: 44.324999999999996
832
  - type: recall_at_100
833
+ value: 65.949
834
  - type: recall_at_1000
835
+ value: 84.017
836
  - type: recall_at_3
837
+ value: 33.857
838
  - type: recall_at_5
839
+ value: 37.316
840
  - task:
841
  type: Retrieval
842
  dataset:
 
847
  revision: None
848
  metrics:
849
  - type: map_at_1
850
+ value: 17.122
851
  - type: map_at_10
852
+ value: 24.32
853
  - type: map_at_100
854
+ value: 25.338
855
  - type: map_at_1000
856
+ value: 25.462
857
  - type: map_at_3
858
+ value: 22.064
859
  - type: map_at_5
860
+ value: 23.322000000000003
861
  - type: mrr_at_1
862
+ value: 20.647
863
  - type: mrr_at_10
864
+ value: 27.858
865
  - type: mrr_at_100
866
+ value: 28.743999999999996
867
  - type: mrr_at_1000
868
+ value: 28.819
869
  - type: mrr_at_3
870
+ value: 25.769
871
  - type: mrr_at_5
872
+ value: 26.964
873
  - type: ndcg_at_1
874
+ value: 20.647
875
  - type: ndcg_at_10
876
+ value: 28.849999999999998
877
  - type: ndcg_at_100
878
+ value: 33.849000000000004
879
  - type: ndcg_at_1000
880
+ value: 36.802
881
  - type: ndcg_at_3
882
+ value: 24.799
883
  - type: ndcg_at_5
884
+ value: 26.682
885
  - type: precision_at_1
886
+ value: 20.647
887
  - type: precision_at_10
888
+ value: 5.2170000000000005
889
  - type: precision_at_100
890
+ value: 0.906
891
  - type: precision_at_1000
892
+ value: 0.134
893
  - type: precision_at_3
894
+ value: 11.769
895
  - type: precision_at_5
896
+ value: 8.486
897
  - type: recall_at_1
898
+ value: 17.122
899
  - type: recall_at_10
900
+ value: 38.999
901
  - type: recall_at_100
902
+ value: 61.467000000000006
903
  - type: recall_at_1000
904
+ value: 82.716
905
  - type: recall_at_3
906
+ value: 27.601
907
  - type: recall_at_5
908
+ value: 32.471
909
  - task:
910
  type: Retrieval
911
  dataset:
 
916
  revision: None
917
  metrics:
918
  - type: map_at_1
919
+ value: 24.396
920
  - type: map_at_10
921
+ value: 33.415
922
  - type: map_at_100
923
+ value: 34.521
924
  - type: map_at_1000
925
+ value: 34.631
926
  - type: map_at_3
927
+ value: 30.703999999999997
928
  - type: map_at_5
929
+ value: 32.166
930
  - type: mrr_at_1
931
+ value: 28.825
932
  - type: mrr_at_10
933
+ value: 37.397000000000006
934
  - type: mrr_at_100
935
+ value: 38.286
936
  - type: mrr_at_1000
937
+ value: 38.346000000000004
938
  - type: mrr_at_3
939
+ value: 35.028
940
  - type: mrr_at_5
941
+ value: 36.32
942
  - type: ndcg_at_1
943
+ value: 28.825
944
  - type: ndcg_at_10
945
+ value: 38.656
946
  - type: ndcg_at_100
947
+ value: 43.856
948
  - type: ndcg_at_1000
949
+ value: 46.31
950
  - type: ndcg_at_3
951
+ value: 33.793
952
  - type: ndcg_at_5
953
+ value: 35.909
954
  - type: precision_at_1
955
+ value: 28.825
956
  - type: precision_at_10
957
+ value: 6.567
958
  - type: precision_at_100
959
+ value: 1.0330000000000001
960
  - type: precision_at_1000
961
+ value: 0.135
962
  - type: precision_at_3
963
+ value: 15.516
964
  - type: precision_at_5
965
+ value: 10.914
966
  - type: recall_at_1
967
+ value: 24.396
968
  - type: recall_at_10
969
+ value: 50.747
970
  - type: recall_at_100
971
+ value: 73.477
972
  - type: recall_at_1000
973
+ value: 90.801
974
  - type: recall_at_3
975
+ value: 37.1
976
  - type: recall_at_5
977
+ value: 42.589
978
  - task:
979
  type: Retrieval
980
  dataset:
 
985
  revision: None
986
  metrics:
987
  - type: map_at_1
988
+ value: 25.072
989
  - type: map_at_10
990
+ value: 34.307
991
  - type: map_at_100
992
+ value: 35.725
993
  - type: map_at_1000
994
+ value: 35.943999999999996
995
  - type: map_at_3
996
+ value: 30.906
997
  - type: map_at_5
998
+ value: 32.818000000000005
999
  - type: mrr_at_1
1000
+ value: 29.644
1001
  - type: mrr_at_10
1002
+ value: 38.673
1003
  - type: mrr_at_100
1004
+ value: 39.459
1005
  - type: mrr_at_1000
1006
+ value: 39.527
1007
  - type: mrr_at_3
1008
+ value: 35.771
1009
  - type: mrr_at_5
1010
+ value: 37.332
1011
  - type: ndcg_at_1
1012
+ value: 29.644
1013
  - type: ndcg_at_10
1014
+ value: 40.548
1015
  - type: ndcg_at_100
1016
+ value: 45.678999999999995
1017
  - type: ndcg_at_1000
1018
+ value: 48.488
1019
  - type: ndcg_at_3
1020
+ value: 34.887
1021
  - type: ndcg_at_5
1022
+ value: 37.543
1023
  - type: precision_at_1
1024
+ value: 29.644
1025
  - type: precision_at_10
1026
+ value: 7.688000000000001
1027
  - type: precision_at_100
1028
+ value: 1.482
1029
  - type: precision_at_1000
1030
+ value: 0.23600000000000002
1031
  - type: precision_at_3
1032
+ value: 16.206
1033
  - type: precision_at_5
1034
+ value: 12.016
1035
  - type: recall_at_1
1036
+ value: 25.072
1037
  - type: recall_at_10
1038
+ value: 53.478
1039
  - type: recall_at_100
1040
+ value: 76.07300000000001
1041
  - type: recall_at_1000
1042
+ value: 93.884
1043
  - type: recall_at_3
1044
+ value: 37.583
1045
  - type: recall_at_5
1046
+ value: 44.464
1047
  - task:
1048
  type: Retrieval
1049
  dataset:
 
1054
  revision: None
1055
  metrics:
1056
  - type: map_at_1
1057
+ value: 20.712
1058
  - type: map_at_10
1059
+ value: 27.467999999999996
1060
  - type: map_at_100
1061
+ value: 28.502
1062
  - type: map_at_1000
1063
+ value: 28.610000000000003
1064
  - type: map_at_3
1065
+ value: 24.887999999999998
1066
  - type: map_at_5
1067
+ value: 26.273999999999997
1068
  - type: mrr_at_1
1069
+ value: 22.736
1070
  - type: mrr_at_10
1071
+ value: 29.553
1072
  - type: mrr_at_100
1073
+ value: 30.485
1074
  - type: mrr_at_1000
1075
+ value: 30.56
1076
  - type: mrr_at_3
1077
+ value: 27.078999999999997
1078
  - type: mrr_at_5
1079
+ value: 28.401
1080
  - type: ndcg_at_1
1081
+ value: 22.736
1082
  - type: ndcg_at_10
1083
+ value: 32.023
1084
  - type: ndcg_at_100
1085
+ value: 37.158
1086
  - type: ndcg_at_1000
1087
+ value: 39.823
1088
  - type: ndcg_at_3
1089
+ value: 26.951999999999998
1090
  - type: ndcg_at_5
1091
+ value: 29.281000000000002
1092
  - type: precision_at_1
1093
+ value: 22.736
1094
  - type: precision_at_10
1095
+ value: 5.213
1096
  - type: precision_at_100
1097
+ value: 0.832
1098
  - type: precision_at_1000
1099
  value: 0.116
1100
  - type: precision_at_3
1101
+ value: 11.459999999999999
1102
  - type: precision_at_5
1103
+ value: 8.244
1104
  - type: recall_at_1
1105
+ value: 20.712
1106
  - type: recall_at_10
1107
+ value: 44.057
1108
  - type: recall_at_100
1109
+ value: 67.944
1110
  - type: recall_at_1000
1111
+ value: 87.925
1112
  - type: recall_at_3
1113
+ value: 30.305
1114
  - type: recall_at_5
1115
+ value: 36.071999999999996
1116
  - task:
1117
  type: Retrieval
1118
  dataset:
 
1123
  revision: None
1124
  metrics:
1125
  - type: map_at_1
1126
+ value: 10.181999999999999
1127
  - type: map_at_10
1128
+ value: 16.66
1129
  - type: map_at_100
1130
+ value: 18.273
1131
  - type: map_at_1000
1132
+ value: 18.45
1133
  - type: map_at_3
1134
+ value: 14.141
1135
  - type: map_at_5
1136
+ value: 15.455
1137
  - type: mrr_at_1
1138
+ value: 22.15
1139
  - type: mrr_at_10
1140
+ value: 32.062000000000005
1141
  - type: mrr_at_100
1142
+ value: 33.116
1143
  - type: mrr_at_1000
1144
+ value: 33.168
1145
  - type: mrr_at_3
1146
+ value: 28.827
1147
  - type: mrr_at_5
1148
+ value: 30.892999999999997
1149
  - type: ndcg_at_1
1150
+ value: 22.15
1151
  - type: ndcg_at_10
1152
+ value: 23.532
1153
  - type: ndcg_at_100
1154
+ value: 30.358
1155
  - type: ndcg_at_1000
1156
+ value: 33.783
1157
  - type: ndcg_at_3
1158
+ value: 19.222
1159
  - type: ndcg_at_5
1160
+ value: 20.919999999999998
1161
  - type: precision_at_1
1162
+ value: 22.15
1163
  - type: precision_at_10
1164
+ value: 7.185999999999999
1165
  - type: precision_at_100
1166
+ value: 1.433
1167
  - type: precision_at_1000
1168
+ value: 0.207
1169
  - type: precision_at_3
1170
+ value: 13.941
1171
  - type: precision_at_5
1172
+ value: 10.906
1173
  - type: recall_at_1
1174
+ value: 10.181999999999999
1175
  - type: recall_at_10
1176
+ value: 28.104000000000003
1177
  - type: recall_at_100
1178
+ value: 51.998999999999995
1179
  - type: recall_at_1000
1180
+ value: 71.311
1181
  - type: recall_at_3
1182
+ value: 17.698
1183
  - type: recall_at_5
1184
+ value: 22.262999999999998
1185
  - task:
1186
  type: Retrieval
1187
  dataset:
 
1192
  revision: None
1193
  metrics:
1194
  - type: map_at_1
1195
+ value: 6.669
1196
  - type: map_at_10
1197
+ value: 15.552
1198
  - type: map_at_100
1199
+ value: 21.865000000000002
1200
  - type: map_at_1000
1201
+ value: 23.268
1202
  - type: map_at_3
1203
+ value: 11.309
1204
  - type: map_at_5
1205
+ value: 13.084000000000001
1206
  - type: mrr_at_1
1207
  value: 55.50000000000001
1208
  - type: mrr_at_10
1209
+ value: 66.46600000000001
1210
  - type: mrr_at_100
1211
+ value: 66.944
1212
  - type: mrr_at_1000
1213
+ value: 66.956
1214
  - type: mrr_at_3
1215
+ value: 64.542
1216
  - type: mrr_at_5
1217
+ value: 65.717
1218
  - type: ndcg_at_1
1219
+ value: 44.75
1220
  - type: ndcg_at_10
1221
+ value: 35.049
1222
  - type: ndcg_at_100
1223
+ value: 39.073
1224
  - type: ndcg_at_1000
1225
+ value: 46.208
1226
  - type: ndcg_at_3
1227
+ value: 39.525
1228
  - type: ndcg_at_5
1229
+ value: 37.156
1230
  - type: precision_at_1
1231
  value: 55.50000000000001
1232
  - type: precision_at_10
1233
+ value: 27.800000000000004
1234
  - type: precision_at_100
1235
+ value: 9.013
1236
  - type: precision_at_1000
1237
+ value: 1.8800000000000001
1238
  - type: precision_at_3
1239
+ value: 42.667
1240
  - type: precision_at_5
1241
+ value: 36.0
1242
  - type: recall_at_1
1243
+ value: 6.669
1244
  - type: recall_at_10
1245
+ value: 21.811
1246
  - type: recall_at_100
1247
+ value: 45.112
1248
  - type: recall_at_1000
1249
+ value: 67.806
1250
  - type: recall_at_3
1251
+ value: 13.373
1252
  - type: recall_at_5
1253
+ value: 16.615
1254
  - task:
1255
  type: Classification
1256
  dataset:
 
1261
  revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1262
  metrics:
1263
  - type: accuracy
1264
+ value: 48.769999999999996
1265
  - type: f1
1266
+ value: 42.91448356376592
1267
  - task:
1268
  type: Retrieval
1269
  dataset:
 
1274
  revision: None
1275
  metrics:
1276
  - type: map_at_1
1277
+ value: 54.013
1278
  - type: map_at_10
1279
+ value: 66.239
1280
  - type: map_at_100
1281
+ value: 66.62599999999999
1282
  - type: map_at_1000
1283
+ value: 66.644
1284
  - type: map_at_3
1285
+ value: 63.965
1286
  - type: map_at_5
1287
+ value: 65.45400000000001
1288
  - type: mrr_at_1
1289
+ value: 58.221000000000004
1290
  - type: mrr_at_10
1291
+ value: 70.43700000000001
1292
  - type: mrr_at_100
1293
+ value: 70.744
1294
  - type: mrr_at_1000
1295
+ value: 70.75099999999999
1296
  - type: mrr_at_3
1297
+ value: 68.284
1298
  - type: mrr_at_5
1299
+ value: 69.721
1300
  - type: ndcg_at_1
1301
+ value: 58.221000000000004
1302
  - type: ndcg_at_10
1303
+ value: 72.327
1304
  - type: ndcg_at_100
1305
+ value: 73.953
1306
  - type: ndcg_at_1000
1307
+ value: 74.312
1308
  - type: ndcg_at_3
1309
+ value: 68.062
1310
  - type: ndcg_at_5
1311
+ value: 70.56400000000001
1312
  - type: precision_at_1
1313
+ value: 58.221000000000004
1314
  - type: precision_at_10
1315
+ value: 9.521
1316
  - type: precision_at_100
1317
+ value: 1.045
1318
  - type: precision_at_1000
1319
  value: 0.109
1320
  - type: precision_at_3
1321
+ value: 27.348
1322
  - type: precision_at_5
1323
+ value: 17.794999999999998
1324
  - type: recall_at_1
1325
+ value: 54.013
1326
  - type: recall_at_10
1327
+ value: 86.957
1328
  - type: recall_at_100
1329
+ value: 93.911
1330
  - type: recall_at_1000
1331
+ value: 96.38
1332
  - type: recall_at_3
1333
+ value: 75.555
1334
  - type: recall_at_5
1335
+ value: 81.671
1336
  - task:
1337
  type: Retrieval
1338
  dataset:
 
1343
  revision: None
1344
  metrics:
1345
  - type: map_at_1
1346
+ value: 21.254
1347
  - type: map_at_10
1348
+ value: 33.723
1349
  - type: map_at_100
1350
+ value: 35.574
1351
  - type: map_at_1000
1352
+ value: 35.730000000000004
1353
  - type: map_at_3
1354
+ value: 29.473
1355
  - type: map_at_5
1356
+ value: 31.543
1357
  - type: mrr_at_1
1358
+ value: 41.358
1359
  - type: mrr_at_10
1360
+ value: 49.498
1361
  - type: mrr_at_100
1362
+ value: 50.275999999999996
1363
  - type: mrr_at_1000
1364
+ value: 50.308
1365
  - type: mrr_at_3
1366
+ value: 47.016000000000005
1367
  - type: mrr_at_5
1368
+ value: 48.336
1369
  - type: ndcg_at_1
1370
+ value: 41.358
1371
  - type: ndcg_at_10
1372
+ value: 41.579
1373
  - type: ndcg_at_100
1374
+ value: 48.455
1375
  - type: ndcg_at_1000
1376
+ value: 51.165000000000006
1377
  - type: ndcg_at_3
1378
+ value: 37.681
1379
  - type: ndcg_at_5
1380
+ value: 38.49
1381
  - type: precision_at_1
1382
+ value: 41.358
1383
  - type: precision_at_10
1384
+ value: 11.543000000000001
1385
  - type: precision_at_100
1386
+ value: 1.87
1387
  - type: precision_at_1000
1388
+ value: 0.23600000000000002
1389
  - type: precision_at_3
1390
+ value: 24.743000000000002
1391
  - type: precision_at_5
1392
+ value: 17.994
1393
  - type: recall_at_1
1394
+ value: 21.254
1395
  - type: recall_at_10
1396
+ value: 48.698
1397
  - type: recall_at_100
1398
+ value: 74.588
1399
  - type: recall_at_1000
1400
+ value: 91.00200000000001
1401
  - type: recall_at_3
1402
+ value: 33.939
1403
  - type: recall_at_5
1404
+ value: 39.367000000000004
1405
  - task:
1406
  type: Retrieval
1407
  dataset:
 
1412
  revision: None
1413
  metrics:
1414
  - type: map_at_1
1415
+ value: 35.922
1416
  - type: map_at_10
1417
+ value: 52.32599999999999
1418
  - type: map_at_100
1419
+ value: 53.18000000000001
1420
  - type: map_at_1000
1421
+ value: 53.245
1422
  - type: map_at_3
1423
+ value: 49.294
1424
  - type: map_at_5
1425
+ value: 51.202999999999996
1426
  - type: mrr_at_1
1427
+ value: 71.843
1428
  - type: mrr_at_10
1429
+ value: 78.24600000000001
1430
  - type: mrr_at_100
1431
+ value: 78.515
1432
  - type: mrr_at_1000
1433
+ value: 78.527
1434
  - type: mrr_at_3
1435
+ value: 77.17500000000001
1436
  - type: mrr_at_5
1437
+ value: 77.852
1438
  - type: ndcg_at_1
1439
+ value: 71.843
1440
  - type: ndcg_at_10
1441
+ value: 61.379
1442
  - type: ndcg_at_100
1443
+ value: 64.535
1444
  - type: ndcg_at_1000
1445
+ value: 65.888
1446
  - type: ndcg_at_3
1447
+ value: 56.958
1448
  - type: ndcg_at_5
1449
+ value: 59.434
1450
  - type: precision_at_1
1451
+ value: 71.843
1452
  - type: precision_at_10
1453
+ value: 12.686
1454
  - type: precision_at_100
1455
+ value: 1.517
1456
  - type: precision_at_1000
1457
+ value: 0.16999999999999998
1458
  - type: precision_at_3
1459
+ value: 35.778
1460
  - type: precision_at_5
1461
+ value: 23.422
1462
  - type: recall_at_1
1463
+ value: 35.922
1464
  - type: recall_at_10
1465
+ value: 63.43
1466
  - type: recall_at_100
1467
+ value: 75.868
1468
  - type: recall_at_1000
1469
+ value: 84.88900000000001
1470
  - type: recall_at_3
1471
+ value: 53.666000000000004
1472
  - type: recall_at_5
1473
+ value: 58.555
1474
  - task:
1475
  type: Classification
1476
  dataset:
 
1481
  revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1482
  metrics:
1483
  - type: accuracy
1484
+ value: 79.4408
1485
  - type: ap
1486
+ value: 73.52820871620366
1487
  - type: f1
1488
+ value: 79.36240238685001
1489
  - task:
1490
  type: Retrieval
1491
  dataset:
 
1496
  revision: None
1497
  metrics:
1498
  - type: map_at_1
1499
+ value: 21.826999999999998
1500
  - type: map_at_10
1501
+ value: 34.04
1502
  - type: map_at_100
1503
+ value: 35.226
1504
  - type: map_at_1000
1505
+ value: 35.275
1506
  - type: map_at_3
1507
+ value: 30.165999999999997
1508
  - type: map_at_5
1509
+ value: 32.318000000000005
1510
  - type: mrr_at_1
1511
+ value: 22.464000000000002
1512
  - type: mrr_at_10
1513
+ value: 34.631
1514
  - type: mrr_at_100
1515
+ value: 35.752
1516
  - type: mrr_at_1000
1517
+ value: 35.795
1518
  - type: mrr_at_3
1519
+ value: 30.798
1520
  - type: mrr_at_5
1521
+ value: 32.946999999999996
1522
  - type: ndcg_at_1
1523
+ value: 22.464000000000002
1524
  - type: ndcg_at_10
1525
+ value: 40.919
1526
  - type: ndcg_at_100
1527
+ value: 46.632
1528
  - type: ndcg_at_1000
1529
+ value: 47.833
1530
  - type: ndcg_at_3
1531
+ value: 32.992
1532
  - type: ndcg_at_5
1533
+ value: 36.834
1534
  - type: precision_at_1
1535
+ value: 22.464000000000002
1536
  - type: precision_at_10
1537
+ value: 6.494
1538
  - type: precision_at_100
1539
+ value: 0.9369999999999999
1540
  - type: precision_at_1000
1541
  value: 0.104
1542
  - type: precision_at_3
1543
+ value: 14.021
1544
  - type: precision_at_5
1545
+ value: 10.347000000000001
1546
  - type: recall_at_1
1547
+ value: 21.826999999999998
1548
  - type: recall_at_10
1549
+ value: 62.132
1550
  - type: recall_at_100
1551
+ value: 88.55199999999999
1552
  - type: recall_at_1000
1553
+ value: 97.707
1554
  - type: recall_at_3
1555
+ value: 40.541
1556
  - type: recall_at_5
1557
+ value: 49.739
1558
  - task:
1559
  type: Classification
1560
  dataset:
 
1565
  revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1566
  metrics:
1567
  - type: accuracy
1568
+ value: 95.68399452804377
1569
  - type: f1
1570
+ value: 95.25490609832268
1571
  - task:
1572
  type: Classification
1573
  dataset:
 
1578
  revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1579
  metrics:
1580
  - type: accuracy
1581
+ value: 83.15321477428182
1582
  - type: f1
1583
+ value: 60.35476439087966
1584
  - task:
1585
  type: Classification
1586
  dataset:
 
1591
  revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1592
  metrics:
1593
  - type: accuracy
1594
+ value: 71.92669804976462
1595
  - type: f1
1596
+ value: 69.22815107207565
1597
  - task:
1598
  type: Classification
1599
  dataset:
 
1604
  revision: 7d571f92784cd94a019292a1f45445077d0ef634
1605
  metrics:
1606
  - type: accuracy
1607
+ value: 74.4855413584398
1608
  - type: f1
1609
+ value: 72.92107516103387
1610
  - task:
1611
  type: Clustering
1612
  dataset:
 
1617
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1618
  metrics:
1619
  - type: v_measure
1620
+ value: 32.412679360205544
1621
  - task:
1622
  type: Clustering
1623
  dataset:
 
1628
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1629
  metrics:
1630
  - type: v_measure
1631
+ value: 28.09211869875204
1632
  - task:
1633
  type: Reranking
1634
  dataset:
 
1639
  revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1640
  metrics:
1641
  - type: map
1642
+ value: 30.540919056982545
1643
  - type: mrr
1644
+ value: 31.529904607063536
1645
  - task:
1646
  type: Retrieval
1647
  dataset:
 
1652
  revision: None
1653
  metrics:
1654
  - type: map_at_1
1655
+ value: 5.745
1656
  - type: map_at_10
1657
+ value: 12.013
1658
  - type: map_at_100
1659
+ value: 15.040000000000001
1660
  - type: map_at_1000
1661
+ value: 16.427
1662
  - type: map_at_3
1663
+ value: 8.841000000000001
1664
  - type: map_at_5
1665
+ value: 10.289
1666
  - type: mrr_at_1
1667
+ value: 45.201
1668
  - type: mrr_at_10
1669
+ value: 53.483999999999995
1670
  - type: mrr_at_100
1671
+ value: 54.20700000000001
1672
  - type: mrr_at_1000
1673
+ value: 54.252
1674
  - type: mrr_at_3
1675
+ value: 51.29
1676
  - type: mrr_at_5
1677
+ value: 52.73
1678
  - type: ndcg_at_1
1679
  value: 43.808
1680
  - type: ndcg_at_10
1681
+ value: 32.445
1682
  - type: ndcg_at_100
1683
+ value: 30.031000000000002
1684
  - type: ndcg_at_1000
1685
+ value: 39.007
1686
  - type: ndcg_at_3
1687
+ value: 37.204
1688
  - type: ndcg_at_5
1689
+ value: 35.07
1690
  - type: precision_at_1
1691
+ value: 45.201
1692
  - type: precision_at_10
1693
+ value: 23.684
1694
  - type: precision_at_100
1695
+ value: 7.600999999999999
1696
  - type: precision_at_1000
1697
+ value: 2.043
1698
  - type: precision_at_3
1699
+ value: 33.953
1700
  - type: precision_at_5
1701
+ value: 29.412
1702
  - type: recall_at_1
1703
+ value: 5.745
1704
  - type: recall_at_10
1705
+ value: 16.168
1706
  - type: recall_at_100
1707
+ value: 30.875999999999998
1708
  - type: recall_at_1000
1709
+ value: 62.686
1710
  - type: recall_at_3
1711
+ value: 9.75
1712
  - type: recall_at_5
1713
+ value: 12.413
1714
  - task:
1715
  type: Retrieval
1716
  dataset:
 
1721
  revision: None
1722
  metrics:
1723
  - type: map_at_1
1724
+ value: 37.828
1725
  - type: map_at_10
1726
+ value: 53.239000000000004
1727
  - type: map_at_100
1728
+ value: 54.035999999999994
1729
  - type: map_at_1000
1730
+ value: 54.067
1731
  - type: map_at_3
1732
+ value: 49.289
1733
  - type: map_at_5
1734
+ value: 51.784
1735
  - type: mrr_at_1
1736
+ value: 42.497
1737
  - type: mrr_at_10
1738
+ value: 55.916999999999994
1739
  - type: mrr_at_100
1740
+ value: 56.495
1741
  - type: mrr_at_1000
1742
+ value: 56.516999999999996
1743
  - type: mrr_at_3
1744
+ value: 52.800000000000004
1745
  - type: mrr_at_5
1746
+ value: 54.722
1747
  - type: ndcg_at_1
1748
+ value: 42.468
1749
  - type: ndcg_at_10
1750
+ value: 60.437
1751
  - type: ndcg_at_100
1752
+ value: 63.731
1753
  - type: ndcg_at_1000
1754
+ value: 64.41799999999999
1755
  - type: ndcg_at_3
1756
+ value: 53.230999999999995
1757
  - type: ndcg_at_5
1758
+ value: 57.26
1759
  - type: precision_at_1
1760
+ value: 42.468
1761
+ - type: precision_at_10
1762
+ value: 9.47
1763
  - type: precision_at_100
1764
+ value: 1.1360000000000001
1765
  - type: precision_at_1000
1766
  value: 0.12
1767
  - type: precision_at_3
1768
+ value: 23.724999999999998
1769
  - type: precision_at_5
1770
+ value: 16.593
1771
  - type: recall_at_1
1772
+ value: 37.828
1773
  - type: recall_at_10
1774
+ value: 79.538
1775
  - type: recall_at_100
1776
+ value: 93.646
1777
  - type: recall_at_1000
1778
+ value: 98.72999999999999
1779
  - type: recall_at_3
1780
+ value: 61.134
1781
  - type: recall_at_5
1782
+ value: 70.377
1783
  - task:
1784
  type: Retrieval
1785
  dataset:
 
1790
  revision: None
1791
  metrics:
1792
  - type: map_at_1
1793
+ value: 70.548
1794
  - type: map_at_10
1795
+ value: 84.466
1796
  - type: map_at_100
1797
+ value: 85.10600000000001
1798
  - type: map_at_1000
1799
+ value: 85.123
1800
  - type: map_at_3
1801
+ value: 81.57600000000001
1802
  - type: map_at_5
1803
+ value: 83.399
1804
  - type: mrr_at_1
1805
+ value: 81.24
1806
  - type: mrr_at_10
1807
+ value: 87.457
1808
  - type: mrr_at_100
1809
+ value: 87.574
1810
  - type: mrr_at_1000
1811
+ value: 87.575
1812
  - type: mrr_at_3
1813
+ value: 86.507
1814
  - type: mrr_at_5
1815
+ value: 87.205
1816
  - type: ndcg_at_1
1817
+ value: 81.25
1818
  - type: ndcg_at_10
1819
+ value: 88.203
1820
  - type: ndcg_at_100
1821
+ value: 89.457
1822
  - type: ndcg_at_1000
1823
+ value: 89.563
1824
  - type: ndcg_at_3
1825
+ value: 85.465
1826
  - type: ndcg_at_5
1827
+ value: 87.007
1828
  - type: precision_at_1
1829
+ value: 81.25
1830
  - type: precision_at_10
1831
+ value: 13.373
1832
  - type: precision_at_100
1833
+ value: 1.5270000000000001
1834
  - type: precision_at_1000
1835
  value: 0.157
1836
  - type: precision_at_3
1837
+ value: 37.417
1838
  - type: precision_at_5
1839
+ value: 24.556
1840
  - type: recall_at_1
1841
+ value: 70.548
1842
  - type: recall_at_10
1843
+ value: 95.208
1844
  - type: recall_at_100
1845
+ value: 99.514
1846
  - type: recall_at_1000
1847
+ value: 99.988
1848
  - type: recall_at_3
1849
+ value: 87.214
1850
  - type: recall_at_5
1851
+ value: 91.696
1852
  - task:
1853
  type: Clustering
1854
  dataset:
 
1859
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1860
  metrics:
1861
  - type: v_measure
1862
+ value: 53.04822095496839
1863
  - task:
1864
  type: Clustering
1865
  dataset:
 
1870
  revision: 282350215ef01743dc01b456c7f5241fa8937f16
1871
  metrics:
1872
  - type: v_measure
1873
+ value: 60.30778476474675
1874
  - task:
1875
  type: Retrieval
1876
  dataset:
 
1881
  revision: None
1882
  metrics:
1883
  - type: map_at_1
1884
+ value: 4.692
1885
  - type: map_at_10
1886
+ value: 11.766
1887
  - type: map_at_100
1888
+ value: 13.904
1889
  - type: map_at_1000
1890
+ value: 14.216999999999999
1891
  - type: map_at_3
1892
+ value: 8.245
1893
  - type: map_at_5
1894
+ value: 9.92
1895
  - type: mrr_at_1
1896
+ value: 23.0
1897
  - type: mrr_at_10
1898
+ value: 33.78
1899
  - type: mrr_at_100
1900
+ value: 34.922
1901
  - type: mrr_at_1000
1902
+ value: 34.973
1903
  - type: mrr_at_3
1904
+ value: 30.2
1905
  - type: mrr_at_5
1906
+ value: 32.565
1907
  - type: ndcg_at_1
1908
+ value: 23.0
1909
  - type: ndcg_at_10
1910
+ value: 19.863
1911
  - type: ndcg_at_100
1912
+ value: 28.141
1913
  - type: ndcg_at_1000
1914
+ value: 33.549
1915
  - type: ndcg_at_3
1916
+ value: 18.434
1917
  - type: ndcg_at_5
1918
+ value: 16.384
1919
  - type: precision_at_1
1920
+ value: 23.0
1921
  - type: precision_at_10
1922
  value: 10.39
1923
  - type: precision_at_100
1924
+ value: 2.235
1925
  - type: precision_at_1000
1926
  value: 0.35300000000000004
1927
  - type: precision_at_3
1928
+ value: 17.133000000000003
1929
  - type: precision_at_5
1930
+ value: 14.44
1931
  - type: recall_at_1
1932
+ value: 4.692
1933
  - type: recall_at_10
1934
+ value: 21.025
1935
  - type: recall_at_100
1936
+ value: 45.324999999999996
1937
  - type: recall_at_1000
1938
+ value: 71.675
1939
  - type: recall_at_3
1940
+ value: 10.440000000000001
1941
  - type: recall_at_5
1942
+ value: 14.64
1943
  - task:
1944
  type: STS
1945
  dataset:
 
1950
  revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1951
  metrics:
1952
  - type: cos_sim_pearson
1953
+ value: 84.96178184892842
1954
  - type: cos_sim_spearman
1955
+ value: 79.6487740813199
1956
  - type: euclidean_pearson
1957
+ value: 82.06661161625023
1958
  - type: euclidean_spearman
1959
+ value: 79.64876769031183
1960
  - type: manhattan_pearson
1961
+ value: 82.07061164575131
1962
  - type: manhattan_spearman
1963
+ value: 79.65197039464537
1964
  - task:
1965
  type: STS
1966
  dataset:
 
1971
  revision: a0d554a64d88156834ff5ae9920b964011b16384
1972
  metrics:
1973
  - type: cos_sim_pearson
1974
+ value: 84.15305604100027
1975
  - type: cos_sim_spearman
1976
+ value: 74.27447427941591
1977
  - type: euclidean_pearson
1978
+ value: 80.52737337565307
1979
  - type: euclidean_spearman
1980
+ value: 74.27416077132192
1981
  - type: manhattan_pearson
1982
+ value: 80.53728571140387
1983
  - type: manhattan_spearman
1984
+ value: 74.28853605753457
1985
  - task:
1986
  type: STS
1987
  dataset:
 
1992
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1993
  metrics:
1994
  - type: cos_sim_pearson
1995
+ value: 83.44386080639279
1996
  - type: cos_sim_spearman
1997
+ value: 84.17947648159536
1998
  - type: euclidean_pearson
1999
+ value: 83.34145388129387
2000
  - type: euclidean_spearman
2001
+ value: 84.17947648159536
2002
  - type: manhattan_pearson
2003
+ value: 83.30699061927966
2004
  - type: manhattan_spearman
2005
+ value: 84.18125737380451
2006
  - task:
2007
  type: STS
2008
  dataset:
 
2013
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2014
  metrics:
2015
  - type: cos_sim_pearson
2016
+ value: 81.57392220985612
2017
  - type: cos_sim_spearman
2018
+ value: 78.80745014464101
2019
  - type: euclidean_pearson
2020
+ value: 80.01660371487199
2021
  - type: euclidean_spearman
2022
+ value: 78.80741240102256
2023
  - type: manhattan_pearson
2024
+ value: 79.96810779507953
2025
  - type: manhattan_spearman
2026
+ value: 78.75600400119448
2027
  - task:
2028
  type: STS
2029
  dataset:
 
2034
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2035
  metrics:
2036
  - type: cos_sim_pearson
2037
+ value: 86.85421063026625
2038
  - type: cos_sim_spearman
2039
+ value: 87.55320285299192
2040
  - type: euclidean_pearson
2041
+ value: 86.69750143323517
2042
  - type: euclidean_spearman
2043
+ value: 87.55320284326378
2044
  - type: manhattan_pearson
2045
+ value: 86.63379169960379
2046
  - type: manhattan_spearman
2047
+ value: 87.4815029877984
2048
  - task:
2049
  type: STS
2050
  dataset:
 
2055
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2056
  metrics:
2057
  - type: cos_sim_pearson
2058
+ value: 84.31314130411842
2059
  - type: cos_sim_spearman
2060
+ value: 85.3489588181433
2061
  - type: euclidean_pearson
2062
+ value: 84.13240933463535
2063
  - type: euclidean_spearman
2064
+ value: 85.34902871403281
2065
  - type: manhattan_pearson
2066
+ value: 84.01183086503559
2067
  - type: manhattan_spearman
2068
+ value: 85.19316703166102
2069
  - task:
2070
  type: STS
2071
  dataset:
 
2076
  revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2077
  metrics:
2078
  - type: cos_sim_pearson
2079
+ value: 89.09979781689536
2080
  - type: cos_sim_spearman
2081
+ value: 88.87813323759015
2082
  - type: euclidean_pearson
2083
+ value: 88.65413031123792
2084
  - type: euclidean_spearman
2085
+ value: 88.87813323759015
2086
  - type: manhattan_pearson
2087
+ value: 88.61818758256024
2088
  - type: manhattan_spearman
2089
+ value: 88.81044100494604
2090
  - task:
2091
  type: STS
2092
  dataset:
 
2097
  revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2098
  metrics:
2099
  - type: cos_sim_pearson
2100
+ value: 62.30693258111531
2101
  - type: cos_sim_spearman
2102
+ value: 62.195516523251946
2103
  - type: euclidean_pearson
2104
+ value: 62.951283701049476
2105
  - type: euclidean_spearman
2106
+ value: 62.195516523251946
2107
  - type: manhattan_pearson
2108
+ value: 63.068322281439535
2109
  - type: manhattan_spearman
2110
+ value: 62.10621171028406
2111
  - task:
2112
  type: STS
2113
  dataset:
 
2118
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2119
  metrics:
2120
  - type: cos_sim_pearson
2121
+ value: 84.27092833763909
2122
  - type: cos_sim_spearman
2123
+ value: 84.84429717949759
2124
  - type: euclidean_pearson
2125
+ value: 84.8516966060792
2126
  - type: euclidean_spearman
2127
+ value: 84.84429717949759
2128
  - type: manhattan_pearson
2129
+ value: 84.82203139242881
2130
  - type: manhattan_spearman
2131
+ value: 84.8358503952945
2132
  - task:
2133
  type: Reranking
2134
  dataset:
 
2139
  revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2140
  metrics:
2141
  - type: map
2142
+ value: 83.10290863981409
2143
  - type: mrr
2144
+ value: 95.31168450286097
2145
  - task:
2146
  type: Retrieval
2147
  dataset:
 
2152
  revision: None
2153
  metrics:
2154
  - type: map_at_1
2155
+ value: 52.161
2156
  - type: map_at_10
2157
+ value: 62.138000000000005
2158
  - type: map_at_100
2159
+ value: 62.769
2160
  - type: map_at_1000
2161
+ value: 62.812
2162
  - type: map_at_3
2163
+ value: 59.111000000000004
2164
  - type: map_at_5
2165
+ value: 60.995999999999995
2166
  - type: mrr_at_1
2167
  value: 55.333
2168
  - type: mrr_at_10
2169
+ value: 63.504000000000005
2170
  - type: mrr_at_100
2171
+ value: 64.036
2172
  - type: mrr_at_1000
2173
+ value: 64.08
2174
  - type: mrr_at_3
2175
+ value: 61.278
2176
  - type: mrr_at_5
2177
+ value: 62.778
2178
  - type: ndcg_at_1
2179
  value: 55.333
2180
  - type: ndcg_at_10
2181
+ value: 66.678
2182
  - type: ndcg_at_100
2183
+ value: 69.415
2184
  - type: ndcg_at_1000
2185
+ value: 70.453
2186
  - type: ndcg_at_3
2187
+ value: 61.755
2188
  - type: ndcg_at_5
2189
+ value: 64.546
2190
  - type: precision_at_1
2191
  value: 55.333
2192
  - type: precision_at_10
2193
+ value: 9.033
2194
  - type: precision_at_100
2195
+ value: 1.043
2196
  - type: precision_at_1000
2197
  value: 0.11199999999999999
2198
  - type: precision_at_3
2199
+ value: 24.221999999999998
2200
  - type: precision_at_5
2201
  value: 16.333000000000002
2202
  - type: recall_at_1
2203
+ value: 52.161
2204
  - type: recall_at_10
2205
+ value: 79.156
2206
  - type: recall_at_100
2207
+ value: 91.333
2208
  - type: recall_at_1000
2209
  value: 99.333
2210
  - type: recall_at_3
2211
+ value: 66.43299999999999
2212
  - type: recall_at_5
2213
+ value: 73.272
2214
  - task:
2215
  type: PairClassification
2216
  dataset:
 
2221
  revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2222
  metrics:
2223
  - type: cos_sim_accuracy
2224
+ value: 99.81287128712871
2225
  - type: cos_sim_ap
2226
+ value: 95.30034785910676
2227
  - type: cos_sim_f1
2228
+ value: 90.28629856850716
2229
  - type: cos_sim_precision
2230
+ value: 92.36401673640168
2231
  - type: cos_sim_recall
2232
+ value: 88.3
2233
  - type: dot_accuracy
2234
+ value: 99.81287128712871
2235
  - type: dot_ap
2236
+ value: 95.30034785910676
2237
  - type: dot_f1
2238
+ value: 90.28629856850716
2239
  - type: dot_precision
2240
+ value: 92.36401673640168
2241
  - type: dot_recall
2242
+ value: 88.3
2243
  - type: euclidean_accuracy
2244
+ value: 99.81287128712871
2245
  - type: euclidean_ap
2246
+ value: 95.30034785910676
2247
  - type: euclidean_f1
2248
+ value: 90.28629856850716
2249
  - type: euclidean_precision
2250
+ value: 92.36401673640168
2251
  - type: euclidean_recall
2252
+ value: 88.3
2253
  - type: manhattan_accuracy
2254
+ value: 99.80990099009901
2255
  - type: manhattan_ap
2256
+ value: 95.26880751950654
2257
  - type: manhattan_f1
2258
+ value: 90.22177419354838
2259
  - type: manhattan_precision
2260
+ value: 90.95528455284553
2261
  - type: manhattan_recall
2262
+ value: 89.5
2263
  - type: max_accuracy
2264
+ value: 99.81287128712871
2265
  - type: max_ap
2266
+ value: 95.30034785910676
2267
  - type: max_f1
2268
+ value: 90.28629856850716
2269
  - task:
2270
  type: Clustering
2271
  dataset:
 
2276
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2277
  metrics:
2278
  - type: v_measure
2279
+ value: 58.518662504351184
2280
  - task:
2281
  type: Clustering
2282
  dataset:
 
2287
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2288
  metrics:
2289
  - type: v_measure
2290
+ value: 34.96168178378587
2291
  - task:
2292
  type: Reranking
2293
  dataset:
 
2298
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2299
  metrics:
2300
  - type: map
2301
+ value: 52.04862593471896
2302
  - type: mrr
2303
+ value: 52.97238402936932
2304
  - task:
2305
  type: Summarization
2306
  dataset:
 
2311
  revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2312
  metrics:
2313
  - type: cos_sim_pearson
2314
+ value: 30.092545236479946
2315
  - type: cos_sim_spearman
2316
+ value: 31.599851000175498
2317
  - type: dot_pearson
2318
+ value: 30.092542723901676
2319
  - type: dot_spearman
2320
+ value: 31.599851000175498
2321
  - task:
2322
  type: Retrieval
2323
  dataset:
 
2328
  revision: None
2329
  metrics:
2330
  - type: map_at_1
2331
+ value: 0.189
2332
  - type: map_at_10
2333
+ value: 1.662
2334
  - type: map_at_100
2335
+ value: 9.384
2336
  - type: map_at_1000
2337
+ value: 22.669
2338
  - type: map_at_3
2339
+ value: 0.5559999999999999
2340
  - type: map_at_5
2341
+ value: 0.9039999999999999
2342
  - type: mrr_at_1
2343
+ value: 68.0
2344
  - type: mrr_at_10
2345
+ value: 81.01899999999999
2346
  - type: mrr_at_100
2347
+ value: 81.01899999999999
2348
  - type: mrr_at_1000
2349
+ value: 81.01899999999999
2350
  - type: mrr_at_3
2351
+ value: 79.333
2352
  - type: mrr_at_5
2353
+ value: 80.733
2354
  - type: ndcg_at_1
2355
+ value: 63.0
2356
  - type: ndcg_at_10
2357
+ value: 65.913
2358
  - type: ndcg_at_100
2359
+ value: 51.895
2360
  - type: ndcg_at_1000
2361
+ value: 46.967
2362
  - type: ndcg_at_3
2363
+ value: 65.49199999999999
2364
  - type: ndcg_at_5
2365
+ value: 66.69699999999999
2366
  - type: precision_at_1
2367
+ value: 68.0
2368
  - type: precision_at_10
2369
+ value: 71.6
2370
  - type: precision_at_100
2371
+ value: 53.66
2372
  - type: precision_at_1000
2373
+ value: 21.124000000000002
2374
  - type: precision_at_3
2375
  value: 72.667
2376
  - type: precision_at_5
2377
+ value: 74.0
2378
  - type: recall_at_1
2379
+ value: 0.189
2380
  - type: recall_at_10
2381
+ value: 1.913
2382
  - type: recall_at_100
2383
+ value: 12.601999999999999
2384
  - type: recall_at_1000
2385
+ value: 44.296
2386
  - type: recall_at_3
2387
+ value: 0.605
2388
  - type: recall_at_5
2389
+ value: 1.018
2390
  - task:
2391
  type: Retrieval
2392
  dataset:
 
2397
  revision: None
2398
  metrics:
2399
  - type: map_at_1
2400
+ value: 2.701
2401
  - type: map_at_10
2402
+ value: 10.445
2403
  - type: map_at_100
2404
+ value: 17.324
2405
  - type: map_at_1000
2406
+ value: 19.161
2407
  - type: map_at_3
2408
+ value: 5.497
2409
  - type: map_at_5
2410
+ value: 7.278
2411
  - type: mrr_at_1
2412
+ value: 30.612000000000002
2413
  - type: mrr_at_10
2414
+ value: 45.534
2415
  - type: mrr_at_100
2416
+ value: 45.792
2417
  - type: mrr_at_1000
2418
+ value: 45.806999999999995
2419
  - type: mrr_at_3
2420
+ value: 37.755
2421
  - type: mrr_at_5
2422
+ value: 43.469
2423
  - type: ndcg_at_1
2424
+ value: 26.531
2425
  - type: ndcg_at_10
2426
+ value: 26.235000000000003
2427
  - type: ndcg_at_100
2428
+ value: 39.17
2429
  - type: ndcg_at_1000
2430
+ value: 51.038
2431
  - type: ndcg_at_3
2432
+ value: 23.625
2433
  - type: ndcg_at_5
2434
+ value: 24.338
2435
  - type: precision_at_1
2436
+ value: 30.612000000000002
2437
  - type: precision_at_10
2438
+ value: 24.285999999999998
2439
  - type: precision_at_100
2440
+ value: 8.224
2441
  - type: precision_at_1000
2442
+ value: 1.6179999999999999
2443
  - type: precision_at_3
2444
+ value: 24.490000000000002
2445
  - type: precision_at_5
2446
+ value: 24.898
2447
  - type: recall_at_1
2448
+ value: 2.701
2449
  - type: recall_at_10
2450
+ value: 17.997
2451
  - type: recall_at_100
2452
+ value: 51.766999999999996
2453
  - type: recall_at_1000
2454
+ value: 87.863
2455
  - type: recall_at_3
2456
+ value: 6.295000000000001
2457
  - type: recall_at_5
2458
+ value: 9.993
2459
  - task:
2460
  type: Classification
2461
  dataset:
 
2466
  revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2467
  metrics:
2468
  - type: accuracy
2469
+ value: 73.3474
2470
  - type: ap
2471
+ value: 15.393431414459924
2472
  - type: f1
2473
+ value: 56.466681887882416
2474
  - task:
2475
  type: Classification
2476
  dataset:
 
2481
  revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2482
  metrics:
2483
  - type: accuracy
2484
+ value: 62.062818336163
2485
  - type: f1
2486
+ value: 62.11230840463252
2487
  - task:
2488
  type: Clustering
2489
  dataset:
 
2494
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2495
  metrics:
2496
  - type: v_measure
2497
+ value: 42.464892820845115
2498
  - task:
2499
  type: PairClassification
2500
  dataset:
 
2505
  revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2506
  metrics:
2507
  - type: cos_sim_accuracy
2508
+ value: 86.15962329379508
2509
  - type: cos_sim_ap
2510
+ value: 74.73674057919256
2511
  - type: cos_sim_f1
2512
+ value: 68.81245642574947
2513
  - type: cos_sim_precision
2514
+ value: 61.48255813953488
2515
  - type: cos_sim_recall
2516
+ value: 78.12664907651715
2517
  - type: dot_accuracy
2518
+ value: 86.15962329379508
2519
  - type: dot_ap
2520
+ value: 74.7367634988281
2521
  - type: dot_f1
2522
+ value: 68.81245642574947
2523
  - type: dot_precision
2524
+ value: 61.48255813953488
2525
  - type: dot_recall
2526
+ value: 78.12664907651715
2527
  - type: euclidean_accuracy
2528
+ value: 86.15962329379508
2529
  - type: euclidean_ap
2530
+ value: 74.7367761466634
2531
  - type: euclidean_f1
2532
+ value: 68.81245642574947
2533
  - type: euclidean_precision
2534
+ value: 61.48255813953488
2535
  - type: euclidean_recall
2536
+ value: 78.12664907651715
2537
  - type: manhattan_accuracy
2538
+ value: 86.21326816474935
2539
  - type: manhattan_ap
2540
+ value: 74.64416473733951
2541
  - type: manhattan_f1
2542
+ value: 68.80924855491331
2543
  - type: manhattan_precision
2544
+ value: 61.23456790123457
2545
  - type: manhattan_recall
2546
+ value: 78.52242744063325
2547
  - type: max_accuracy
2548
+ value: 86.21326816474935
2549
  - type: max_ap
2550
+ value: 74.7367761466634
2551
  - type: max_f1
2552
+ value: 68.81245642574947
2553
  - task:
2554
  type: PairClassification
2555
  dataset:
 
2560
  revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2561
  metrics:
2562
  - type: cos_sim_accuracy
2563
+ value: 88.97620988085536
2564
  - type: cos_sim_ap
2565
+ value: 86.08680845745758
2566
  - type: cos_sim_f1
2567
+ value: 78.02793637114438
2568
  - type: cos_sim_precision
2569
+ value: 73.11082699683736
2570
  - type: cos_sim_recall
2571
+ value: 83.65414228518632
2572
  - type: dot_accuracy
2573
+ value: 88.97620988085536
2574
  - type: dot_ap
2575
+ value: 86.08681149437946
2576
  - type: dot_f1
2577
+ value: 78.02793637114438
2578
  - type: dot_precision
2579
+ value: 73.11082699683736
2580
  - type: dot_recall
2581
+ value: 83.65414228518632
2582
  - type: euclidean_accuracy
2583
+ value: 88.97620988085536
2584
  - type: euclidean_ap
2585
+ value: 86.08681215460771
2586
  - type: euclidean_f1
2587
+ value: 78.02793637114438
2588
  - type: euclidean_precision
2589
+ value: 73.11082699683736
2590
  - type: euclidean_recall
2591
+ value: 83.65414228518632
2592
  - type: manhattan_accuracy
2593
+ value: 88.88888888888889
2594
  - type: manhattan_ap
2595
+ value: 86.02916327562438
2596
  - type: manhattan_f1
2597
+ value: 78.02063045516843
2598
  - type: manhattan_precision
2599
+ value: 73.38851947346994
2600
  - type: manhattan_recall
2601
+ value: 83.2768709578072
2602
  - type: max_accuracy
2603
+ value: 88.97620988085536
2604
  - type: max_ap
2605
+ value: 86.08681215460771
2606
  - type: max_f1
2607
+ value: 78.02793637114438
2608
  ---
2609
  <!-- TODO: add evaluation results here -->
2610
  <br><br>
 
2641
 
2642
  **V2 (Based on JinaBert, 8k Seq)**
2643
 
2644
+ - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
2645
+ - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters **(you are here)**.
2646
  - [`jina-embeddings-v2-large-en`](): 435 million parameters (releasing soon).
2647
 
2648
  ## Data & Parameters
 
2674
  )
2675
  ```
2676
 
2677
+ *Alternatively, you can use Jina AI's Embedding platform for fully-managed access to Jina Embeddings models (Coming soon!)*.
2678
 
2679
  ## Fine-tuning
2680