---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
language:
- es
- en
inference: false
license: apache-2.0
model-index:
- name: jina-embeddings-v2-base-es
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.25373134328358
- type: ap
value: 37.05201236793268
- type: f1
value: 68.16770391201077
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 78.30885
- type: ap
value: 73.01622441156408
- type: f1
value: 78.20769284466313
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 38.324
- type: f1
value: 37.89543008761673
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (es)
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 38.678000000000004
- type: f1
value: 38.122639506976
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.968999999999998
- type: map_at_10
value: 40.691
- type: map_at_100
value: 41.713
- type: map_at_1000
value: 41.719
- type: map_at_3
value: 35.42
- type: map_at_5
value: 38.442
- type: mrr_at_1
value: 24.395
- type: mrr_at_10
value: 40.853
- type: mrr_at_100
value: 41.869
- type: mrr_at_1000
value: 41.874
- type: mrr_at_3
value: 35.68
- type: mrr_at_5
value: 38.572
- type: ndcg_at_1
value: 23.968999999999998
- type: ndcg_at_10
value: 50.129999999999995
- type: ndcg_at_100
value: 54.364000000000004
- type: ndcg_at_1000
value: 54.494
- type: ndcg_at_3
value: 39.231
- type: ndcg_at_5
value: 44.694
- type: precision_at_1
value: 23.968999999999998
- type: precision_at_10
value: 8.036999999999999
- type: precision_at_100
value: 0.9860000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 16.761
- type: precision_at_5
value: 12.717
- type: recall_at_1
value: 23.968999999999998
- type: recall_at_10
value: 80.36999999999999
- type: recall_at_100
value: 98.578
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 50.28399999999999
- type: recall_at_5
value: 63.585
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 41.54886683150053
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 32.186028697637234
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 61.19432643698725
- type: mrr
value: 75.28646176845622
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 86.3828259381228
- type: cos_sim_spearman
value: 83.04647058342209
- type: euclidean_pearson
value: 84.02895346096244
- type: euclidean_spearman
value: 82.34524978635342
- type: manhattan_pearson
value: 84.35030723233426
- type: manhattan_spearman
value: 83.17177464337936
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 85.25649350649351
- type: f1
value: 85.22320474023192
- task:
type: Clustering
dataset:
type: jinaai/big-patent-clustering
name: MTEB BigPatentClustering
config: default
split: test
revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
metrics:
- type: v_measure
value: 20.42929408254094
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 35.165318177498136
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 28.89030154229562
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.119
- type: map_at_10
value: 42.092
- type: map_at_100
value: 43.506
- type: map_at_1000
value: 43.631
- type: map_at_3
value: 38.373000000000005
- type: map_at_5
value: 40.501
- type: mrr_at_1
value: 38.196999999999996
- type: mrr_at_10
value: 48.237
- type: mrr_at_100
value: 48.914
- type: mrr_at_1000
value: 48.959
- type: mrr_at_3
value: 45.279
- type: mrr_at_5
value: 47.11
- type: ndcg_at_1
value: 38.196999999999996
- type: ndcg_at_10
value: 48.849
- type: ndcg_at_100
value: 53.713
- type: ndcg_at_1000
value: 55.678000000000004
- type: ndcg_at_3
value: 43.546
- type: ndcg_at_5
value: 46.009
- type: precision_at_1
value: 38.196999999999996
- type: precision_at_10
value: 9.642000000000001
- type: precision_at_100
value: 1.5190000000000001
- type: precision_at_1000
value: 0.199
- type: precision_at_3
value: 21.65
- type: precision_at_5
value: 15.708
- type: recall_at_1
value: 30.119
- type: recall_at_10
value: 61.788
- type: recall_at_100
value: 82.14399999999999
- type: recall_at_1000
value: 95.003
- type: recall_at_3
value: 45.772
- type: recall_at_5
value: 53.04600000000001
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.979
- type: map_at_10
value: 37.785000000000004
- type: map_at_100
value: 38.945
- type: map_at_1000
value: 39.071
- type: map_at_3
value: 35.083999999999996
- type: map_at_5
value: 36.571999999999996
- type: mrr_at_1
value: 36.242000000000004
- type: mrr_at_10
value: 43.552
- type: mrr_at_100
value: 44.228
- type: mrr_at_1000
value: 44.275999999999996
- type: mrr_at_3
value: 41.359
- type: mrr_at_5
value: 42.598
- type: ndcg_at_1
value: 36.242000000000004
- type: ndcg_at_10
value: 42.94
- type: ndcg_at_100
value: 47.343
- type: ndcg_at_1000
value: 49.538
- type: ndcg_at_3
value: 39.086999999999996
- type: ndcg_at_5
value: 40.781
- type: precision_at_1
value: 36.242000000000004
- type: precision_at_10
value: 7.954999999999999
- type: precision_at_100
value: 1.303
- type: precision_at_1000
value: 0.178
- type: precision_at_3
value: 18.556
- type: precision_at_5
value: 13.145999999999999
- type: recall_at_1
value: 28.979
- type: recall_at_10
value: 51.835
- type: recall_at_100
value: 70.47
- type: recall_at_1000
value: 84.68299999999999
- type: recall_at_3
value: 40.410000000000004
- type: recall_at_5
value: 45.189
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.878
- type: map_at_10
value: 49.903
- type: map_at_100
value: 50.797000000000004
- type: map_at_1000
value: 50.858000000000004
- type: map_at_3
value: 46.526
- type: map_at_5
value: 48.615
- type: mrr_at_1
value: 43.135
- type: mrr_at_10
value: 53.067
- type: mrr_at_100
value: 53.668000000000006
- type: mrr_at_1000
value: 53.698
- type: mrr_at_3
value: 50.449
- type: mrr_at_5
value: 52.117000000000004
- type: ndcg_at_1
value: 43.135
- type: ndcg_at_10
value: 55.641
- type: ndcg_at_100
value: 59.427
- type: ndcg_at_1000
value: 60.655
- type: ndcg_at_3
value: 49.969
- type: ndcg_at_5
value: 53.075
- type: precision_at_1
value: 43.135
- type: precision_at_10
value: 8.997
- type: precision_at_100
value: 1.1809999999999998
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 22.215
- type: precision_at_5
value: 15.586
- type: recall_at_1
value: 37.878
- type: recall_at_10
value: 69.405
- type: recall_at_100
value: 86.262
- type: recall_at_1000
value: 95.012
- type: recall_at_3
value: 54.458
- type: recall_at_5
value: 61.965
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.853
- type: map_at_10
value: 32.402
- type: map_at_100
value: 33.417
- type: map_at_1000
value: 33.498
- type: map_at_3
value: 30.024
- type: map_at_5
value: 31.407
- type: mrr_at_1
value: 26.667
- type: mrr_at_10
value: 34.399
- type: mrr_at_100
value: 35.284
- type: mrr_at_1000
value: 35.345
- type: mrr_at_3
value: 32.109
- type: mrr_at_5
value: 33.375
- type: ndcg_at_1
value: 26.667
- type: ndcg_at_10
value: 36.854
- type: ndcg_at_100
value: 42.196
- type: ndcg_at_1000
value: 44.303
- type: ndcg_at_3
value: 32.186
- type: ndcg_at_5
value: 34.512
- type: precision_at_1
value: 26.667
- type: precision_at_10
value: 5.559
- type: precision_at_100
value: 0.88
- type: precision_at_1000
value: 0.109
- type: precision_at_3
value: 13.333
- type: precision_at_5
value: 9.379
- type: recall_at_1
value: 24.853
- type: recall_at_10
value: 48.636
- type: recall_at_100
value: 73.926
- type: recall_at_1000
value: 89.94
- type: recall_at_3
value: 36.266
- type: recall_at_5
value: 41.723
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 14.963999999999999
- type: map_at_10
value: 22.591
- type: map_at_100
value: 23.735999999999997
- type: map_at_1000
value: 23.868000000000002
- type: map_at_3
value: 20.093
- type: map_at_5
value: 21.499
- type: mrr_at_1
value: 18.407999999999998
- type: mrr_at_10
value: 26.863
- type: mrr_at_100
value: 27.87
- type: mrr_at_1000
value: 27.947
- type: mrr_at_3
value: 24.254
- type: mrr_at_5
value: 25.784000000000002
- type: ndcg_at_1
value: 18.407999999999998
- type: ndcg_at_10
value: 27.549
- type: ndcg_at_100
value: 33.188
- type: ndcg_at_1000
value: 36.312
- type: ndcg_at_3
value: 22.862
- type: ndcg_at_5
value: 25.130999999999997
- type: precision_at_1
value: 18.407999999999998
- type: precision_at_10
value: 5.087
- type: precision_at_100
value: 0.923
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 10.987
- type: precision_at_5
value: 8.209
- type: recall_at_1
value: 14.963999999999999
- type: recall_at_10
value: 38.673
- type: recall_at_100
value: 63.224999999999994
- type: recall_at_1000
value: 85.443
- type: recall_at_3
value: 25.840000000000003
- type: recall_at_5
value: 31.503999999999998
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.861000000000004
- type: map_at_10
value: 37.562
- type: map_at_100
value: 38.906
- type: map_at_1000
value: 39.021
- type: map_at_3
value: 34.743
- type: map_at_5
value: 36.168
- type: mrr_at_1
value: 34.455999999999996
- type: mrr_at_10
value: 43.428
- type: mrr_at_100
value: 44.228
- type: mrr_at_1000
value: 44.278
- type: mrr_at_3
value: 41.001
- type: mrr_at_5
value: 42.315000000000005
- type: ndcg_at_1
value: 34.455999999999996
- type: ndcg_at_10
value: 43.477
- type: ndcg_at_100
value: 48.953
- type: ndcg_at_1000
value: 51.19200000000001
- type: ndcg_at_3
value: 38.799
- type: ndcg_at_5
value: 40.743
- type: precision_at_1
value: 34.455999999999996
- type: precision_at_10
value: 7.902000000000001
- type: precision_at_100
value: 1.244
- type: precision_at_1000
value: 0.161
- type: precision_at_3
value: 18.511
- type: precision_at_5
value: 12.859000000000002
- type: recall_at_1
value: 27.861000000000004
- type: recall_at_10
value: 55.36
- type: recall_at_100
value: 78.384
- type: recall_at_1000
value: 93.447
- type: recall_at_3
value: 41.926
- type: recall_at_5
value: 47.257
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.375
- type: map_at_10
value: 35.571000000000005
- type: map_at_100
value: 36.785000000000004
- type: map_at_1000
value: 36.905
- type: map_at_3
value: 32.49
- type: map_at_5
value: 34.123999999999995
- type: mrr_at_1
value: 32.647999999999996
- type: mrr_at_10
value: 40.598
- type: mrr_at_100
value: 41.484
- type: mrr_at_1000
value: 41.546
- type: mrr_at_3
value: 37.9
- type: mrr_at_5
value: 39.401
- type: ndcg_at_1
value: 32.647999999999996
- type: ndcg_at_10
value: 41.026
- type: ndcg_at_100
value: 46.365
- type: ndcg_at_1000
value: 48.876
- type: ndcg_at_3
value: 35.843
- type: ndcg_at_5
value: 38.118
- type: precision_at_1
value: 32.647999999999996
- type: precision_at_10
value: 7.443
- type: precision_at_100
value: 1.18
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 16.819
- type: precision_at_5
value: 11.985999999999999
- type: recall_at_1
value: 26.375
- type: recall_at_10
value: 52.471000000000004
- type: recall_at_100
value: 75.354
- type: recall_at_1000
value: 92.35
- type: recall_at_3
value: 37.893
- type: recall_at_5
value: 43.935
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.012666666666668
- type: map_at_10
value: 33.685833333333335
- type: map_at_100
value: 34.849250000000005
- type: map_at_1000
value: 34.970083333333335
- type: map_at_3
value: 31.065083333333334
- type: map_at_5
value: 32.494416666666666
- type: mrr_at_1
value: 29.772666666666662
- type: mrr_at_10
value: 37.824666666666666
- type: mrr_at_100
value: 38.66741666666666
- type: mrr_at_1000
value: 38.72916666666666
- type: mrr_at_3
value: 35.54575
- type: mrr_at_5
value: 36.81524999999999
- type: ndcg_at_1
value: 29.772666666666662
- type: ndcg_at_10
value: 38.78241666666666
- type: ndcg_at_100
value: 43.84591666666667
- type: ndcg_at_1000
value: 46.275416666666665
- type: ndcg_at_3
value: 34.33416666666667
- type: ndcg_at_5
value: 36.345166666666664
- type: precision_at_1
value: 29.772666666666662
- type: precision_at_10
value: 6.794916666666667
- type: precision_at_100
value: 1.106416666666667
- type: precision_at_1000
value: 0.15033333333333335
- type: precision_at_3
value: 15.815083333333336
- type: precision_at_5
value: 11.184166666666664
- type: recall_at_1
value: 25.012666666666668
- type: recall_at_10
value: 49.748500000000014
- type: recall_at_100
value: 72.11341666666667
- type: recall_at_1000
value: 89.141
- type: recall_at_3
value: 37.242999999999995
- type: recall_at_5
value: 42.49033333333333
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.177
- type: map_at_10
value: 29.310000000000002
- type: map_at_100
value: 30.188
- type: map_at_1000
value: 30.29
- type: map_at_3
value: 27.356
- type: map_at_5
value: 28.410999999999998
- type: mrr_at_1
value: 26.074
- type: mrr_at_10
value: 32.002
- type: mrr_at_100
value: 32.838
- type: mrr_at_1000
value: 32.909
- type: mrr_at_3
value: 30.317
- type: mrr_at_5
value: 31.222
- type: ndcg_at_1
value: 26.074
- type: ndcg_at_10
value: 32.975
- type: ndcg_at_100
value: 37.621
- type: ndcg_at_1000
value: 40.253
- type: ndcg_at_3
value: 29.452
- type: ndcg_at_5
value: 31.020999999999997
- type: precision_at_1
value: 26.074
- type: precision_at_10
value: 5.077
- type: precision_at_100
value: 0.8049999999999999
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 12.526000000000002
- type: precision_at_5
value: 8.588999999999999
- type: recall_at_1
value: 23.177
- type: recall_at_10
value: 41.613
- type: recall_at_100
value: 63.287000000000006
- type: recall_at_1000
value: 83.013
- type: recall_at_3
value: 31.783
- type: recall_at_5
value: 35.769
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.856
- type: map_at_10
value: 22.651
- type: map_at_100
value: 23.649
- type: map_at_1000
value: 23.783
- type: map_at_3
value: 20.591
- type: map_at_5
value: 21.684
- type: mrr_at_1
value: 19.408
- type: mrr_at_10
value: 26.51
- type: mrr_at_100
value: 27.356
- type: mrr_at_1000
value: 27.439999999999998
- type: mrr_at_3
value: 24.547
- type: mrr_at_5
value: 25.562
- type: ndcg_at_1
value: 19.408
- type: ndcg_at_10
value: 27.072000000000003
- type: ndcg_at_100
value: 31.980999999999998
- type: ndcg_at_1000
value: 35.167
- type: ndcg_at_3
value: 23.338
- type: ndcg_at_5
value: 24.94
- type: precision_at_1
value: 19.408
- type: precision_at_10
value: 4.9590000000000005
- type: precision_at_100
value: 0.8710000000000001
- type: precision_at_1000
value: 0.132
- type: precision_at_3
value: 11.138
- type: precision_at_5
value: 7.949000000000001
- type: recall_at_1
value: 15.856
- type: recall_at_10
value: 36.578
- type: recall_at_100
value: 58.89
- type: recall_at_1000
value: 81.743
- type: recall_at_3
value: 25.94
- type: recall_at_5
value: 30.153999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.892
- type: map_at_10
value: 33.899
- type: map_at_100
value: 34.955000000000005
- type: map_at_1000
value: 35.066
- type: map_at_3
value: 31.41
- type: map_at_5
value: 32.669
- type: mrr_at_1
value: 30.224
- type: mrr_at_10
value: 37.936
- type: mrr_at_100
value: 38.777
- type: mrr_at_1000
value: 38.85
- type: mrr_at_3
value: 35.821
- type: mrr_at_5
value: 36.894
- type: ndcg_at_1
value: 30.224
- type: ndcg_at_10
value: 38.766
- type: ndcg_at_100
value: 43.806
- type: ndcg_at_1000
value: 46.373999999999995
- type: ndcg_at_3
value: 34.325
- type: ndcg_at_5
value: 36.096000000000004
- type: precision_at_1
value: 30.224
- type: precision_at_10
value: 6.446000000000001
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 15.392
- type: precision_at_5
value: 10.671999999999999
- type: recall_at_1
value: 25.892
- type: recall_at_10
value: 49.573
- type: recall_at_100
value: 71.885
- type: recall_at_1000
value: 89.912
- type: recall_at_3
value: 37.226
- type: recall_at_5
value: 41.74
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.915
- type: map_at_10
value: 33.613
- type: map_at_100
value: 35.333999999999996
- type: map_at_1000
value: 35.563
- type: map_at_3
value: 31.203999999999997
- type: map_at_5
value: 32.479
- type: mrr_at_1
value: 29.447000000000003
- type: mrr_at_10
value: 38.440000000000005
- type: mrr_at_100
value: 39.459
- type: mrr_at_1000
value: 39.513999999999996
- type: mrr_at_3
value: 36.495
- type: mrr_at_5
value: 37.592
- type: ndcg_at_1
value: 29.447000000000003
- type: ndcg_at_10
value: 39.341
- type: ndcg_at_100
value: 45.382
- type: ndcg_at_1000
value: 47.921
- type: ndcg_at_3
value: 35.671
- type: ndcg_at_5
value: 37.299
- type: precision_at_1
value: 29.447000000000003
- type: precision_at_10
value: 7.648000000000001
- type: precision_at_100
value: 1.567
- type: precision_at_1000
value: 0.241
- type: precision_at_3
value: 17.194000000000003
- type: precision_at_5
value: 12.253
- type: recall_at_1
value: 23.915
- type: recall_at_10
value: 49.491
- type: recall_at_100
value: 76.483
- type: recall_at_1000
value: 92.674
- type: recall_at_3
value: 38.878
- type: recall_at_5
value: 43.492
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 20.283
- type: map_at_10
value: 26.851000000000003
- type: map_at_100
value: 27.973
- type: map_at_1000
value: 28.087
- type: map_at_3
value: 24.887
- type: map_at_5
value: 25.804
- type: mrr_at_1
value: 22.366
- type: mrr_at_10
value: 28.864
- type: mrr_at_100
value: 29.903000000000002
- type: mrr_at_1000
value: 29.988
- type: mrr_at_3
value: 27.017999999999997
- type: mrr_at_5
value: 27.813
- type: ndcg_at_1
value: 22.366
- type: ndcg_at_10
value: 30.898999999999997
- type: ndcg_at_100
value: 36.176
- type: ndcg_at_1000
value: 39.036
- type: ndcg_at_3
value: 26.932000000000002
- type: ndcg_at_5
value: 28.416999999999998
- type: precision_at_1
value: 22.366
- type: precision_at_10
value: 4.824
- type: precision_at_100
value: 0.804
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 11.459999999999999
- type: precision_at_5
value: 7.8740000000000006
- type: recall_at_1
value: 20.283
- type: recall_at_10
value: 41.559000000000005
- type: recall_at_100
value: 65.051
- type: recall_at_1000
value: 86.47200000000001
- type: recall_at_3
value: 30.524
- type: recall_at_5
value: 34.11
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.326
- type: map_at_10
value: 19.357
- type: map_at_100
value: 21.014
- type: map_at_1000
value: 21.188000000000002
- type: map_at_3
value: 16.305
- type: map_at_5
value: 17.886
- type: mrr_at_1
value: 24.820999999999998
- type: mrr_at_10
value: 36.150999999999996
- type: mrr_at_100
value: 37.080999999999996
- type: mrr_at_1000
value: 37.123
- type: mrr_at_3
value: 32.952999999999996
- type: mrr_at_5
value: 34.917
- type: ndcg_at_1
value: 24.820999999999998
- type: ndcg_at_10
value: 27.131
- type: ndcg_at_100
value: 33.841
- type: ndcg_at_1000
value: 37.159
- type: ndcg_at_3
value: 22.311
- type: ndcg_at_5
value: 24.026
- type: precision_at_1
value: 24.820999999999998
- type: precision_at_10
value: 8.450000000000001
- type: precision_at_100
value: 1.557
- type: precision_at_1000
value: 0.218
- type: precision_at_3
value: 16.612
- type: precision_at_5
value: 12.808
- type: recall_at_1
value: 11.326
- type: recall_at_10
value: 32.548
- type: recall_at_100
value: 55.803000000000004
- type: recall_at_1000
value: 74.636
- type: recall_at_3
value: 20.549
- type: recall_at_5
value: 25.514
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.481
- type: map_at_10
value: 15.043999999999999
- type: map_at_100
value: 20.194000000000003
- type: map_at_1000
value: 21.423000000000002
- type: map_at_3
value: 11.238
- type: map_at_5
value: 12.828999999999999
- type: mrr_at_1
value: 54.50000000000001
- type: mrr_at_10
value: 64.713
- type: mrr_at_100
value: 65.216
- type: mrr_at_1000
value: 65.23
- type: mrr_at_3
value: 62.74999999999999
- type: mrr_at_5
value: 63.87500000000001
- type: ndcg_at_1
value: 43.375
- type: ndcg_at_10
value: 32.631
- type: ndcg_at_100
value: 36.338
- type: ndcg_at_1000
value: 43.541000000000004
- type: ndcg_at_3
value: 36.746
- type: ndcg_at_5
value: 34.419
- type: precision_at_1
value: 54.50000000000001
- type: precision_at_10
value: 24.825
- type: precision_at_100
value: 7.698
- type: precision_at_1000
value: 1.657
- type: precision_at_3
value: 38.917
- type: precision_at_5
value: 32.35
- type: recall_at_1
value: 7.481
- type: recall_at_10
value: 20.341
- type: recall_at_100
value: 41.778
- type: recall_at_1000
value: 64.82
- type: recall_at_3
value: 12.748000000000001
- type: recall_at_5
value: 15.507000000000001
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 46.580000000000005
- type: f1
value: 41.5149462395095
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 61.683
- type: map_at_10
value: 73.071
- type: map_at_100
value: 73.327
- type: map_at_1000
value: 73.341
- type: map_at_3
value: 71.446
- type: map_at_5
value: 72.557
- type: mrr_at_1
value: 66.44200000000001
- type: mrr_at_10
value: 77.725
- type: mrr_at_100
value: 77.89399999999999
- type: mrr_at_1000
value: 77.898
- type: mrr_at_3
value: 76.283
- type: mrr_at_5
value: 77.29700000000001
- type: ndcg_at_1
value: 66.44200000000001
- type: ndcg_at_10
value: 78.43
- type: ndcg_at_100
value: 79.462
- type: ndcg_at_1000
value: 79.754
- type: ndcg_at_3
value: 75.53800000000001
- type: ndcg_at_5
value: 77.332
- type: precision_at_1
value: 66.44200000000001
- type: precision_at_10
value: 9.878
- type: precision_at_100
value: 1.051
- type: precision_at_1000
value: 0.109
- type: precision_at_3
value: 29.878
- type: precision_at_5
value: 18.953
- type: recall_at_1
value: 61.683
- type: recall_at_10
value: 90.259
- type: recall_at_100
value: 94.633
- type: recall_at_1000
value: 96.60499999999999
- type: recall_at_3
value: 82.502
- type: recall_at_5
value: 86.978
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.724
- type: map_at_10
value: 29.487999999999996
- type: map_at_100
value: 31.243
- type: map_at_1000
value: 31.419999999999998
- type: map_at_3
value: 25.612000000000002
- type: map_at_5
value: 27.859
- type: mrr_at_1
value: 35.802
- type: mrr_at_10
value: 44.684000000000005
- type: mrr_at_100
value: 45.578
- type: mrr_at_1000
value: 45.621
- type: mrr_at_3
value: 42.361
- type: mrr_at_5
value: 43.85
- type: ndcg_at_1
value: 35.802
- type: ndcg_at_10
value: 37.009
- type: ndcg_at_100
value: 43.903
- type: ndcg_at_1000
value: 47.019
- type: ndcg_at_3
value: 33.634
- type: ndcg_at_5
value: 34.965
- type: precision_at_1
value: 35.802
- type: precision_at_10
value: 10.386
- type: precision_at_100
value: 1.7309999999999999
- type: precision_at_1000
value: 0.231
- type: precision_at_3
value: 22.84
- type: precision_at_5
value: 17.037
- type: recall_at_1
value: 17.724
- type: recall_at_10
value: 43.708000000000006
- type: recall_at_100
value: 69.902
- type: recall_at_1000
value: 88.51
- type: recall_at_3
value: 30.740000000000002
- type: recall_at_5
value: 36.742000000000004
- task:
type: Clustering
dataset:
type: jinaai/flores_clustering
name: MTEB FloresClusteringS2S
config: default
split: test
revision: 480b580487f53a46f881354a8348335d4edbb2de
metrics:
- type: v_measure
value: 39.79120149869612
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 34.801
- type: map_at_10
value: 50.42100000000001
- type: map_at_100
value: 51.254
- type: map_at_1000
value: 51.327999999999996
- type: map_at_3
value: 47.56
- type: map_at_5
value: 49.379
- type: mrr_at_1
value: 69.602
- type: mrr_at_10
value: 76.385
- type: mrr_at_100
value: 76.668
- type: mrr_at_1000
value: 76.683
- type: mrr_at_3
value: 75.102
- type: mrr_at_5
value: 75.949
- type: ndcg_at_1
value: 69.602
- type: ndcg_at_10
value: 59.476
- type: ndcg_at_100
value: 62.527
- type: ndcg_at_1000
value: 64.043
- type: ndcg_at_3
value: 55.155
- type: ndcg_at_5
value: 57.623000000000005
- type: precision_at_1
value: 69.602
- type: precision_at_10
value: 12.292
- type: precision_at_100
value: 1.467
- type: precision_at_1000
value: 0.167
- type: precision_at_3
value: 34.634
- type: precision_at_5
value: 22.728
- type: recall_at_1
value: 34.801
- type: recall_at_10
value: 61.458
- type: recall_at_100
value: 73.363
- type: recall_at_1000
value: 83.43
- type: recall_at_3
value: 51.951
- type: recall_at_5
value: 56.82000000000001
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 67.46079999999999
- type: ap
value: 61.81278199159353
- type: f1
value: 67.26505019954826
- task:
type: Reranking
dataset:
type: jinaai/miracl
name: MTEB MIRACL
config: default
split: test
revision: d28a029f35c4ff7f616df47b0edf54e6882395e6
metrics:
- type: map
value: 73.90464144118539
- type: mrr
value: 82.44674693216022
- task:
type: Retrieval
dataset:
type: jinaai/miracl
name: MTEB MIRACLRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.299
- type: map_at_10
value: 70.547
- type: map_at_100
value: 72.394
- type: map_at_1000
value: 72.39999999999999
- type: map_at_3
value: 41.317
- type: map_at_5
value: 53.756
- type: mrr_at_1
value: 72.84
- type: mrr_at_10
value: 82.466
- type: mrr_at_100
value: 82.52199999999999
- type: mrr_at_1000
value: 82.52199999999999
- type: mrr_at_3
value: 80.607
- type: mrr_at_5
value: 82.065
- type: ndcg_at_1
value: 72.994
- type: ndcg_at_10
value: 80.89
- type: ndcg_at_100
value: 83.30199999999999
- type: ndcg_at_1000
value: 83.337
- type: ndcg_at_3
value: 70.357
- type: ndcg_at_5
value: 72.529
- type: precision_at_1
value: 72.994
- type: precision_at_10
value: 43.056
- type: precision_at_100
value: 4.603
- type: precision_at_1000
value: 0.461
- type: precision_at_3
value: 61.626000000000005
- type: precision_at_5
value: 55.525000000000006
- type: recall_at_1
value: 21.299
- type: recall_at_10
value: 93.903
- type: recall_at_100
value: 99.86699999999999
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 46.653
- type: recall_at_5
value: 65.72200000000001
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.37163702690378
- type: f1
value: 90.18615216514222
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (es)
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.88992661774515
- type: f1
value: 89.3738963046966
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 71.97218422252622
- type: f1
value: 54.03096570916335
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (es)
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 68.75917278185457
- type: f1
value: 49.144083814705844
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.75991930060525
- type: f1
value: 69.37993796176502
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (es)
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.93006052454606
- type: f1
value: 66.04029135274683
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.81977135171486
- type: f1
value: 74.10477122507747
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (es)
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.23402824478816
- type: f1
value: 71.75572665880296
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 32.189750849969215
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.78357393555938
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.605612998328358
- type: mrr
value: 31.595529205695833
- task:
type: Retrieval
dataset:
type: jinaai/mintakaqa
name: MTEB MintakaESRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.213
- type: map_at_10
value: 24.079
- type: map_at_100
value: 25.039
- type: map_at_1000
value: 25.142999999999997
- type: map_at_3
value: 21.823
- type: map_at_5
value: 23.069
- type: mrr_at_1
value: 16.213
- type: mrr_at_10
value: 24.079
- type: mrr_at_100
value: 25.039
- type: mrr_at_1000
value: 25.142999999999997
- type: mrr_at_3
value: 21.823
- type: mrr_at_5
value: 23.069
- type: ndcg_at_1
value: 16.213
- type: ndcg_at_10
value: 28.315
- type: ndcg_at_100
value: 33.475
- type: ndcg_at_1000
value: 36.838
- type: ndcg_at_3
value: 23.627000000000002
- type: ndcg_at_5
value: 25.879
- type: precision_at_1
value: 16.213
- type: precision_at_10
value: 4.183
- type: precision_at_100
value: 0.6709999999999999
- type: precision_at_1000
value: 0.095
- type: precision_at_3
value: 9.612
- type: precision_at_5
value: 6.865
- type: recall_at_1
value: 16.213
- type: recall_at_10
value: 41.832
- type: recall_at_100
value: 67.12
- type: recall_at_1000
value: 94.843
- type: recall_at_3
value: 28.837000000000003
- type: recall_at_5
value: 34.323
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.692
- type: map_at_10
value: 10.783
- type: map_at_100
value: 13.447999999999999
- type: map_at_1000
value: 14.756
- type: map_at_3
value: 7.646
- type: map_at_5
value: 9.311
- type: mrr_at_1
value: 42.415000000000006
- type: mrr_at_10
value: 50.471
- type: mrr_at_100
value: 51.251999999999995
- type: mrr_at_1000
value: 51.292
- type: mrr_at_3
value: 48.4
- type: mrr_at_5
value: 49.809
- type: ndcg_at_1
value: 40.867
- type: ndcg_at_10
value: 30.303
- type: ndcg_at_100
value: 27.915
- type: ndcg_at_1000
value: 36.734
- type: ndcg_at_3
value: 35.74
- type: ndcg_at_5
value: 33.938
- type: precision_at_1
value: 42.415000000000006
- type: precision_at_10
value: 22.105
- type: precision_at_100
value: 7.173
- type: precision_at_1000
value: 2.007
- type: precision_at_3
value: 33.437
- type: precision_at_5
value: 29.349999999999998
- type: recall_at_1
value: 4.692
- type: recall_at_10
value: 14.798
- type: recall_at_100
value: 28.948
- type: recall_at_1000
value: 59.939
- type: recall_at_3
value: 8.562
- type: recall_at_5
value: 11.818
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.572999999999997
- type: map_at_10
value: 42.754
- type: map_at_100
value: 43.8
- type: map_at_1000
value: 43.838
- type: map_at_3
value: 38.157000000000004
- type: map_at_5
value: 40.9
- type: mrr_at_1
value: 31.373
- type: mrr_at_10
value: 45.321
- type: mrr_at_100
value: 46.109
- type: mrr_at_1000
value: 46.135
- type: mrr_at_3
value: 41.483
- type: mrr_at_5
value: 43.76
- type: ndcg_at_1
value: 31.373
- type: ndcg_at_10
value: 50.7
- type: ndcg_at_100
value: 55.103
- type: ndcg_at_1000
value: 55.955999999999996
- type: ndcg_at_3
value: 42.069
- type: ndcg_at_5
value: 46.595
- type: precision_at_1
value: 31.373
- type: precision_at_10
value: 8.601
- type: precision_at_100
value: 1.11
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 19.399
- type: precision_at_5
value: 14.224
- type: recall_at_1
value: 27.572999999999997
- type: recall_at_10
value: 72.465
- type: recall_at_100
value: 91.474
- type: recall_at_1000
value: 97.78099999999999
- type: recall_at_3
value: 50.087
- type: recall_at_5
value: 60.516000000000005
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.525
- type: map_at_10
value: 84.417
- type: map_at_100
value: 85.07000000000001
- type: map_at_1000
value: 85.085
- type: map_at_3
value: 81.45
- type: map_at_5
value: 83.317
- type: mrr_at_1
value: 81.17999999999999
- type: mrr_at_10
value: 87.34100000000001
- type: mrr_at_100
value: 87.461
- type: mrr_at_1000
value: 87.46199999999999
- type: mrr_at_3
value: 86.372
- type: mrr_at_5
value: 87.046
- type: ndcg_at_1
value: 81.17999999999999
- type: ndcg_at_10
value: 88.144
- type: ndcg_at_100
value: 89.424
- type: ndcg_at_1000
value: 89.517
- type: ndcg_at_3
value: 85.282
- type: ndcg_at_5
value: 86.874
- type: precision_at_1
value: 81.17999999999999
- type: precision_at_10
value: 13.385
- type: precision_at_100
value: 1.533
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.29
- type: precision_at_5
value: 24.546
- type: recall_at_1
value: 70.525
- type: recall_at_10
value: 95.22500000000001
- type: recall_at_100
value: 99.572
- type: recall_at_1000
value: 99.98899999999999
- type: recall_at_3
value: 87.035
- type: recall_at_5
value: 91.526
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 48.284384328108736
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 56.02508021518392
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.023000000000001
- type: map_at_10
value: 10.046
- type: map_at_100
value: 11.802999999999999
- type: map_at_1000
value: 12.074
- type: map_at_3
value: 7.071
- type: map_at_5
value: 8.556
- type: mrr_at_1
value: 19.8
- type: mrr_at_10
value: 30.105999999999998
- type: mrr_at_100
value: 31.16
- type: mrr_at_1000
value: 31.224
- type: mrr_at_3
value: 26.633000000000003
- type: mrr_at_5
value: 28.768
- type: ndcg_at_1
value: 19.8
- type: ndcg_at_10
value: 17.358
- type: ndcg_at_100
value: 24.566
- type: ndcg_at_1000
value: 29.653000000000002
- type: ndcg_at_3
value: 16.052
- type: ndcg_at_5
value: 14.325
- type: precision_at_1
value: 19.8
- type: precision_at_10
value: 9.07
- type: precision_at_100
value: 1.955
- type: precision_at_1000
value: 0.318
- type: precision_at_3
value: 14.933
- type: precision_at_5
value: 12.68
- type: recall_at_1
value: 4.023000000000001
- type: recall_at_10
value: 18.398
- type: recall_at_100
value: 39.683
- type: recall_at_1000
value: 64.625
- type: recall_at_3
value: 9.113
- type: recall_at_5
value: 12.873000000000001
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 87.90508618312852
- type: cos_sim_spearman
value: 83.01323463129205
- type: euclidean_pearson
value: 84.35845059002891
- type: euclidean_spearman
value: 82.85508559018527
- type: manhattan_pearson
value: 84.3682368950498
- type: manhattan_spearman
value: 82.8619728517302
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 89.28294535873366
- type: cos_sim_spearman
value: 81.61879268131732
- type: euclidean_pearson
value: 85.99053604863724
- type: euclidean_spearman
value: 80.95176684739084
- type: manhattan_pearson
value: 85.98054086663903
- type: manhattan_spearman
value: 80.9911070430335
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 86.15898098455258
- type: cos_sim_spearman
value: 86.8247985072307
- type: euclidean_pearson
value: 86.25342429918649
- type: euclidean_spearman
value: 87.13468603023252
- type: manhattan_pearson
value: 86.2006134067688
- type: manhattan_spearman
value: 87.06135811996896
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 85.57403998481877
- type: cos_sim_spearman
value: 83.55947075172618
- type: euclidean_pearson
value: 84.97097562965358
- type: euclidean_spearman
value: 83.6287075601467
- type: manhattan_pearson
value: 84.87092197104133
- type: manhattan_spearman
value: 83.53783891641335
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.14632780204231
- type: cos_sim_spearman
value: 88.74903634923868
- type: euclidean_pearson
value: 88.03922995855112
- type: euclidean_spearman
value: 88.72852190525855
- type: manhattan_pearson
value: 87.9694791024271
- type: manhattan_spearman
value: 88.66461452107418
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.75989818558652
- type: cos_sim_spearman
value: 86.03107893122942
- type: euclidean_pearson
value: 85.21908960133018
- type: euclidean_spearman
value: 85.93012720153482
- type: manhattan_pearson
value: 85.1969170195502
- type: manhattan_spearman
value: 85.8975254197784
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.16803898789955
- type: cos_sim_spearman
value: 88.56139047950525
- type: euclidean_pearson
value: 88.09685325747859
- type: euclidean_spearman
value: 88.0457609458947
- type: manhattan_pearson
value: 88.07054413001431
- type: manhattan_spearman
value: 88.10784098889314
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-en)
config: es-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 86.7160384474547
- type: cos_sim_spearman
value: 86.4899235500562
- type: euclidean_pearson
value: 85.90854477703468
- type: euclidean_spearman
value: 86.16085009124498
- type: manhattan_pearson
value: 85.9249735317884
- type: manhattan_spearman
value: 86.25038421339116
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-es)
config: es-es
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.37914622360788
- type: cos_sim_spearman
value: 88.24619159322809
- type: euclidean_pearson
value: 89.00538382632769
- type: euclidean_spearman
value: 88.44675863524736
- type: manhattan_pearson
value: 88.97372120683606
- type: manhattan_spearman
value: 88.33509324222129
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 66.22181360203069
- type: cos_sim_spearman
value: 65.6218291833768
- type: euclidean_pearson
value: 67.14543788822508
- type: euclidean_spearman
value: 65.21269939987857
- type: manhattan_pearson
value: 67.03304607195636
- type: manhattan_spearman
value: 65.18885316423805
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es)
config: es
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 65.71694059677084
- type: cos_sim_spearman
value: 67.96591844540954
- type: euclidean_pearson
value: 65.6964079162296
- type: euclidean_spearman
value: 67.53027948900173
- type: manhattan_pearson
value: 65.93545097673741
- type: manhattan_spearman
value: 67.7261811805062
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es-en)
config: es-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 75.43544796375058
- type: cos_sim_spearman
value: 78.80462701160789
- type: euclidean_pearson
value: 76.19135575163138
- type: euclidean_spearman
value: 78.4974732597096
- type: manhattan_pearson
value: 76.3254742699264
- type: manhattan_spearman
value: 78.51884307690416
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.46805293607684
- type: cos_sim_spearman
value: 87.83792784689113
- type: euclidean_pearson
value: 87.3872143683234
- type: euclidean_spearman
value: 87.61611384542778
- type: manhattan_pearson
value: 87.38542672601992
- type: manhattan_spearman
value: 87.61423971087297
- task:
type: STS
dataset:
type: PlanTL-GOB-ES/sts-es
name: MTEB STSES
config: default
split: test
revision: 0912bb6c9393c76d62a7c5ee81c4c817ff47c9f4
metrics:
- type: cos_sim_pearson
value: 82.55286866116202
- type: cos_sim_spearman
value: 80.22150503320272
- type: euclidean_pearson
value: 83.27223445187087
- type: euclidean_spearman
value: 80.59078590992925
- type: manhattan_pearson
value: 83.23095887013197
- type: manhattan_spearman
value: 80.87994285189795
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 79.29717302265792
- type: mrr
value: 94.02156304117088
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 49.9
- type: map_at_10
value: 58.626
- type: map_at_100
value: 59.519999999999996
- type: map_at_1000
value: 59.55200000000001
- type: map_at_3
value: 56.232000000000006
- type: map_at_5
value: 57.833
- type: mrr_at_1
value: 52.333
- type: mrr_at_10
value: 60.039
- type: mrr_at_100
value: 60.732
- type: mrr_at_1000
value: 60.75899999999999
- type: mrr_at_3
value: 58.278
- type: mrr_at_5
value: 59.428000000000004
- type: ndcg_at_1
value: 52.333
- type: ndcg_at_10
value: 62.67
- type: ndcg_at_100
value: 66.465
- type: ndcg_at_1000
value: 67.425
- type: ndcg_at_3
value: 58.711999999999996
- type: ndcg_at_5
value: 60.958999999999996
- type: precision_at_1
value: 52.333
- type: precision_at_10
value: 8.333
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 22.778000000000002
- type: precision_at_5
value: 15.267
- type: recall_at_1
value: 49.9
- type: recall_at_10
value: 73.394
- type: recall_at_100
value: 90.43299999999999
- type: recall_at_1000
value: 98.167
- type: recall_at_3
value: 63.032999999999994
- type: recall_at_5
value: 68.444
- task:
type: Clustering
dataset:
type: jinaai/spanish_news_clustering
name: MTEB SpanishNewsClusteringP2P
config: default
split: test
revision: b5edc3d3d7c12c7b9f883e9da50f6732f3624142
metrics:
- type: v_measure
value: 48.30543557796266
- task:
type: Retrieval
dataset:
type: jinaai/spanish_passage_retrieval
name: MTEB SpanishPassageRetrievalS2P
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 14.443
- type: map_at_10
value: 28.736
- type: map_at_100
value: 34.514
- type: map_at_1000
value: 35.004000000000005
- type: map_at_3
value: 20.308
- type: map_at_5
value: 25.404
- type: mrr_at_1
value: 50.29900000000001
- type: mrr_at_10
value: 63.757
- type: mrr_at_100
value: 64.238
- type: mrr_at_1000
value: 64.24600000000001
- type: mrr_at_3
value: 59.480999999999995
- type: mrr_at_5
value: 62.924
- type: ndcg_at_1
value: 50.29900000000001
- type: ndcg_at_10
value: 42.126999999999995
- type: ndcg_at_100
value: 57.208000000000006
- type: ndcg_at_1000
value: 60.646
- type: ndcg_at_3
value: 38.722
- type: ndcg_at_5
value: 40.007999999999996
- type: precision_at_1
value: 50.29900000000001
- type: precision_at_10
value: 19.82
- type: precision_at_100
value: 4.82
- type: precision_at_1000
value: 0.5910000000000001
- type: precision_at_3
value: 31.537
- type: precision_at_5
value: 28.262999999999998
- type: recall_at_1
value: 14.443
- type: recall_at_10
value: 43.885999999999996
- type: recall_at_100
value: 85.231
- type: recall_at_1000
value: 99.07000000000001
- type: recall_at_3
value: 22.486
- type: recall_at_5
value: 33.035
- task:
type: Retrieval
dataset:
type: jinaai/spanish_passage_retrieval
name: MTEB SpanishPassageRetrievalS2S
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.578
- type: map_at_10
value: 52.214000000000006
- type: map_at_100
value: 64.791
- type: map_at_1000
value: 64.791
- type: map_at_3
value: 33.396
- type: map_at_5
value: 41.728
- type: mrr_at_1
value: 73.653
- type: mrr_at_10
value: 85.116
- type: mrr_at_100
value: 85.205
- type: mrr_at_1000
value: 85.205
- type: mrr_at_3
value: 84.631
- type: mrr_at_5
value: 85.05
- type: ndcg_at_1
value: 76.64699999999999
- type: ndcg_at_10
value: 70.38600000000001
- type: ndcg_at_100
value: 82.27600000000001
- type: ndcg_at_1000
value: 82.27600000000001
- type: ndcg_at_3
value: 70.422
- type: ndcg_at_5
value: 69.545
- type: precision_at_1
value: 76.64699999999999
- type: precision_at_10
value: 43.653
- type: precision_at_100
value: 7.718999999999999
- type: precision_at_1000
value: 0.772
- type: precision_at_3
value: 64.671
- type: precision_at_5
value: 56.766000000000005
- type: recall_at_1
value: 15.578
- type: recall_at_10
value: 67.459
- type: recall_at_100
value: 100.0
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 36.922
- type: recall_at_5
value: 49.424
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.81683168316832
- type: cos_sim_ap
value: 95.61502659412484
- type: cos_sim_f1
value: 90.6813627254509
- type: cos_sim_precision
value: 90.86345381526104
- type: cos_sim_recall
value: 90.5
- type: dot_accuracy
value: 99.8039603960396
- type: dot_ap
value: 95.36783483182609
- type: dot_f1
value: 89.90825688073394
- type: dot_precision
value: 91.68399168399168
- type: dot_recall
value: 88.2
- type: euclidean_accuracy
value: 99.81188118811882
- type: euclidean_ap
value: 95.51583052324564
- type: euclidean_f1
value: 90.46214355948868
- type: euclidean_precision
value: 88.97485493230174
- type: euclidean_recall
value: 92.0
- type: manhattan_accuracy
value: 99.8079207920792
- type: manhattan_ap
value: 95.44030644653718
- type: manhattan_f1
value: 90.37698412698413
- type: manhattan_precision
value: 89.66535433070865
- type: manhattan_recall
value: 91.10000000000001
- type: max_accuracy
value: 99.81683168316832
- type: max_ap
value: 95.61502659412484
- type: max_f1
value: 90.6813627254509
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 55.39046705023096
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.57429225651293
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 50.17622570658746
- type: mrr
value: 50.99844293778118
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 29.97416289382191
- type: cos_sim_spearman
value: 29.871890597161432
- type: dot_pearson
value: 28.768845892613644
- type: dot_spearman
value: 28.872458999448686
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22599999999999998
- type: map_at_10
value: 1.646
- type: map_at_100
value: 9.491
- type: map_at_1000
value: 23.75
- type: map_at_3
value: 0.588
- type: map_at_5
value: 0.9129999999999999
- type: mrr_at_1
value: 84.0
- type: mrr_at_10
value: 89.889
- type: mrr_at_100
value: 89.889
- type: mrr_at_1000
value: 89.889
- type: mrr_at_3
value: 89.667
- type: mrr_at_5
value: 89.667
- type: ndcg_at_1
value: 75.0
- type: ndcg_at_10
value: 67.368
- type: ndcg_at_100
value: 52.834
- type: ndcg_at_1000
value: 49.144
- type: ndcg_at_3
value: 72.866
- type: ndcg_at_5
value: 70.16
- type: precision_at_1
value: 84.0
- type: precision_at_10
value: 71.8
- type: precision_at_100
value: 54.04
- type: precision_at_1000
value: 21.709999999999997
- type: precision_at_3
value: 77.333
- type: precision_at_5
value: 74.0
- type: recall_at_1
value: 0.22599999999999998
- type: recall_at_10
value: 1.9029999999999998
- type: recall_at_100
value: 13.012
- type: recall_at_1000
value: 46.105000000000004
- type: recall_at_3
value: 0.63
- type: recall_at_5
value: 1.0030000000000001
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.5
- type: map_at_10
value: 8.193999999999999
- type: map_at_100
value: 14.01
- type: map_at_1000
value: 15.570999999999998
- type: map_at_3
value: 4.361000000000001
- type: map_at_5
value: 5.9270000000000005
- type: mrr_at_1
value: 16.326999999999998
- type: mrr_at_10
value: 33.326
- type: mrr_at_100
value: 34.592
- type: mrr_at_1000
value: 34.592
- type: mrr_at_3
value: 29.252
- type: mrr_at_5
value: 30.680000000000003
- type: ndcg_at_1
value: 15.306000000000001
- type: ndcg_at_10
value: 19.819
- type: ndcg_at_100
value: 33.428000000000004
- type: ndcg_at_1000
value: 45.024
- type: ndcg_at_3
value: 19.667
- type: ndcg_at_5
value: 19.625
- type: precision_at_1
value: 16.326999999999998
- type: precision_at_10
value: 18.367
- type: precision_at_100
value: 7.367
- type: precision_at_1000
value: 1.496
- type: precision_at_3
value: 23.128999999999998
- type: precision_at_5
value: 21.633
- type: recall_at_1
value: 1.5
- type: recall_at_10
value: 14.362
- type: recall_at_100
value: 45.842
- type: recall_at_1000
value: 80.42
- type: recall_at_3
value: 5.99
- type: recall_at_5
value: 8.701
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.04740000000001
- type: ap
value: 13.58661943759992
- type: f1
value: 53.727487131754195
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 61.06395019807584
- type: f1
value: 61.36753664680866
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 40.19881263066229
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.19401561661799
- type: cos_sim_ap
value: 71.62462506173092
- type: cos_sim_f1
value: 66.0641327225455
- type: cos_sim_precision
value: 62.234662934453
- type: cos_sim_recall
value: 70.3957783641161
- type: dot_accuracy
value: 84.69333015437802
- type: dot_ap
value: 69.83805526490895
- type: dot_f1
value: 64.85446235265817
- type: dot_precision
value: 59.59328028293546
- type: dot_recall
value: 71.13456464379946
- type: euclidean_accuracy
value: 85.38475293556655
- type: euclidean_ap
value: 72.05594596250286
- type: euclidean_f1
value: 66.53543307086615
- type: euclidean_precision
value: 62.332872291378514
- type: euclidean_recall
value: 71.34564643799473
- type: manhattan_accuracy
value: 85.3907134767837
- type: manhattan_ap
value: 72.04585410650152
- type: manhattan_f1
value: 66.57132642116554
- type: manhattan_precision
value: 60.704194740273856
- type: manhattan_recall
value: 73.6939313984169
- type: max_accuracy
value: 85.3907134767837
- type: max_ap
value: 72.05594596250286
- type: max_f1
value: 66.57132642116554
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.30414871735165
- type: cos_sim_ap
value: 86.4398673359918
- type: cos_sim_f1
value: 78.9243598692186
- type: cos_sim_precision
value: 75.47249350101876
- type: cos_sim_recall
value: 82.7071142593163
- type: dot_accuracy
value: 89.26145845461248
- type: dot_ap
value: 86.32172118414802
- type: dot_f1
value: 78.8277467755645
- type: dot_precision
value: 75.79418662497335
- type: dot_recall
value: 82.11425931629196
- type: euclidean_accuracy
value: 89.24205378973105
- type: euclidean_ap
value: 86.23988673522649
- type: euclidean_f1
value: 78.67984857951413
- type: euclidean_precision
value: 75.2689684269742
- type: euclidean_recall
value: 82.41453649522637
- type: manhattan_accuracy
value: 89.18189932859859
- type: manhattan_ap
value: 86.21003833972824
- type: manhattan_f1
value: 78.70972564850115
- type: manhattan_precision
value: 76.485544094145
- type: manhattan_recall
value: 81.0671388974438
- type: max_accuracy
value: 89.30414871735165
- type: max_ap
value: 86.4398673359918
- type: max_f1
value: 78.9243598692186
- task:
type: Clustering
dataset:
type: jinaai/cities_wiki_clustering
name: MTEB WikiCitiesClustering
config: default
split: test
revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
metrics:
- type: v_measure
value: 73.254610626148
- task:
type: Retrieval
dataset:
type: jinaai/xmarket_ml
name: MTEB XMarketES
config: default
split: test
revision: 705db869e8107dfe6e34b832af90446e77d813e3
metrics:
- type: map_at_1
value: 5.506
- type: map_at_10
value: 11.546
- type: map_at_100
value: 14.299999999999999
- type: map_at_1000
value: 15.146999999999998
- type: map_at_3
value: 8.748000000000001
- type: map_at_5
value: 10.036000000000001
- type: mrr_at_1
value: 17.902
- type: mrr_at_10
value: 25.698999999999998
- type: mrr_at_100
value: 26.634
- type: mrr_at_1000
value: 26.704
- type: mrr_at_3
value: 23.244999999999997
- type: mrr_at_5
value: 24.555
- type: ndcg_at_1
value: 17.902
- type: ndcg_at_10
value: 19.714000000000002
- type: ndcg_at_100
value: 25.363000000000003
- type: ndcg_at_1000
value: 30.903999999999996
- type: ndcg_at_3
value: 17.884
- type: ndcg_at_5
value: 18.462
- type: precision_at_1
value: 17.902
- type: precision_at_10
value: 10.467
- type: precision_at_100
value: 3.9699999999999998
- type: precision_at_1000
value: 1.1320000000000001
- type: precision_at_3
value: 14.387
- type: precision_at_5
value: 12.727
- type: recall_at_1
value: 5.506
- type: recall_at_10
value: 19.997999999999998
- type: recall_at_100
value: 42.947
- type: recall_at_1000
value: 67.333
- type: recall_at_3
value: 11.158
- type: recall_at_5
value: 14.577000000000002
- task:
type: Retrieval
dataset:
type: jinaai/xpqa
name: MTEB XPQAESRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.53
- type: map_at_10
value: 58.68600000000001
- type: map_at_100
value: 60.45399999999999
- type: map_at_1000
value: 60.51499999999999
- type: map_at_3
value: 50.356
- type: map_at_5
value: 55.98
- type: mrr_at_1
value: 61.791
- type: mrr_at_10
value: 68.952
- type: mrr_at_100
value: 69.524
- type: mrr_at_1000
value: 69.538
- type: mrr_at_3
value: 67.087
- type: mrr_at_5
value: 68.052
- type: ndcg_at_1
value: 61.791
- type: ndcg_at_10
value: 65.359
- type: ndcg_at_100
value: 70.95700000000001
- type: ndcg_at_1000
value: 71.881
- type: ndcg_at_3
value: 59.999
- type: ndcg_at_5
value: 61.316
- type: precision_at_1
value: 61.791
- type: precision_at_10
value: 18.184
- type: precision_at_100
value: 2.317
- type: precision_at_1000
value: 0.245
- type: precision_at_3
value: 42.203
- type: precision_at_5
value: 31.374999999999996
- type: recall_at_1
value: 32.53
- type: recall_at_10
value: 73.098
- type: recall_at_100
value: 94.029
- type: recall_at_1000
value: 99.842
- type: recall_at_3
value: 54.525
- type: recall_at_5
value: 63.796
---
The text embedding set trained by Jina AI.
## Quick Start The easiest way to starting using `jina-embeddings-v2-base-de` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/). ## Intended Usage & Model Info `jina-embeddings-v2-base-es` is a Spanish/English bilingual text **embedding model** supporting **8192 sequence length**. It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length. We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed Spanish-English input without bias. Additionally, we provide the following embedding models: `jina-embeddings-v2-base-es` es un modelo (embedding) de texto bilingüe Inglés/Español que admite una longitud de secuencia de 8192. Se basa en la arquitectura BERT (JinaBERT) que incorpora la variante bi-direccional simétrica de [ALiBi](https://arxiv.org/abs/2108.12409) para permitir una mayor longitud de secuencia. Hemos diseñado este modelo para un alto rendimiento en aplicaciones monolingües y bilingües, y está entrenando específicamente para admitir entradas mixtas de español e inglés sin sesgo. Adicionalmente, proporcionamos los siguientes modelos (embeddings): - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters. - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters. - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings. - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings. - [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings **(you are here)**. ## Data & Parameters Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923) ## Usage **### Why mean pooling? `mean pooling` takes all token embeddings from model output and averaging them at sentence/paragraph level. It has been proved to be the most effective way to produce high-quality sentence embeddings. We offer an `encode` function to deal with this. However, if you would like to do it without using the default `encode` function: ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['How is the weather today?', 'What is the current weather like today?'] tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-es') model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-es', trust_remote_code=True) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) ```