File size: 34,072 Bytes
4dd8502 ae13eea aaf01b0 5424617 9c8f958 4dd8502 ae13eea 4dd8502 ae13eea 7f19d36 ae13eea 7f19d36 ae13eea 9c8f958 393ecf5 ae13eea 7f19d36 6bf7927 182195d 7f19d36 6bf7927 1fdda36 182195d 7f19d36 a4967a8 e2e5ef8 7f19d36 9c8f958 7f19d36 ae13eea 7f19d36 afc9c17 7f19d36 ae13eea 7f19d36 ae13eea 7f19d36 ae13eea 7f19d36 2ad5953 7f19d36 2ad5953 7f19d36 ae13eea 7f19d36 79bfe60 7f19d36 2ad5953 7f19d36 ae13eea 9c8f958 7f19d36 171ab35 9c8f958 f23c740 9c8f958 79bfe60 9c8f958 7f19d36 ae13eea 7f19d36 ae13eea 7f19d36 79bfe60 7f19d36 ae13eea 7f19d36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 |
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
inference: false
license: apache-2.0
language:
- en
- zh
model-index:
- name: jina-embeddings-v2-base-zh
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: None
metrics:
- type: cos_sim_pearson
value: 48.51403119231363
- type: cos_sim_spearman
value: 50.5928547846445
- type: euclidean_pearson
value: 48.750436310559074
- type: euclidean_spearman
value: 50.50950238691385
- type: manhattan_pearson
value: 48.7866189440328
- type: manhattan_spearman
value: 50.58692402017165
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 50.25985700105725
- type: cos_sim_spearman
value: 51.28815934593989
- type: euclidean_pearson
value: 52.70329248799904
- type: euclidean_spearman
value: 50.94101139559258
- type: manhattan_pearson
value: 52.6647237400892
- type: manhattan_spearman
value: 50.922441325406176
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 34.944
- type: f1
value: 34.06478860660109
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 65.15667035488342
- type: cos_sim_spearman
value: 66.07110142081
- type: euclidean_pearson
value: 60.447598102249714
- type: euclidean_spearman
value: 61.826575796578766
- type: manhattan_pearson
value: 60.39364279354984
- type: manhattan_spearman
value: 61.78743491223281
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 39.96714175391701
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 38.39863566717934
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 83.63680381780644
- type: mrr
value: 86.16476190476192
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 83.74350667859487
- type: mrr
value: 86.10388888888889
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 22.072
- type: map_at_10
value: 32.942
- type: map_at_100
value: 34.768
- type: map_at_1000
value: 34.902
- type: map_at_3
value: 29.357
- type: map_at_5
value: 31.236000000000004
- type: mrr_at_1
value: 34.259
- type: mrr_at_10
value: 41.957
- type: mrr_at_100
value: 42.982
- type: mrr_at_1000
value: 43.042
- type: mrr_at_3
value: 39.722
- type: mrr_at_5
value: 40.898
- type: ndcg_at_1
value: 34.259
- type: ndcg_at_10
value: 39.153
- type: ndcg_at_100
value: 46.493
- type: ndcg_at_1000
value: 49.01
- type: ndcg_at_3
value: 34.636
- type: ndcg_at_5
value: 36.278
- type: precision_at_1
value: 34.259
- type: precision_at_10
value: 8.815000000000001
- type: precision_at_100
value: 1.474
- type: precision_at_1000
value: 0.179
- type: precision_at_3
value: 19.73
- type: precision_at_5
value: 14.174000000000001
- type: recall_at_1
value: 22.072
- type: recall_at_10
value: 48.484
- type: recall_at_100
value: 79.035
- type: recall_at_1000
value: 96.15
- type: recall_at_3
value: 34.607
- type: recall_at_5
value: 40.064
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 76.7047504509922
- type: cos_sim_ap
value: 85.26649874800871
- type: cos_sim_f1
value: 78.13528724646915
- type: cos_sim_precision
value: 71.57587548638132
- type: cos_sim_recall
value: 86.01823708206688
- type: dot_accuracy
value: 70.13830426939266
- type: dot_ap
value: 77.01510412382171
- type: dot_f1
value: 73.56710042713817
- type: dot_precision
value: 63.955094991364426
- type: dot_recall
value: 86.57937806873977
- type: euclidean_accuracy
value: 75.53818400481059
- type: euclidean_ap
value: 84.34668448241264
- type: euclidean_f1
value: 77.51741608613047
- type: euclidean_precision
value: 70.65614777756399
- type: euclidean_recall
value: 85.85457096095394
- type: manhattan_accuracy
value: 75.49007817197835
- type: manhattan_ap
value: 84.40297506704299
- type: manhattan_f1
value: 77.63185324160932
- type: manhattan_precision
value: 70.03949595636637
- type: manhattan_recall
value: 87.07037643207856
- type: max_accuracy
value: 76.7047504509922
- type: max_ap
value: 85.26649874800871
- type: max_f1
value: 78.13528724646915
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 69.178
- type: map_at_10
value: 77.523
- type: map_at_100
value: 77.793
- type: map_at_1000
value: 77.79899999999999
- type: map_at_3
value: 75.878
- type: map_at_5
value: 76.849
- type: mrr_at_1
value: 69.44200000000001
- type: mrr_at_10
value: 77.55
- type: mrr_at_100
value: 77.819
- type: mrr_at_1000
value: 77.826
- type: mrr_at_3
value: 75.957
- type: mrr_at_5
value: 76.916
- type: ndcg_at_1
value: 69.44200000000001
- type: ndcg_at_10
value: 81.217
- type: ndcg_at_100
value: 82.45
- type: ndcg_at_1000
value: 82.636
- type: ndcg_at_3
value: 77.931
- type: ndcg_at_5
value: 79.655
- type: precision_at_1
value: 69.44200000000001
- type: precision_at_10
value: 9.357
- type: precision_at_100
value: 0.993
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 28.1
- type: precision_at_5
value: 17.724
- type: recall_at_1
value: 69.178
- type: recall_at_10
value: 92.624
- type: recall_at_100
value: 98.209
- type: recall_at_1000
value: 99.684
- type: recall_at_3
value: 83.772
- type: recall_at_5
value: 87.882
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 25.163999999999998
- type: map_at_10
value: 76.386
- type: map_at_100
value: 79.339
- type: map_at_1000
value: 79.39500000000001
- type: map_at_3
value: 52.959
- type: map_at_5
value: 66.59
- type: mrr_at_1
value: 87.9
- type: mrr_at_10
value: 91.682
- type: mrr_at_100
value: 91.747
- type: mrr_at_1000
value: 91.751
- type: mrr_at_3
value: 91.267
- type: mrr_at_5
value: 91.527
- type: ndcg_at_1
value: 87.9
- type: ndcg_at_10
value: 84.569
- type: ndcg_at_100
value: 87.83800000000001
- type: ndcg_at_1000
value: 88.322
- type: ndcg_at_3
value: 83.473
- type: ndcg_at_5
value: 82.178
- type: precision_at_1
value: 87.9
- type: precision_at_10
value: 40.605000000000004
- type: precision_at_100
value: 4.752
- type: precision_at_1000
value: 0.488
- type: precision_at_3
value: 74.9
- type: precision_at_5
value: 62.96000000000001
- type: recall_at_1
value: 25.163999999999998
- type: recall_at_10
value: 85.97399999999999
- type: recall_at_100
value: 96.63000000000001
- type: recall_at_1000
value: 99.016
- type: recall_at_3
value: 55.611999999999995
- type: recall_at_5
value: 71.936
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 48.6
- type: map_at_10
value: 58.831
- type: map_at_100
value: 59.427
- type: map_at_1000
value: 59.44199999999999
- type: map_at_3
value: 56.383
- type: map_at_5
value: 57.753
- type: mrr_at_1
value: 48.6
- type: mrr_at_10
value: 58.831
- type: mrr_at_100
value: 59.427
- type: mrr_at_1000
value: 59.44199999999999
- type: mrr_at_3
value: 56.383
- type: mrr_at_5
value: 57.753
- type: ndcg_at_1
value: 48.6
- type: ndcg_at_10
value: 63.951
- type: ndcg_at_100
value: 66.72200000000001
- type: ndcg_at_1000
value: 67.13900000000001
- type: ndcg_at_3
value: 58.882
- type: ndcg_at_5
value: 61.373
- type: precision_at_1
value: 48.6
- type: precision_at_10
value: 8.01
- type: precision_at_100
value: 0.928
- type: precision_at_1000
value: 0.096
- type: precision_at_3
value: 22.033
- type: precision_at_5
value: 14.44
- type: recall_at_1
value: 48.6
- type: recall_at_10
value: 80.10000000000001
- type: recall_at_100
value: 92.80000000000001
- type: recall_at_1000
value: 96.1
- type: recall_at_3
value: 66.10000000000001
- type: recall_at_5
value: 72.2
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 47.36437091188918
- type: f1
value: 36.60946954228577
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 79.5684803001876
- type: ap
value: 42.671935929201524
- type: f1
value: 73.31912729103752
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 68.62670112113864
- type: cos_sim_spearman
value: 75.74009123170768
- type: euclidean_pearson
value: 73.93002595958237
- type: euclidean_spearman
value: 75.35222935003587
- type: manhattan_pearson
value: 73.89870445158144
- type: manhattan_spearman
value: 75.31714936339398
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 31.5372713650176
- type: mrr
value: 30.163095238095238
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 65.054
- type: map_at_10
value: 74.156
- type: map_at_100
value: 74.523
- type: map_at_1000
value: 74.535
- type: map_at_3
value: 72.269
- type: map_at_5
value: 73.41
- type: mrr_at_1
value: 67.24900000000001
- type: mrr_at_10
value: 74.78399999999999
- type: mrr_at_100
value: 75.107
- type: mrr_at_1000
value: 75.117
- type: mrr_at_3
value: 73.13499999999999
- type: mrr_at_5
value: 74.13499999999999
- type: ndcg_at_1
value: 67.24900000000001
- type: ndcg_at_10
value: 77.96300000000001
- type: ndcg_at_100
value: 79.584
- type: ndcg_at_1000
value: 79.884
- type: ndcg_at_3
value: 74.342
- type: ndcg_at_5
value: 76.278
- type: precision_at_1
value: 67.24900000000001
- type: precision_at_10
value: 9.466
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 27.955999999999996
- type: precision_at_5
value: 17.817
- type: recall_at_1
value: 65.054
- type: recall_at_10
value: 89.113
- type: recall_at_100
value: 96.369
- type: recall_at_1000
value: 98.714
- type: recall_at_3
value: 79.45400000000001
- type: recall_at_5
value: 84.06
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.1977135171486
- type: f1
value: 67.23114308718404
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.92669804976462
- type: f1
value: 72.90628475628779
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 49.2
- type: map_at_10
value: 54.539
- type: map_at_100
value: 55.135
- type: map_at_1000
value: 55.19199999999999
- type: map_at_3
value: 53.383
- type: map_at_5
value: 54.142999999999994
- type: mrr_at_1
value: 49.2
- type: mrr_at_10
value: 54.539
- type: mrr_at_100
value: 55.135999999999996
- type: mrr_at_1000
value: 55.19199999999999
- type: mrr_at_3
value: 53.383
- type: mrr_at_5
value: 54.142999999999994
- type: ndcg_at_1
value: 49.2
- type: ndcg_at_10
value: 57.123000000000005
- type: ndcg_at_100
value: 60.21300000000001
- type: ndcg_at_1000
value: 61.915
- type: ndcg_at_3
value: 54.772
- type: ndcg_at_5
value: 56.157999999999994
- type: precision_at_1
value: 49.2
- type: precision_at_10
value: 6.52
- type: precision_at_100
value: 0.8009999999999999
- type: precision_at_1000
value: 0.094
- type: precision_at_3
value: 19.6
- type: precision_at_5
value: 12.44
- type: recall_at_1
value: 49.2
- type: recall_at_10
value: 65.2
- type: recall_at_100
value: 80.10000000000001
- type: recall_at_1000
value: 93.89999999999999
- type: recall_at_3
value: 58.8
- type: recall_at_5
value: 62.2
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 63.29333333333334
- type: f1
value: 63.03293854259612
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 75.69030860855442
- type: cos_sim_ap
value: 80.6157833772759
- type: cos_sim_f1
value: 77.87524366471735
- type: cos_sim_precision
value: 72.3076923076923
- type: cos_sim_recall
value: 84.37170010559663
- type: dot_accuracy
value: 67.78559826746074
- type: dot_ap
value: 72.00871467527499
- type: dot_f1
value: 72.58722247394654
- type: dot_precision
value: 63.57142857142857
- type: dot_recall
value: 84.58289334741288
- type: euclidean_accuracy
value: 75.20303194369248
- type: euclidean_ap
value: 80.98587256415605
- type: euclidean_f1
value: 77.26396917148362
- type: euclidean_precision
value: 71.03631532329496
- type: euclidean_recall
value: 84.68848996832101
- type: manhattan_accuracy
value: 75.20303194369248
- type: manhattan_ap
value: 80.93460699513219
- type: manhattan_f1
value: 77.124773960217
- type: manhattan_precision
value: 67.43083003952569
- type: manhattan_recall
value: 90.07391763463569
- type: max_accuracy
value: 75.69030860855442
- type: max_ap
value: 80.98587256415605
- type: max_f1
value: 77.87524366471735
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 87.00000000000001
- type: ap
value: 83.24372135949511
- type: f1
value: 86.95554191530607
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 37.57616811591219
- type: cos_sim_spearman
value: 41.490259084930045
- type: euclidean_pearson
value: 38.9155043692188
- type: euclidean_spearman
value: 39.16056534305623
- type: manhattan_pearson
value: 38.76569892264335
- type: manhattan_spearman
value: 38.99891685590743
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 35.44858610359665
- type: cos_sim_spearman
value: 38.11128146262466
- type: euclidean_pearson
value: 31.928644189822457
- type: euclidean_spearman
value: 34.384936631696554
- type: manhattan_pearson
value: 31.90586687414376
- type: manhattan_spearman
value: 34.35770153777186
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 66.54931957553592
- type: cos_sim_spearman
value: 69.25068863016632
- type: euclidean_pearson
value: 50.26525596106869
- type: euclidean_spearman
value: 63.83352741910006
- type: manhattan_pearson
value: 49.98798282198196
- type: manhattan_spearman
value: 63.87649521907841
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 82.52782476625825
- type: cos_sim_spearman
value: 82.55618986168398
- type: euclidean_pearson
value: 78.48190631687673
- type: euclidean_spearman
value: 78.39479731354655
- type: manhattan_pearson
value: 78.51176592165885
- type: manhattan_spearman
value: 78.42363787303265
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 67.36693873615643
- type: mrr
value: 77.83847701797939
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 25.795
- type: map_at_10
value: 72.258
- type: map_at_100
value: 76.049
- type: map_at_1000
value: 76.134
- type: map_at_3
value: 50.697
- type: map_at_5
value: 62.324999999999996
- type: mrr_at_1
value: 86.634
- type: mrr_at_10
value: 89.792
- type: mrr_at_100
value: 89.91900000000001
- type: mrr_at_1000
value: 89.923
- type: mrr_at_3
value: 89.224
- type: mrr_at_5
value: 89.608
- type: ndcg_at_1
value: 86.634
- type: ndcg_at_10
value: 80.589
- type: ndcg_at_100
value: 84.812
- type: ndcg_at_1000
value: 85.662
- type: ndcg_at_3
value: 82.169
- type: ndcg_at_5
value: 80.619
- type: precision_at_1
value: 86.634
- type: precision_at_10
value: 40.389
- type: precision_at_100
value: 4.93
- type: precision_at_1000
value: 0.513
- type: precision_at_3
value: 72.104
- type: precision_at_5
value: 60.425
- type: recall_at_1
value: 25.795
- type: recall_at_10
value: 79.565
- type: recall_at_100
value: 93.24799999999999
- type: recall_at_1000
value: 97.595
- type: recall_at_3
value: 52.583999999999996
- type: recall_at_5
value: 66.175
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 47.648999999999994
- type: f1
value: 46.28925837008413
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 54.07641891287953
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 53.423702062353954
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 55.7
- type: map_at_10
value: 65.923
- type: map_at_100
value: 66.42
- type: map_at_1000
value: 66.431
- type: map_at_3
value: 63.9
- type: map_at_5
value: 65.225
- type: mrr_at_1
value: 55.60000000000001
- type: mrr_at_10
value: 65.873
- type: mrr_at_100
value: 66.36999999999999
- type: mrr_at_1000
value: 66.381
- type: mrr_at_3
value: 63.849999999999994
- type: mrr_at_5
value: 65.17500000000001
- type: ndcg_at_1
value: 55.7
- type: ndcg_at_10
value: 70.621
- type: ndcg_at_100
value: 72.944
- type: ndcg_at_1000
value: 73.25399999999999
- type: ndcg_at_3
value: 66.547
- type: ndcg_at_5
value: 68.93599999999999
- type: precision_at_1
value: 55.7
- type: precision_at_10
value: 8.52
- type: precision_at_100
value: 0.958
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 24.733
- type: precision_at_5
value: 16
- type: recall_at_1
value: 55.7
- type: recall_at_10
value: 85.2
- type: recall_at_100
value: 95.8
- type: recall_at_1000
value: 98.3
- type: recall_at_3
value: 74.2
- type: recall_at_5
value: 80
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 84.54
- type: ap
value: 66.13603199670062
- type: f1
value: 82.61420654584116
---
<!-- TODO: add evaluation results here -->
<br><br>
<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>
<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
## Quick Start
The easiest way to starting using `jina-embeddings-v2-base-zh` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
## Intended Usage & Model Info
`jina-embeddings-v2-base-zh` is a Chinese/English bilingual text **embedding model** supporting **8192 sequence length**.
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed Chinese-English input without bias.
Additionally, we provide the following embedding models:
`jina-embeddings-v2-base-zh` 是支持中英双语的**文本向量**模型,它支持长达**8192字符**的文本编码。
该模型的研发基于BERT架构(JinaBERT),JinaBERT是在BERT架构基础上的改进,首次将[ALiBi](https://arxiv.org/abs/2108.12409)应用到编码器架构中以支持更长的序列。
不同于以往的单语言/多语言向量模型,我们设计双语模型来更好的支持单语言(中搜中)以及跨语言(中搜英)文档检索。
除此之外,我们也提供其它向量模型:
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings **(you are here)**.
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings.
- [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon).
## Data & Parameters
We will publish a report with technical details about the training of the bilingual models soon.
The training of the English model is described in this [technical report](https://arxiv.org/abs/2310.19923).
## Usage
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
<p>
### Why mean pooling?
`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
It has been proved to be the most effective way to produce high-quality sentence embeddings.
We offer an `encode` function to deal with this.
However, if you would like to do it without using the default `encode` function:
```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['How is the weather today?', '今天天气怎么样?']
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-zh')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
```
</p>
</details>
You can use Jina Embedding models directly from transformers package.
First, you need to make sure that you are logged into huggingface. You can either use the huggingface-cli tool (after installing the `transformers` package) and pass your [hugginface access token](https://huggingface.co/docs/hub/security-tokens):
```bash
huggingface-cli login
```
Alternatively, you can provide the access token as an environment variable in the shell:
```bash
export HF_TOKEN="<your token here>"
```
or in Python:
```python
import os
os.environ['HF_TOKEN'] = "<your token here>"
```
Then, you can use load and use the model via the `AutoModel` class:
```python
!pip install transformers
from transformers import AutoModel
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True) # trust_remote_code is needed to use the encode method
embeddings = model.encode(['How is the weather today?', '今天天气怎么样?'])
print(cos_sim(embeddings[0], embeddings[1]))
```
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
```python
embeddings = model.encode(
['Very long ... document'],
max_length=2048
)
```
If you want to use the model together with the [sentence-transformers package](https://github.com/UKPLab/sentence-transformers/), make sure that you have installed the latest release and set `trust_remote_code=True` as well:
```python
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = SentenceTransformer('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
embeddings = model.encode(['How is the weather today?', '今天天气怎么样?'])
print(cos_sim(embeddings[0], embeddings[1]))
```
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
```python
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
"jinaai/jina-embeddings-v2-base-de", # switch to en/zh for English or Chinese
trust_remote_code=True
)
# control your input sequence length up to 8192
model.max_seq_length = 1024
embeddings = model.encode([
'How is the weather today?',
'Wie ist das Wetter heute?'
])
print(cos_sim(embeddings[0], embeddings[1]))
```
## Alternatives to Using Transformers Package
1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/).
2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy).
## Use Jina Embeddings for RAG
According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
> In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
<img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px">
## Trouble Shooting
**Loading of Model Code failed**
If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized.
This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
```bash
Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
```
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find Jina Embeddings useful in your research, please cite the following paper:
```
@misc{günther2023jina,
title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents},
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao},
year={2023},
eprint={2310.19923},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |