--- tags: - finetuner - mteb - sentence-transformers - feature-extraction - sentence-similarity - alibi license: apache-2.0 language: - en - zh model-index: - name: jina-embeddings-v2-base-zh results: - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 48.51403119231363 - type: cos_sim_spearman value: 50.5928547846445 - type: euclidean_pearson value: 48.750436310559074 - type: euclidean_spearman value: 50.50950238691385 - type: manhattan_pearson value: 48.7866189440328 - type: manhattan_spearman value: 50.58692402017165 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 50.25985700105725 - type: cos_sim_spearman value: 51.28815934593989 - type: euclidean_pearson value: 52.70329248799904 - type: euclidean_spearman value: 50.94101139559258 - type: manhattan_pearson value: 52.6647237400892 - type: manhattan_spearman value: 50.922441325406176 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 34.944 - type: f1 value: 34.06478860660109 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 65.15667035488342 - type: cos_sim_spearman value: 66.07110142081 - type: euclidean_pearson value: 60.447598102249714 - type: euclidean_spearman value: 61.826575796578766 - type: manhattan_pearson value: 60.39364279354984 - type: manhattan_spearman value: 61.78743491223281 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 39.96714175391701 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 38.39863566717934 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: None metrics: - type: map value: 83.63680381780644 - type: mrr value: 86.16476190476192 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: None metrics: - type: map value: 83.74350667859487 - type: mrr value: 86.10388888888889 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 22.072 - type: map_at_10 value: 32.942 - type: map_at_100 value: 34.768 - type: map_at_1000 value: 34.902 - type: map_at_3 value: 29.357 - type: map_at_5 value: 31.236000000000004 - type: mrr_at_1 value: 34.259 - type: mrr_at_10 value: 41.957 - type: mrr_at_100 value: 42.982 - type: mrr_at_1000 value: 43.042 - type: mrr_at_3 value: 39.722 - type: mrr_at_5 value: 40.898 - type: ndcg_at_1 value: 34.259 - type: ndcg_at_10 value: 39.153 - type: ndcg_at_100 value: 46.493 - type: ndcg_at_1000 value: 49.01 - type: ndcg_at_3 value: 34.636 - type: ndcg_at_5 value: 36.278 - type: precision_at_1 value: 34.259 - type: precision_at_10 value: 8.815000000000001 - type: precision_at_100 value: 1.474 - type: precision_at_1000 value: 0.179 - type: precision_at_3 value: 19.73 - type: precision_at_5 value: 14.174000000000001 - type: recall_at_1 value: 22.072 - type: recall_at_10 value: 48.484 - type: recall_at_100 value: 79.035 - type: recall_at_1000 value: 96.15 - type: recall_at_3 value: 34.607 - type: recall_at_5 value: 40.064 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 76.7047504509922 - type: cos_sim_ap value: 85.26649874800871 - type: cos_sim_f1 value: 78.13528724646915 - type: cos_sim_precision value: 71.57587548638132 - type: cos_sim_recall value: 86.01823708206688 - type: dot_accuracy value: 70.13830426939266 - type: dot_ap value: 77.01510412382171 - type: dot_f1 value: 73.56710042713817 - type: dot_precision value: 63.955094991364426 - type: dot_recall value: 86.57937806873977 - type: euclidean_accuracy value: 75.53818400481059 - type: euclidean_ap value: 84.34668448241264 - type: euclidean_f1 value: 77.51741608613047 - type: euclidean_precision value: 70.65614777756399 - type: euclidean_recall value: 85.85457096095394 - type: manhattan_accuracy value: 75.49007817197835 - type: manhattan_ap value: 84.40297506704299 - type: manhattan_f1 value: 77.63185324160932 - type: manhattan_precision value: 70.03949595636637 - type: manhattan_recall value: 87.07037643207856 - type: max_accuracy value: 76.7047504509922 - type: max_ap value: 85.26649874800871 - type: max_f1 value: 78.13528724646915 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 69.178 - type: map_at_10 value: 77.523 - type: map_at_100 value: 77.793 - type: map_at_1000 value: 77.79899999999999 - type: map_at_3 value: 75.878 - type: map_at_5 value: 76.849 - type: mrr_at_1 value: 69.44200000000001 - type: mrr_at_10 value: 77.55 - type: mrr_at_100 value: 77.819 - type: mrr_at_1000 value: 77.826 - type: mrr_at_3 value: 75.957 - type: mrr_at_5 value: 76.916 - type: ndcg_at_1 value: 69.44200000000001 - type: ndcg_at_10 value: 81.217 - type: ndcg_at_100 value: 82.45 - type: ndcg_at_1000 value: 82.636 - type: ndcg_at_3 value: 77.931 - type: ndcg_at_5 value: 79.655 - type: precision_at_1 value: 69.44200000000001 - type: precision_at_10 value: 9.357 - type: precision_at_100 value: 0.993 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 28.1 - type: precision_at_5 value: 17.724 - type: recall_at_1 value: 69.178 - type: recall_at_10 value: 92.624 - type: recall_at_100 value: 98.209 - type: recall_at_1000 value: 99.684 - type: recall_at_3 value: 83.772 - type: recall_at_5 value: 87.882 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.163999999999998 - type: map_at_10 value: 76.386 - type: map_at_100 value: 79.339 - type: map_at_1000 value: 79.39500000000001 - type: map_at_3 value: 52.959 - type: map_at_5 value: 66.59 - type: mrr_at_1 value: 87.9 - type: mrr_at_10 value: 91.682 - type: mrr_at_100 value: 91.747 - type: mrr_at_1000 value: 91.751 - type: mrr_at_3 value: 91.267 - type: mrr_at_5 value: 91.527 - type: ndcg_at_1 value: 87.9 - type: ndcg_at_10 value: 84.569 - type: ndcg_at_100 value: 87.83800000000001 - type: ndcg_at_1000 value: 88.322 - type: ndcg_at_3 value: 83.473 - type: ndcg_at_5 value: 82.178 - type: precision_at_1 value: 87.9 - type: precision_at_10 value: 40.605000000000004 - type: precision_at_100 value: 4.752 - type: precision_at_1000 value: 0.488 - type: precision_at_3 value: 74.9 - type: precision_at_5 value: 62.96000000000001 - type: recall_at_1 value: 25.163999999999998 - type: recall_at_10 value: 85.97399999999999 - type: recall_at_100 value: 96.63000000000001 - type: recall_at_1000 value: 99.016 - type: recall_at_3 value: 55.611999999999995 - type: recall_at_5 value: 71.936 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 48.6 - type: map_at_10 value: 58.831 - type: map_at_100 value: 59.427 - type: map_at_1000 value: 59.44199999999999 - type: map_at_3 value: 56.383 - type: map_at_5 value: 57.753 - type: mrr_at_1 value: 48.6 - type: mrr_at_10 value: 58.831 - type: mrr_at_100 value: 59.427 - type: mrr_at_1000 value: 59.44199999999999 - type: mrr_at_3 value: 56.383 - type: mrr_at_5 value: 57.753 - type: ndcg_at_1 value: 48.6 - type: ndcg_at_10 value: 63.951 - type: ndcg_at_100 value: 66.72200000000001 - type: ndcg_at_1000 value: 67.13900000000001 - type: ndcg_at_3 value: 58.882 - type: ndcg_at_5 value: 61.373 - type: precision_at_1 value: 48.6 - type: precision_at_10 value: 8.01 - type: precision_at_100 value: 0.928 - type: precision_at_1000 value: 0.096 - type: precision_at_3 value: 22.033 - type: precision_at_5 value: 14.44 - type: recall_at_1 value: 48.6 - type: recall_at_10 value: 80.10000000000001 - type: recall_at_100 value: 92.80000000000001 - type: recall_at_1000 value: 96.1 - type: recall_at_3 value: 66.10000000000001 - type: recall_at_5 value: 72.2 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: None metrics: - type: accuracy value: 47.36437091188918 - type: f1 value: 36.60946954228577 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: None metrics: - type: accuracy value: 79.5684803001876 - type: ap value: 42.671935929201524 - type: f1 value: 73.31912729103752 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 68.62670112113864 - type: cos_sim_spearman value: 75.74009123170768 - type: euclidean_pearson value: 73.93002595958237 - type: euclidean_spearman value: 75.35222935003587 - type: manhattan_pearson value: 73.89870445158144 - type: manhattan_spearman value: 75.31714936339398 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 31.5372713650176 - type: mrr value: 30.163095238095238 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 65.054 - type: map_at_10 value: 74.156 - type: map_at_100 value: 74.523 - type: map_at_1000 value: 74.535 - type: map_at_3 value: 72.269 - type: map_at_5 value: 73.41 - type: mrr_at_1 value: 67.24900000000001 - type: mrr_at_10 value: 74.78399999999999 - type: mrr_at_100 value: 75.107 - type: mrr_at_1000 value: 75.117 - type: mrr_at_3 value: 73.13499999999999 - type: mrr_at_5 value: 74.13499999999999 - type: ndcg_at_1 value: 67.24900000000001 - type: ndcg_at_10 value: 77.96300000000001 - type: ndcg_at_100 value: 79.584 - type: ndcg_at_1000 value: 79.884 - type: ndcg_at_3 value: 74.342 - type: ndcg_at_5 value: 76.278 - type: precision_at_1 value: 67.24900000000001 - type: precision_at_10 value: 9.466 - type: precision_at_100 value: 1.027 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 27.955999999999996 - type: precision_at_5 value: 17.817 - type: recall_at_1 value: 65.054 - type: recall_at_10 value: 89.113 - type: recall_at_100 value: 96.369 - type: recall_at_1000 value: 98.714 - type: recall_at_3 value: 79.45400000000001 - type: recall_at_5 value: 84.06 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.1977135171486 - type: f1 value: 67.23114308718404 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.92669804976462 - type: f1 value: 72.90628475628779 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 49.2 - type: map_at_10 value: 54.539 - type: map_at_100 value: 55.135 - type: map_at_1000 value: 55.19199999999999 - type: map_at_3 value: 53.383 - type: map_at_5 value: 54.142999999999994 - type: mrr_at_1 value: 49.2 - type: mrr_at_10 value: 54.539 - type: mrr_at_100 value: 55.135999999999996 - type: mrr_at_1000 value: 55.19199999999999 - type: mrr_at_3 value: 53.383 - type: mrr_at_5 value: 54.142999999999994 - type: ndcg_at_1 value: 49.2 - type: ndcg_at_10 value: 57.123000000000005 - type: ndcg_at_100 value: 60.21300000000001 - type: ndcg_at_1000 value: 61.915 - type: ndcg_at_3 value: 54.772 - type: ndcg_at_5 value: 56.157999999999994 - type: precision_at_1 value: 49.2 - type: precision_at_10 value: 6.52 - type: precision_at_100 value: 0.8009999999999999 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 19.6 - type: precision_at_5 value: 12.44 - type: recall_at_1 value: 49.2 - type: recall_at_10 value: 65.2 - type: recall_at_100 value: 80.10000000000001 - type: recall_at_1000 value: 93.89999999999999 - type: recall_at_3 value: 58.8 - type: recall_at_5 value: 62.2 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: None metrics: - type: accuracy value: 63.29333333333334 - type: f1 value: 63.03293854259612 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 75.69030860855442 - type: cos_sim_ap value: 80.6157833772759 - type: cos_sim_f1 value: 77.87524366471735 - type: cos_sim_precision value: 72.3076923076923 - type: cos_sim_recall value: 84.37170010559663 - type: dot_accuracy value: 67.78559826746074 - type: dot_ap value: 72.00871467527499 - type: dot_f1 value: 72.58722247394654 - type: dot_precision value: 63.57142857142857 - type: dot_recall value: 84.58289334741288 - type: euclidean_accuracy value: 75.20303194369248 - type: euclidean_ap value: 80.98587256415605 - type: euclidean_f1 value: 77.26396917148362 - type: euclidean_precision value: 71.03631532329496 - type: euclidean_recall value: 84.68848996832101 - type: manhattan_accuracy value: 75.20303194369248 - type: manhattan_ap value: 80.93460699513219 - type: manhattan_f1 value: 77.124773960217 - type: manhattan_precision value: 67.43083003952569 - type: manhattan_recall value: 90.07391763463569 - type: max_accuracy value: 75.69030860855442 - type: max_ap value: 80.98587256415605 - type: max_f1 value: 77.87524366471735 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: None metrics: - type: accuracy value: 87.00000000000001 - type: ap value: 83.24372135949511 - type: f1 value: 86.95554191530607 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 37.57616811591219 - type: cos_sim_spearman value: 41.490259084930045 - type: euclidean_pearson value: 38.9155043692188 - type: euclidean_spearman value: 39.16056534305623 - type: manhattan_pearson value: 38.76569892264335 - type: manhattan_spearman value: 38.99891685590743 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 35.44858610359665 - type: cos_sim_spearman value: 38.11128146262466 - type: euclidean_pearson value: 31.928644189822457 - type: euclidean_spearman value: 34.384936631696554 - type: manhattan_pearson value: 31.90586687414376 - type: manhattan_spearman value: 34.35770153777186 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.54931957553592 - type: cos_sim_spearman value: 69.25068863016632 - type: euclidean_pearson value: 50.26525596106869 - type: euclidean_spearman value: 63.83352741910006 - type: manhattan_pearson value: 49.98798282198196 - type: manhattan_spearman value: 63.87649521907841 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 82.52782476625825 - type: cos_sim_spearman value: 82.55618986168398 - type: euclidean_pearson value: 78.48190631687673 - type: euclidean_spearman value: 78.39479731354655 - type: manhattan_pearson value: 78.51176592165885 - type: manhattan_spearman value: 78.42363787303265 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: None metrics: - type: map value: 67.36693873615643 - type: mrr value: 77.83847701797939 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.795 - type: map_at_10 value: 72.258 - type: map_at_100 value: 76.049 - type: map_at_1000 value: 76.134 - type: map_at_3 value: 50.697 - type: map_at_5 value: 62.324999999999996 - type: mrr_at_1 value: 86.634 - type: mrr_at_10 value: 89.792 - type: mrr_at_100 value: 89.91900000000001 - type: mrr_at_1000 value: 89.923 - type: mrr_at_3 value: 89.224 - type: mrr_at_5 value: 89.608 - type: ndcg_at_1 value: 86.634 - type: ndcg_at_10 value: 80.589 - type: ndcg_at_100 value: 84.812 - type: ndcg_at_1000 value: 85.662 - type: ndcg_at_3 value: 82.169 - type: ndcg_at_5 value: 80.619 - type: precision_at_1 value: 86.634 - type: precision_at_10 value: 40.389 - type: precision_at_100 value: 4.93 - type: precision_at_1000 value: 0.513 - type: precision_at_3 value: 72.104 - type: precision_at_5 value: 60.425 - type: recall_at_1 value: 25.795 - type: recall_at_10 value: 79.565 - type: recall_at_100 value: 93.24799999999999 - type: recall_at_1000 value: 97.595 - type: recall_at_3 value: 52.583999999999996 - type: recall_at_5 value: 66.175 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: None metrics: - type: accuracy value: 47.648999999999994 - type: f1 value: 46.28925837008413 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 54.07641891287953 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 53.423702062353954 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 55.7 - type: map_at_10 value: 65.923 - type: map_at_100 value: 66.42 - type: map_at_1000 value: 66.431 - type: map_at_3 value: 63.9 - type: map_at_5 value: 65.225 - type: mrr_at_1 value: 55.60000000000001 - type: mrr_at_10 value: 65.873 - type: mrr_at_100 value: 66.36999999999999 - type: mrr_at_1000 value: 66.381 - type: mrr_at_3 value: 63.849999999999994 - type: mrr_at_5 value: 65.17500000000001 - type: ndcg_at_1 value: 55.7 - type: ndcg_at_10 value: 70.621 - type: ndcg_at_100 value: 72.944 - type: ndcg_at_1000 value: 73.25399999999999 - type: ndcg_at_3 value: 66.547 - type: ndcg_at_5 value: 68.93599999999999 - type: precision_at_1 value: 55.7 - type: precision_at_10 value: 8.52 - type: precision_at_100 value: 0.958 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 24.733 - type: precision_at_5 value: 16 - type: recall_at_1 value: 55.7 - type: recall_at_10 value: 85.2 - type: recall_at_100 value: 95.8 - type: recall_at_1000 value: 98.3 - type: recall_at_3 value: 74.2 - type: recall_at_5 value: 80 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: None metrics: - type: accuracy value: 84.54 - type: ap value: 66.13603199670062 - type: f1 value: 82.61420654584116 ---

Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

The text embedding set trained by Jina AI.

## Intended Usage & Model Info `jina-embeddings-v2-base-zh` is a Chinese/English bilingual text **embedding model** supporting **8192 sequence length**. It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length. We have designed it for high performance in mongolingual & cross-language applications and trained it specifically to support mixed Chinese-English input without bias. The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi. This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search, etc. With a standard size of 161 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference. Additionally, we provide the following embedding models: - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters. - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters. - [`jina-embeddings-v2-base-zh`](): Chinese-English Bilingual embeddings (soon) **(you are here)**. - [`jina-embeddings-v2-base-de`](): German-English Bilingual embeddings (soon). - [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon). ## Data & Parameters Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923) ## Usage **
Please apply mean pooling when integrating the model.**

### Why mean pooling? `mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level. It has been proved to be the most effective way to produce high-quality sentence embeddings. We offer an `encode` function to deal with this. However, if you would like to do it without using the default `encode` function: ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['How is the weather today?', 'What is the current weather like today?'] tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-small-en') model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-small-en', trust_remote_code=True) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) ```

You can use Jina Embedding models directly from transformers package: ```python !pip install transformers from transformers import AutoModel from numpy.linalg import norm cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b)) model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en', trust_remote_code=True) # trust_remote_code is needed to use the encode method embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?']) print(cos_sim(embeddings[0], embeddings[1])) ``` If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function: ```python embeddings = model.encode( ['Very long ... document'], max_length=2048 ) ``` ## Fully-managed Embeddings Service Alternatively, you can use Jina AI's [Embedding platform](https://jina.ai/embeddings/) for fully-managed access to Jina Embeddings models. ## Use Jina Embeddings for RAG According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83), > In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out. ## Plans 1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese. 2. Multimodal embedding models enable MultimodalRAG applications. 3. High-performt rerankers. ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. ## Citation If you find Jina Embeddings useful in your research, please cite the following paper: ``` @misc{günther2023jina, title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents}, author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao}, year={2023}, eprint={2310.19923}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```