File size: 7,794 Bytes
f077afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8177662
f077afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2c2be
 
 
 
f077afa
3a2c2be
 
 
 
 
 
 
 
 
f077afa
3a2c2be
f077afa
3a2c2be
 
 
f077afa
3a2c2be
 
 
 
 
f077afa
 
 
 
3a2c2be
f077afa
 
 
8177662
 
 
 
 
 
 
 
 
 
 
 
 
f077afa
 
8177662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f077afa
 
 
3252a4e
f077afa
8177662
 
 
 
 
 
 
f077afa
 
8177662
 
 
 
f077afa
 
 
 
 
8177662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f077afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
license: cc-by-nc-4.0
tags:
- feature-extraction
- sentence-similarity
- mteb
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - no
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
inference: false
library_name: transformers
---

<br><br>

<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>The embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>

<p align="center">
<b>Jina Embedding V3: A Multilingual Multi-Task Embedding Model</b>
</p>

## Quick Start

The easiest way to starting using `jina-embeddings-v3` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).


## Intended Usage & Model Info


`jina-embeddings-v3` is a **multilingual multi-task text embedding model** designed for a variety of NLP applications.
Based on the [XLM-RoBERTa architecture](https://huggingface.co/jinaai/xlm-roberta-flash-implementation), 
this model supports [Rotary Position Embeddings (RoPE)](https://arxiv.org/abs/2104.09864) to handle long sequences up to **8192 tokens**.
Additionally, it features [LoRA](https://arxiv.org/abs/2106.09685) adapters to generate task-specific embeddings efficiently.

### Key Features:
- **Extended Sequence Length:** Supports up to 8192 tokens with RoPE.
- **Task-Specific Embedding:** Customize embeddings through the `task_type` argument with the following options:
    - `retrieval.query`: Used for query embeddings in asymmetric retrieval tasks
    - `retrieval.passage`: Used for passage embeddings in asymmetric retrieval tasks
    - `separation`: Used for embeddings in clustering and re-ranking applications
    - `classification`: Used for embeddings in classification tasks
    - `text-matching`: Used for embeddings in tasks that quantify similarity between two texts, such as STS or symmetric retrieval tasks
- **Matryoshka Embeddings**: Supports flexible embedding sizes (`32, 64, 128, 256, 512, 768, 1024`), allowing for truncating embeddings to fit your application.

### Model Lineage:

`jina-embeddings-v3` builds upon the [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) model, which was originally trained on 100 languages. 
We extended its capabilities with an extra pretraining phase on the [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) dataset, 
then contrastively fine-tuned it on 30 languages for enhanced performance on embedding tasks in both monolingual and cross-lingual setups.

### Supported Languages:
While the base model supports 100 languages, we've focused our tuning efforts on the following 30 languages: 
**Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, Georgian, German, Greek, 
Hindi, Indonesian, Italian, Japanese, Korean, Latvian, Norwegian, Polish, Portuguese, Romanian, 
Russian, Slovak, Spanish, Swedish, Thai, Turkish, Ukrainian, Urdu,** and **Vietnamese.**


## Data & Parameters

The data and training details are described in the technical report (coming soon).

## Usage

**<details><summary>Apply mean pooling when integrating the model.</summary>**
<p>

### Why Use Mean Pooling?

Mean pooling takes all token embeddings from the model's output and averages them at the sentence or paragraph level. 
This approach has been shown to produce high-quality sentence embeddings.

We provide an `encode` function that handles this for you automatically.

However, if you're working with the model directly, outside of the `encode` function, 
you'll need to apply mean pooling manually. Here's how you can do it:


```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

sentences = ['How is the weather today?', 'What is the current weather like today?']

tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v3')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v3', trust_remote_code=True)

encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

with torch.no_grad():
    model_output = model(**encoded_input)

embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
```

</p>
</details>

The easiest way to start using `jina-embeddings-v3` is Jina AI's [Embeddings API](https://jina.ai/embeddings/).

Alternatively, you can use `jina-embeddings-v3` directly via Transformers package:
```python
!pip install transformers
from transformers import AutoModel

# Initialize the model
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v3', trust_remote_code=True)

texts = [
    'Follow the white rabbit.',              # English
    'Sigue al conejo blanco.',               # Spanish
    'Suis le lapin blanc.',                  # French
    '跟着白兔走。',                            # Chinese
    'اتبع الأرنب الأبيض.',                     # Arabic
    'Folge dem weißen Kaninchen.'            # German
]

# When calling the `encode` function, you can choose a `task_type` based on the use case:
# 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
# Alternatively, you can choose not to pass a `task_type`, and no specific LoRA adapter will be used.
embeddings = model.encode(texts, task_type='text-matching')

# Compute similarities
print(embeddings[0] @ embeddings[1].T)
```

By default, the model supports a maximum sequence length of 8192 tokens. 
However, if you want to truncate your input texts to a shorter length, you can pass the `max_length` parameter to the `encode` function:
```python
embeddings = model.encode(
    ['Very long ... document'],
    max_length=2048
)
```

In case you want to use **Matryoshka embeddings** and switch to a different dimension, 
you can adjust it by passing the `truncate_dim` parameter to the `encode` function:
```python
embeddings = model.encode(
    ['Sample text'],
    truncate_dim=256
)
```

The latest version (#todo: specify version) of SentenceTransformers also supports `jina-embeddings-v3`:

```python
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer

model = SentenceTransformer(
    "jinaai/jina-embeddings-v3", trust_remote_code=True
)

embeddings = model.encode(['How is the weather today?'], task_type='retrieval.query')
```



## Performance

TODO UPDATE THIS

## Contact

Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.

## Citation

If you find `jina-embeddings-v3` useful in your research, please cite the following paper:

```bibtex

```