jupyterjazz commited on
Commit
562d3a6
1 Parent(s): 343dbf5

finetuning details

Browse files

Signed-off-by: jupyterjazz <[email protected]>

Files changed (1) hide show
  1. README.md +19 -0
README.md CHANGED
@@ -25178,6 +25178,25 @@ embeddings = model.encode(
25178
  )
25179
  ```
25180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25181
  **<details><summary>ONNX Inference.</summary>**
25182
  <p>
25183
 
 
25178
  )
25179
  ```
25180
 
25181
+ You can fine-tune `jina-embeddings-v3` using [SentenceTransformerTrainer](https://sbert.net/docs/package_reference/sentence_transformer/trainer.html).
25182
+ To fine-tune for a specific task, you can set the task before passing the model to the ST Trainer, either during initialization:
25183
+ ```python
25184
+ model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True, model_kwargs={'default_task': 'classification'})
25185
+ ```
25186
+ Or afterwards:
25187
+ ```python
25188
+ model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True)
25189
+ model._modules['transformer'].default_task = 'classification'
25190
+ ```
25191
+ This way you can fine-tune the LoRA adapter for the chosen task.
25192
+
25193
+ However, If you want to fine-tune the entire model, make sure the main parameters are set as trainable when loading the model:
25194
+ ```python
25195
+ model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True, model_kwargs={'lora_main_params_trainable': True})
25196
+ ```
25197
+ This will allow fine-tuning the whole model instead of just the LoRA adapters.
25198
+
25199
+
25200
  **<details><summary>ONNX Inference.</summary>**
25201
  <p>
25202